Thermal and transport properties of neutron star matter.

Sanjay Reddy

- Introduction
- Specific heat of neutron stars
- Crust: Properties of solid and superfluid matter
- Core: Low energy modes and transport properties
- Summary

<u>Relevant Papers:</u> arXiv:1602.01831 arXiv:1409.7750 arXiv:1307.4455 arXiv:1210.5169 arXiv:1201.5602 arXiv:1102.5379 arXiv:1009.2303

INSTITUTE for **NUCLEAR THEORY** Collaborators: Paulo Bedaque Bridget Bertoni * Vincenzo Cirigliano Andrew Cumming Nicolas Chamel Dany Page Chris Pethick Alessandro Roggero Ermal Rrapaj * Rishi Sharma

Phases of Dense Matter in Neutron Stars

(Dense) Material Characterization

	Property	Observations
	Equation of State	 Mass Radius Moment of Inertia Tidal Polarizability Seismology Thermal Evolution Supernova Neutrinos
٢	Specific Heat	
0	Thermal Conductivity	
٢	Neutrino Emissivity	
۲	Neutrino Opacity	
٢	Electrical Conductivity	 Magnetic Field Evolution
٢	Shear Viscosity	 Spin Evolution (r-modes)

Fermions: Particle-hole excitations

$$C_{F,i} = \pi^2 \ n_i \frac{E_{F,i} \ T}{p_{F,i}^2} \simeq 2 \times 10^{19} \ \left(\frac{E_{F,i}}{m_n}\right) \left(\frac{p_{F,i}}{400 \text{ MeV}}\right) \left(\frac{T}{10^8 \text{ K}}\right) \ \frac{\text{ergs}}{\text{cm}^3 \text{ K}}$$

Bosons: Collective excitations

$$C_{B,i} = \frac{2\pi^2 \ c^3}{15 \ v_{B,i}^3} \ T^3 \simeq 1.5 \times 10^{10} \ \left(\frac{c}{v_{B,i}}\right)^3 \left(\frac{T}{10^8 \ \mathrm{K}}\right)^3 \ \frac{\mathrm{ergs}}{\mathrm{cm}^3 \ \mathrm{K}}$$

Fermions: Particle-hole excitations

$$C_{F,i} = \pi^2 \ n_i \frac{E_{F,i} \ T}{p_{F,i}^2} \simeq 2 \times 10^{19} \ \left(\frac{E_{F,i}}{m_n}\right) \left(\frac{p_{F,i}}{400 \ \text{MeV}}\right) \left(\frac{T}{10^8 \ \text{K}}\right) \ \frac{\text{ergs}}{\text{cm}^3 \ \text{K}}$$

Bosons: Collective excitations

$$C_{B,i} = \frac{2\pi^2 \ c^3}{15 \ v_{B,i}^3} \ T^3 \simeq 1.5 \times 10^{10} \ \left(\frac{c}{v_{B,i}}\right)^3 \left(\frac{T}{10^8 \ \mathrm{K}}\right)^3 \ \frac{\mathrm{ergs}}{\mathrm{cm}^3 \ \mathrm{K}}$$

Pairing suppresses the nucleon contribution.

Fermions: Particle-hole excitations

$$C_{F,i} = \pi^2 \ n_i \frac{E_{F,i} \ T}{p_{F,i}^2} \simeq 2 \times 10^{19} \ \left(\frac{E_{F,i}}{m_n}\right) \left(\frac{p_{F,i}}{400 \ \text{MeV}}\right) \left(\frac{T}{10^8 \ \text{K}}\right) \ \frac{\text{ergs}}{\text{cm}^3 \ \text{K}}$$

Bosons: Collective excitations

$$C_{B,i} = \frac{2\pi^2 \ c^3}{15 \ v_{B,i}^3} \ T^3 \simeq 1.5 \times 10^{10} \ \left(\frac{c}{v_{B,i}}\right)^3 \left(\frac{T}{10^8 \ \mathrm{K}}\right)^3 \ \frac{\mathrm{ergs}}{\mathrm{cm}^3 \ \mathrm{K}}$$

Pairing suppresses the nucleon contribution.

Fermions: Particle-hole excitations

$$C_{F,i} = \pi^2 \ n_i \frac{E_{F,i} \ T}{p_{F,i}^2} \simeq 2 \times 10^{19} \ \left(\frac{E_{F,i}}{m_n}\right) \left(\frac{p_{F,i}}{400 \ \text{MeV}}\right) \left(\frac{T}{10^8 \ \text{K}}\right) \ \frac{\text{ergs}}{\text{cm}^3 \ \text{K}}$$

Bosons: Collective excitations

$$C_{B,i} = \frac{2\pi^2 \ c^3}{15 \ v_{B,i}^3} \ T^3 \simeq 1.5 \times 10^{10} \ \left(\frac{c}{v_{B,i}}\right)^3 \left(\frac{T}{10^8 \ \mathrm{K}}\right)^3 \ \frac{\mathrm{ergs}}{\mathrm{cm}^3 \ \mathrm{K}}$$

Pairing suppresses the nucleon contribution.

Core contribution is large and electrons set the lower limit.

Fermions: Particle-hole excitations

$$C_{F,i} = \pi^2 \ n_i \frac{E_{F,i} \ T}{p_{F,i}^2} \simeq 2 \times 10^{19} \ \left(\frac{E_{F,i}}{m_n}\right) \left(\frac{p_{F,i}}{400 \ \text{MeV}}\right) \left(\frac{T}{10^8 \ \text{K}}\right) \ \frac{\text{ergs}}{\text{cm}^3 \ \text{K}}$$

Bosons: Collective excitations

$$C_{B,i} = \frac{2\pi^2 \ c^3}{15 \ v_{B,i}^3} \ T^3 \simeq 1.5 \times 10^{10} \ \left(\frac{c}{v_{B,i}}\right)^3 \left(\frac{T}{10^8 \ \mathrm{K}}\right)^3 \ \frac{\mathrm{ergs}}{\mathrm{cm}^3 \ \mathrm{K}}$$

Pairing suppresses the nucleon contribution.

Core contribution is large and electrons set the lower limit.

Fermions: Particle-hole excitations

$$C_{F,i} = \pi^2 \ n_i \frac{E_{F,i} \ T}{p_{F,i}^2} \simeq 2 \times 10^{19} \ \left(\frac{E_{F,i}}{m_n}\right) \left(\frac{p_{F,i}}{400 \ \text{MeV}}\right) \left(\frac{T}{10^8 \ \text{K}}\right) \ \frac{\text{ergs}}{\text{cm}^3 \ \text{K}}$$

Bosons: Collective excitations

$$C_{B,i} = \frac{2\pi^2 \ c^3}{15 \ v_{B,i}^3} \ T^3 \simeq 1.5 \times 10^{10} \ \left(\frac{c}{v_{B,i}}\right)^3 \left(\frac{T}{10^8 \ \mathrm{K}}\right)^3 \ \frac{\mathrm{ergs}}{\mathrm{cm}^3 \ \mathrm{K}}$$

Pairing suppresses the nucleon contribution.

- Core contribution is large and electrons set the lower limit.
- Collective modes play a role in the crust.

Specific Heat & Phase Transitions

Canonial expectation:

$$C_{NS} \approx 10^{38} \left(\frac{T}{10^8 \text{ K}}\right) \frac{\text{ergs}}{\text{K}}$$

Nucleon superfluidity can suppress C_{NS} by a factor of about 10-20.

Additional un-gapped fermions (quarks, hyperons) can enhance it by a factor of a few.

Exception: A large CFL fraction in the core can reduce C_{NS} by a factor of 100.

Specific heat of a 1.4 M $_{\odot}$ neutron star at T=10⁸ K. Figure courtesy of Dany Page

Specific Heat & Phase Transitions

Canonial expectation:

$$C_{NS} \approx 10^{38} \left(\frac{T}{10^8 \text{ K}}\right) \frac{\text{ergs}}{\text{K}}$$

Nucleon superfluidity can suppress C_{NS} by a factor of about 10-20.

Additional un-gapped fermions (quarks, hyperons) can enhance it by a factor of a few.

Exception: A large CFL fraction in the core can reduce C_{NS} by a factor of 100.

Specific heat of a 1.4 M $_{\odot}$ neutron star at T=10⁸ K. Figure courtesy of Dany Page

Measuring the Heat Capacity

Cumming et al. (2016 in prep.)

Heat the star, allow it to relax, and observe the change in temperature:

$$C_{NS} dT = dQ$$

Nhen
$$C_{NS} = \alpha T$$
: $\frac{\alpha}{2} (T_f^2 - T_i^2) = \Delta Q$

Lower limit:

$$\begin{split} C_{NS}(T_f) &> 2\frac{\Delta Q}{T_f} \\ \Delta Q &= \dot{H} \times t_H - L_{\nu} \times (t_H + t_{obs}) \\ & \uparrow & \uparrow & \uparrow \\ & \text{heating} & & \uparrow & \uparrow \\ & \text{neutrino} \\ & \text{cooling rate} \\ & \text{duration} \\ & \text{of heating} \\ \end{split}$$

Transiently Accreting NSs

SXRTs: High accretion followed by periods of quiescence

Deep crustal heating.

Brown, Bildsten Rutledge (1998) Sato (1974), Haensel & Zdunik (1990)

Warms up old neutron stars

Transiently Accreting NSs

SXRTs: High accretion followed by periods of quiescence

Deep crustal heating.

Brown, Bildsten Rutledge (1998) Sato (1974), Haensel & Zdunik (1990)

Image credit: NASA/CXC/Wijnands et al.

Warms up old neutron stars

Observations of KS 1731-260

Accretion Phase: 12 yrs at dM/dt $\approx 10^{17}$ g/s Thermal Relaxation: t \approx 8 yrs Quiescent Surface Temperature (post relaxation): T_{eff}=63 eV

> Wijnands et al. (2002) Cackett et al. (2010)

Energy Deposition:

$$E_{\rm dep} = \dot{H} \times t_H = 6 \times 10^{43} \text{ ergs } \left(\frac{Q_{\rm nuc}}{2 \text{ MeV}}\right) \left(\frac{\dot{M}}{10^{17} \text{g/s}}\right) \left(\frac{t_H}{10 \text{ yrs}}\right)$$

Inferred Core Temperature: (insulating envelope sustains a temperature gradient near the surface)

$$T_c^{\infty} = 7.0 \times 10^7 \text{ K} \left(\frac{T_{\text{eff}}^{\infty}}{63.1 \text{ eV}}\right)^{1.82} \quad \text{(Fe envelope)}$$
$$T_c^{\infty} = 3.1 \times 10^7 \text{ K} \left(\frac{T_{\text{eff}}^{\infty}}{63.1 \text{ eV}}\right)^{1.65} \quad \text{(He envelope)}.$$

Limits: Current & Future

Limits: Current & Future

Limits: Current & Future

Limits: Current & Future $C_{NS}(T_f) > 2 \frac{\Delta Q}{T_f}$

Crust Cooling

Watching NSs immediately after accretion ceases !

Crust

Envelope

Core Neutrino Cooling The heated crust relaxes as heat is transported to the core.

Shternin & Yakovlev (2007) Cumming & Brown (2009)

Cackett, et al. (2006)

Accretion Induced Heating

Temperature profile depends on:

- accretion rate and duration.
- location of heat sources.
- thermal conductivity
- •specific heat.
- core temperature

Accretion Induced Heating

Temperature profile depends on:

- •accretion rate and duration.
- location of heat sources.
- thermal conductivity
- •specific heat.
- core temperature

Observations:

All known Quasi-persistent sources with post outburst cooling

•After a period of intense accretion the neutron star surface cools on a time scale of years.

•This relaxation was first discovered in 2001 and 6 sources have been studied to date.

Expected rate of detecting new sources
~ 1/year.

Figure from Rudy Wijnands (2013)

Thermal Conductivity

Thermal Conductivity

Cooper Pairing

Attractive interactions destabilize the Fermi surface: $H = \sum_{k,s=\uparrow,\downarrow} \left(\frac{k^2}{2m} - \mu\right) a_{k,s}^{\dagger} a_{k,s} + g \sum_{k,p,q,s=\uparrow,\downarrow} a_{k+q,s}^{\dagger} a_{p-q,s}^{\dagger} a_{k,s} a_{p,s}$

$$\Delta = g \langle a_{k,\uparrow} a_{p,\downarrow} \rangle \quad \Delta^* = g \langle a_{k,\uparrow}^{\dagger} a_{p,\downarrow}^{\dagger} \rangle$$

Cooper pairs leads to superfluidity

Energy gap for fermions:

$$E(p) = \sqrt{\left(\frac{p^2}{2M} - \mu\right)^2 + \Delta^2}$$

New collective mode: Superfluid Phonon

 $\omega(k) = v_s \ k$

Microscopic Structure of the Crust

Baym Pethick & Sutherland (1971) Negele & Vautherin (1973)

Microscopic Structure of the Crust

Baym Pethick & Sutherland (1971) Negele & Vautherin (1973)

Microscopic Structure of the Crust

Baym Pethick & Sutherland (1971) Negele & Vautherin (1973)

Electrons are (nearly) free

• Electrons are dense, degenerate and relativistic.

 $n_e = Z n_I$ $k_{\rm Fe} \approx E_{\rm Fe} \simeq 25 - 75 \,\,{\rm MeV} \gg m_e$

•Band gaps are small and restricted to small patches in the Fermi surface.

$$\frac{V_{\rm e-i}}{E_{\rm Fe}} \simeq \alpha_{\rm em} \ Z^{2/3} \ll 1$$

$$\frac{\delta_{\rm e}}{E_{\rm Fe}} \simeq \frac{4\alpha_{\rm em}}{3\pi} \approx 10^{-3}$$

•Pairing energy is negligible.

$$T_c \simeq \omega_p^{\text{ion}} \exp\left(-\frac{v_{Fe}}{\alpha_{\text{em}}}\right) \approx 0$$

Relevant Temperature Scales in the Crust

Relevant Temperature Scales in the Crust

Relevant Temperature Scales in the Crust

Separation of Scales

Low Energy Theory of Phonons

Proton (clusters) move collectively on lattice sites. Displacement is a good coordinate.

Neutron superfluid: Goldstone excitation is the fluctuation of the phase of the condensate.

 $\langle \psi_{\uparrow}(r,t)\psi \downarrow (r,t)\rangle = |\Delta(r,t)| \exp(2i\phi(r,t))$

Collective coordinates:

Vector Field: $\xi_i(r,t)$ Scalar Field: $\phi(r,t)$

Low Energy Theory of Phonons

Proton (clusters) move collectively on lattice sites. Displacement is a good coordinate.

Neutron superfluid: Goldstone excitation is the fluctuation of the phase of the condensate.

 $\langle \psi_{\uparrow}(r,t)\psi \downarrow (r,t)\rangle = |\Delta(r,t)| \exp(2i\phi(r,t))$

Collective coordinates:

Vector Field: $\xi_i(r, t)$ Scalar Field: $\phi(r, t)$

Symmetries & Derivative Expansion

The low energy theory must respect symmetries of the underlying Hamiltonian

$$\xi^{a=1..3}(\mathbf{r},t) \to \xi^{a=1..3}(\mathbf{r},t) + a^{a=1..3}$$
$$\phi(\mathbf{r},t) \to \phi(\mathbf{r},t) + \theta$$

Only derivative terms are allowed. Lagrangian density for the phonon system with cubic symmetry:

$$\mathcal{L} = \frac{f_{\phi}^2}{2} (\partial_0 \phi)^2 - \frac{v_{\phi}^2 f_{\phi}^2}{2} (\partial_i \phi)^2 + \frac{\rho}{2} \partial_0 \xi^a \partial_0 \xi^a - \frac{1}{4} \mu (\xi^{ab} \xi^{ab}) - \frac{K}{2} (\partial_a \xi^a) (\partial_b \xi^b) - \frac{\alpha}{2} \sum_{a=1..3} (\partial_a \xi^a \partial_a \xi^a) + g_{\text{mix}} f_{\phi} \sqrt{\rho} \ \partial_0 \phi \partial_a \xi^a + \cdots ,$$

where $\xi^{ab} = (\partial_a \xi^b + \partial_b \xi^a) - \frac{2}{3} \partial_c \xi^c \delta^{ab}$

Cirigliano, Reddy, Sharma 2011

Identifying the Low Energy Constants

- LECs must be related to thermodynamic properties.
- Each gradient produces a unique deformation of the ground state.
- The energy cost associated with these (small) deformations provide the LECs.

For a rigorous derivation of LECs in terms of thermodynamic derivatives see arXiv:1102.5379

Cirigliano, Reddy, Sharma 2011

The Coupled System at Leading Order

$$\mathcal{L}_{n+p} = \frac{1}{2} (\partial_t \phi)^2 - \frac{1}{2} v_s^2 (\partial_i \phi)^2 + \frac{1}{2} (\partial_t \xi_i)^2 - \frac{1}{2} (c_l^2 - g^2) (\partial_i \xi_i)^2 + g \partial_t \phi \partial_i \xi_i + \tilde{\gamma} \partial_i \phi \partial_t \xi_i$$

Velocities :
$$v_s^2 = \frac{n_f}{m\chi_n}$$
 $c_l^2 = \frac{K + 4\mu_s/3}{m(n_p + n_b)}$ Entrainment: protons
drag neutrons.Bound neutrons: $n_b = \gamma n_n$
 $free neutrons:$ $n_f = n_n (1 - \gamma)$

Longitudinal lattice phonons and superfluid phonons are coupled:

$$g = n_p E_{np} \sqrt{\frac{\chi_n}{m(n_p + n_b)}} \qquad \tilde{\gamma} = \frac{-n_b v_s}{\sqrt{(n_p + n_b)n_f}}$$

The Coupled System at Leading Order

$$\mathcal{L}_{n+p} = \frac{1}{2} (\partial_t \phi)^2 - \frac{1}{2} v_s^2 (\partial_i \phi)^2 + \frac{1}{2} (\partial_t \xi_i)^2 - \frac{1}{2} (c_l^2 - g^2) (\partial_i \xi_i)^2 + g \partial_t \phi \partial_i \xi_i + \tilde{\gamma} \partial_i \phi \partial_t \xi_i$$

Velocities :
$$v_s^2 = \frac{n_f}{m\chi_n}$$
 $c_l^2 = \frac{K + 4\mu_s/3}{m(n_p + n_b)}$ Entrainment: protons
drag neutrons.Bound neutrons: $n_b = \gamma n_n$
Free neutrons: $n_f = n_n (1 - \gamma)$

Longitudinal lattice phonons and superfluid phonons are coupled:

$$g = n_p E_{np} \sqrt{\frac{\chi_n}{m(n_p + n_b)}} \qquad \tilde{\gamma} = \frac{-n_b v_s}{\sqrt{(n_p + n_b)n_f}}$$

Transverse lattice phonons:

$$\mathcal{L}_t = \frac{1}{2} (\partial_t \xi_i)^2 - \frac{1}{2} c_t^2 (\partial_i \xi_j + \partial_j \xi_i)^2 \quad \Rightarrow \quad c_t^2 = \frac{\mu_s}{m(n_p + n_b)}$$

Entrainment

 $n_b \neq$ number of "bound" neutrons.

Bragg scattering off the lattice is important.

neutron single-particle energy

$$n_f = \frac{m}{24\pi^3} \sum_{\alpha} \int_F |\nabla_{\mathbf{k}} \epsilon_{\alpha,\mathbf{k}}| \, d\mathcal{S}^{\alpha}$$
$$n_b = n_n - n_f$$

Complex interplay of nuclear and band structure effects. The nuclear surface and disorder are likely to play a role.

Longitudinal lattice phonons and superfluid phonons are strongly coupled by entrainment.

Carter, Chamel & Haensel (2006)

Chamel (2005)

A=N+Z

Mixed & Entrained Modes

Longitudinal modes are strongly mixed due to strong interactions. Shear mode velocity is reduced due to entrainment.

Crustal Specific Heat

Page & Reddy (2012)

Crustal Specific Heat

Transport: Thermal Conduction

$$\kappa = \frac{1}{3} \ C_v \times v \times \lambda$$

Dissipative processes:

• Umklapp is important:

$$\frac{k_{\rm Fe}}{q_{\rm D}} = \left(\frac{Z}{2}\right)^{1/3} > 1$$

Electron Bragg scatters and emits a transverse phonon.

Flowers & Itoh (1976)

Superfluid Conduction

Its impossible to sustain a temperature gradient in bulk superfluid helium !

$$\vec{Q} = S^{(\text{sPh})} T \vec{v}_n$$

$$S^{(\text{sPh})} = \frac{1}{3}C_v^{(\text{sPh})} = \frac{2\pi^2}{15\ c_s^3}T^3$$

Photographs: JF Allen and JMG Armitage (St Andrews University 1982).

T>T_c

T<T_c

Two fluid model: Counter-flow transports heat. (The superfluid phonon fluid)

The velocity is limited only by fluid dynamics: (i) boundary shear viscosity or (ii) superfluid turbulence.

Why does this not occur in neutron stars ? Answer: Fluid motion is damped by electrons.

Aguilera, Cirigliano, Reddy & Sharma (2009)

Impurity Scattering in Coulomb Solids

Uncorrelated impurities:

$$\nu_{\kappa}^{imp} = \nu_{\kappa}^{0} \frac{Q_{imp}}{\langle Z \rangle} \Lambda_{\kappa}^{imp},$$
$$Q_{imp} = \langle Z^{2} \rangle - \langle Z \rangle^{2}$$
$$\Lambda_{\kappa}^{imp} = \left(\frac{\alpha_{\rm em}}{\pi} + \frac{1}{2}\right) \ln\left(\frac{\alpha_{\rm em} + \pi}{\alpha_{\rm em}}\right) - 1$$

Path Integral Monte Carlo and Molecular Dynamics suggests that impurity distribution is not random.

$$Q_{\rm imp} \to \tilde{Q}_{\rm imp} = L(\Gamma) \ Q_{\rm imp}$$

Enhances impurity scattering by a factor of 2-4.

Roggero & Reddy (2016)

Unraveling Thermal Relaxation

110

•Late time signal is sensitive to inner crust thermal and transport properties.

Shternin & Yakovlev (2007) Brown & Cumming (2009)

•Variations in the pairing gap (changes the fraction of normal neutrons)may be discernible ! Page & Reddy (2012)

Page & Reddy (2012) 100 Σ 90 $A^*: a =$ [eV] 80 0 0.3 0.6 ° ⊢°70 A_2 60 Σ Te B_1 50 $B_2 B_1$ $Log(t-t_0)$ 40 10 1000 100

Time [days]

Unraveling Thermal Relaxation

•Late time signal is sensitive to inner crust thermal and transport properties.

Shternin & Yakovlev (2007) Brown & Cumming (2009)

•Variations in the pairing gap (changes the fraction of normal neutrons)may be discernible ! Page & Reddy (2012)

A: Low T_c - large normal fraction B: High T_c- small normal fraction

Transport Properties of the Core

Low energy excitations in the core

Neutrons are superfluid (T<Tⁿ_c): Electrons + 4 Goldstone modes (3 neutron modes and 1 electron-proton mode). Bedaque, Rupak, Savage, (2003), Bedaque, Nicholson (2013), Bedaque and Reddy (2013).

Neutrons are normal (T>Tⁿ_c): Electrons, neutrons + 1 Goldstone boson (electron-proton mode).

Superfluid Phonons:
$$\begin{aligned} \mathcal{L}_{\text{phn}} &= \frac{1}{2} (\partial_0 \phi)^2 - \frac{v_n^2}{2} (\partial_i \phi)^2 + \frac{1}{2} (\partial_0 \xi)^2 - \frac{v_p^2}{2} (\partial_i \xi)^2 \\ &+ v_{\text{np}}^2 \ \partial_0 \phi \ \partial_0 \xi + \frac{1}{f_{\text{ep}}} \ \partial_0 \xi \ \psi_{\text{e}}^{\dagger} \ \psi_{\text{e}} + \cdots , \end{aligned}$$

Angulons:

$$\begin{aligned} \mathcal{L}_{\text{ang}} &= \sum_{i=1,2} \left[\frac{1}{2} (\partial_0 \beta_i)^2 - \frac{1}{2} v_{\perp}^{i^2} ((\partial_x \beta_i)^2 + (\partial_y \beta_i)^2) + v_{\parallel}^2 (\partial_z \beta_i)^2 \right] \\ &+ \frac{e g_n f_{\beta}}{2M \sqrt{-\nabla_{\perp}^2}} \left[\mathbf{B}_1 \partial_0 (\partial_y \beta_1 + \partial_x \beta_2) + \mathbf{B}_2 \partial_0 (\partial_x \beta_1 - \partial_y \beta_2) \right] \end{aligned}$$

Bedaque and Reddy (2013),

Mixing and Damping of Goldstone Bosons

Modes decay rapidly due to the coupling to the large density of electron-hole states. Do not contribute to transport.

Bedaque and Reddy (2013)

Electron Scattering in the Core

Pethick and Heiselberg (1993), Shternin and Yakovlev (2006,2007)

$$|M_{12}|^2 \propto \left| \frac{J_{1'1}^{(0)} J_{2'2}^{(0)}}{q^2 + \Pi_l} - \frac{J_{t1'1} \cdot J_{t2'2}}{q^2 - \omega^2 + \Pi_t} \right|^2$$
$$\Pi_t(\omega, q) \simeq \alpha_{\rm em} \, k_{\rm Fp}^2 \, \left(4\pi \frac{\Delta_p}{q} + 2i \, \frac{\omega}{q} \right)$$

$$\chi_p(\omega, q) = \mathcal{R}e \ \Pi_p^L(\omega, q) = \mathcal{R}e \ \int dt \ e^{i\omega t} \int d\mathbf{r} \ e^{-i\mathbf{q}\cdot\mathbf{r}} \ \langle n_p(\mathbf{r}, t)n_p(0, 0) \rangle$$

Summary

- Accreting neutron stars provide a unique opportunity to study thermal and transport properties.
- Thermal relaxation in neutron stars is sensitive to the low temperature properties of the crust.
- Thermal and transport properties of the inner crust (super-solid) can be calculated in terms of a few lowenergy constants.
- Goldstone bosons in the crust and the core can decay into electron-hole states - this limits their contribution to transport.
- The induced interactions between electrons and neutrons can be relevant in the neutron star core.