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Phases of Dense Matter in Neutron Stars  
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Specific Heat of Cold Dense Matter
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Specific Heat in the Core of an APR NS
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Measuring the Heat Capacity  

CNS dT = dQHeat the star, allow it to relax, and 
observe the change in temperature: 

When CNS = α T : 
↵

2
(T 2

f � T 2
i ) = �Q

CNS(Tf ) > 2
�Q

Tf
Lower limit:
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Transiently Accreting NSs
SXRTs:  High accretion followed by periods of quiescence

Image credit: NASA/CXC/Wijnands et al.
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KS 1731-260: High 
accretion 1988-2000

Nuclear reactions release: ~

1-2 MeV / nucleon

Warms up old neutron stars
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Observations of KS 1731-260

Accretion Phase: 12 yrs at dM/dt ≈1017 g/s

Thermal Relaxation: t ≈ 8 yrs

Quiescent Surface Temperature (post relaxation): Teff=63 eV

Wijnands et al. (2002)

Cackett et al. (2010)
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on the heat capacity

C >
2E1

T1c
, (3)

where larger values of C mean that the core temperature
started o↵ closer to the measured value after the outburst.

To illustrate that this might be an interesting limit, consider
an outburst with accretion rate of Ṁ ⇡ 0.1 ṀEdd ⇡ 1017 g s�1

(where ṀEdd is the Eddington accretion rate) and duration 10
years. The energy deposited into the core is then

E1dep = 6.0 ⇥ 1043 erg
 

Ṁ
1017 g s�1

!  
t1o

10 yr

!  
Q1crust

2 MeV

!
. (4)

A core temperature of T1c = 108 K then gives a limit C &
1036 T8 erg K�1. For a core consisting of non-superfluid neu-
trons and protons, the heat capacity is expected to be C ⇠
1038 T8 erg K�1 (e.g. [21]), much larger than the limit. How-
ever, if the nucleons are superfluid their contribution to the
specific heat is suppressed exponentially, and the heat capac-
ity is set by the leptons giving a value C ⇠ 1037 T8 erg K�1.
Even smaller values of heat capacity are possible, for example
if the high density matter forms a color-flavor-locked (CFL)
phase [22], lowering the electron content of the core.

The low mass X-ray binary KS 1731-260 was observed
in outburst for over 12 years at an accretion rate of Ṁ ⇡

0.1 ṀEdd ⇡ 1017 g s�1, before going into quiescence in 2001
[23]. Of all known sources, the long outburst makes KS 1731-
260 the best one to use to derive the heat capacity limit, since
it should have deposited the most energy into the core. It also
has one of the lowest measured temperatures. Following the
outburst, the neutron star temperature was observed to decline
over 8 years from T1e↵ = 103 eV to 63.1 eV [24]. In this paper,
we use the quiescent temperature measurement of KS 1731-
260 to constrain the neutron star core temperature, and model
the thermal relaxation of the neutron star in quiescence to con-
strain the crust heating and envelope composition (§II). We
compare the resulting lower limit on the heat capacity to the
theoretical models (§III). We discuss what further limits could
be obtained on the core heat capacity by monitoring KS 1731-
260 and other sources in future years (§IV).

II. THE LIMIT ON CORE HEAT CAPACITY FROM
KS 1731-260

In this section, we determine the lower limit on the core
heat capacity from observations of KS 1731-260.

A. Core temperature

A large uncertainty in determining the core temperature of
KS 1731-260 is the composition of the neutron star enve-
lope. During the outburst, light elements accumulate on the
surface of the star where they burn to heavy element ashes.
Depending on the state of the burning at the end of the out-
burst, the envelope can consist of heavy or light elements

FIG. 1. Example fits to the KS 1731-260 temperature measure-
ments. The model shown as a solid line has an outburst duration
of 12.0 years, accretion rate 0.1 Eddington, a heavy element enve-
lope, Qimp = 1.3, Tb = 4.1 ⇥ 108 K at the top of the crust, and core
temperature T1c = 7.3 ⇥ 107 K. The neutron star mass and radius
are 1.4 M

�

and 12 km. The inwards luminosity during the outburst
reaches 2.4⇥1035 erg s�1. The dotted curve is a model with a helium
envelope as in [9], and has a core temperature of T1c = 3.6 ⇥ 107 K.
Other parameters are Qimp = 2.3, Tb = 2.2 ⇥ 108 K. The inwards
luminosity during the outburst reaches 2.2 ⇥ 1035 erg s�1.

(e.g. [25]). For an iron envelope, the relation between the
e↵ective temperature and core temperature for a thermally re-
laxed neutron star is Tc,8 = 1.288 (T 4

s,6/g14)0.455 [26] where
Ts,6 = (T1e↵/106 K)(1 + z), Tc = T1c (1 + z), we write the sur-
face gravity g = (GM/R2)(1 + z) as g14 = g/1014 cm s�2, and
1+z is the surface redshift factor. For a 1.4 M

�

, 12 km neutron
star, g14 = 1.6 and 1 + z = 1.24, and we find

T1c = 7.0 ⇥ 107 K
 

T1e↵
63.1 eV

!1.82

(Fe envelope). (5)

For a light element envelope, the core temperature will be
lower, because the envelope is less opaque. In that case,
Tc,8 = 0.552 (T 4

s,6/g14)0.413 [27], and we find

T1c = 3.1 ⇥ 107 K
 

T1e↵
63.1 eV

!1.65

(He envelope). (6)

A di↵erent choice of mass and radius does not change the in-
ferred core temperature dramatically. For example, for a much
more compact neutron star with mass 2M

�

and radius 10 km,
giving g14 = 4.18 and 1 + z = 1.57, we find core temper-
atures about 20% smaller: 2.4 ⇥ 107 K for a light element
envelope and 5.5 ⇥ 107 K for a heavy element envelope. Our
value of core temperature is in good agreement with [28] who
also used a heavy element envelope (column depth of helium
yHe = 106 g cm�2) and found T1c = 6.6 ⇥ 107 K (eq. [5] gives
6.4 ⇥ 107 K for their choice of M = 1.5 M

�

and R = 11 km).

Inferred Core Temperature:

(insulating envelope sustains 

a temperature gradient near

the surface)
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FIG. 8. Bounds on the product CV ⇥ Tc from observations of KS
1731-260 as function of the neutrino luminosity. For small L⌫ the
lower limit is set by the observed core temperature Tc after the out-
burst (blue curve). and for large L⌫ by the absence of cooling (red
curve). If cooling were observed it would provide an upper bound.
The bound for > 1% cooling after 10 years in quiescence is shown by
the green curve. The dotted vertical line is the deduced upper limit
on the neutrino luminosity.

come into balance with the heating rate L1⌫ = L1crust. This
means that the inferred heating rate during outburst gives an
upper limit on the neutrino emissivity of the core. For fast
cooling, setting L1⌫, f < L1crust gives

Q⌫, f < 4 ⇥ 1023 erg cm�3
 

Tc,7

7

!
�6

, (12)

a factor of ⇠ 103 below the expected direct URCA rate.
The e↵ect of neutrino cooling during outburst is to reduce

the lower limit on heat capacity derived in § II. The lower limit
in equation (7) becomes C > 2(E

1

� L1⌫ �t)/T1c , where �t is
the time from the beginning of the outburst to the temperature
measurement in quiescence. As the neutrino luminosity ap-
proaches L1crust, C ! 0. This is shown as the blue curve in
Figure 8 which shows C(L1⌫ ).

B. Time evolution of the core temperature in quiescence and
upper and lower bounds on the core heat capacity

Neutrino cooling will continue into quiescence, and is po-
tentially observable. If the core is cooling due to neutrino
emission, its temperature evolves according to

C
dT
dt
= �L⌫ = �BT 6 (13)

(where we assume fast cooling) and B is a constant. Over a
time �t, the core evolves in temperature from Ti to T f where

1
5

2
666664

 
Ti

T f

!5

� 1
3
777775 =
�t
⌧⌫
⇡

�T
T
, (14)

and we define the timescale

⌧⌫ =
CTi

BT 6
i

=
CTi

L⌫(Ti)
, (15)

or

⌧⌫ = 3000 yr L�1
⌫,35C38T8, (16)

where C38 = (C/1038 erg K�1). The expected temperature
change after a time tq into quiescence is therefore

�T
T
⇡ 0.3%

 
tq

10 yr

!
L⌫,35C�1

38 T�1
8,c . (17)

Continued observations to monitor the temperature of
KS 1731-260 in quiescence can therefore either measure or
limit the quantity L⌫/C. If the core temperature was observed
to remain constant over time, we would obtain an upper limit
on the quantity L⌫/C, or a lower limit on C as a function of
L⌫. Figure 8 shows this limit assuming that the temperature
is constrained to have changed by less than 1% over 10 years.
For neutrino luminosities L⌫ & 1034 erg s�1, the lower limit
on C is larger than the lower limit we obtained from the core
heating in §II.

If instead the core temperature was observed to decrease
over time, we would then measure the quantity L⌫/C. Since
we have an upper limit on L⌫, this gives a corresponding up-
per limit on C. This is shown by the green curve in Fig-
ure 8, which shows the upper limit on core heat capacity we
would obtain for a measured 1% change in temperature over
10 years.

Equation (13) assumes that the core is isothermal, which
holds only if the thermal conduction time across the core is
much shorter than the cooling or heating timescale. The con-
duction time across the core is tcond ⇠ cPR2/K or

tcond ⇠ 3 yr
 

cP

1019 erg cm�3 K�1

! ✓ R
10 km

◆2

 
K

1023 erg cm�1 s�1 K�1

!
�1

, (18)

where we insert a typical value of thermal conductivity due
to neutrons at 108 K [40, 41] and use the heat capacity of
degenerate fermions from equation (8). This is a factor of a
few times smaller than the outburst timescale and time in qui-
escence for KS 1731-260, so that the isothermal assumption
should be a reasonable one.

V. CONCLUSIONS

We have shown that observations of the temperature of ac-
creting neutron stars in quiescence provide a lower limit to
the heat capacity of the neutron star core. This limit is derived
by assuming that the neutron star core cools completely be-
tween outbursts, opposite to the usual assumption that the core
is in long term equilibrium, used to constrain the core neu-
trino emissivity. The lower limit to the core heat capacity for

Limits: Current & Future

Cumming et al. (2016 in prep.)

CNS(Tf ) > 2
�Q

Tf
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measurement in quiescence. As the neutrino luminosity ap-
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tentially observable. If the core is cooling due to neutrino
emission, its temperature evolves according to
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Continued observations to monitor the temperature of
KS 1731-260 in quiescence can therefore either measure or
limit the quantity L⌫/C. If the core temperature was observed
to remain constant over time, we would obtain an upper limit
on the quantity L⌫/C, or a lower limit on C as a function of
L⌫. Figure 8 shows this limit assuming that the temperature
is constrained to have changed by less than 1% over 10 years.
For neutrino luminosities L⌫ & 1034 erg s�1, the lower limit
on C is larger than the lower limit we obtained from the core
heating in §II.

If instead the core temperature was observed to decrease
over time, we would then measure the quantity L⌫/C. Since
we have an upper limit on L⌫, this gives a corresponding up-
per limit on C. This is shown by the green curve in Fig-
ure 8, which shows the upper limit on core heat capacity we
would obtain for a measured 1% change in temperature over
10 years.

Equation (13) assumes that the core is isothermal, which
holds only if the thermal conduction time across the core is
much shorter than the cooling or heating timescale. The con-
duction time across the core is tcond ⇠ cPR2/K or
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where we insert a typical value of thermal conductivity due
to neutrons at 108 K [40, 41] and use the heat capacity of
degenerate fermions from equation (8). This is a factor of a
few times smaller than the outburst timescale and time in qui-
escence for KS 1731-260, so that the isothermal assumption
should be a reasonable one.

V. CONCLUSIONS

We have shown that observations of the temperature of ac-
creting neutron stars in quiescence provide a lower limit to
the heat capacity of the neutron star core. This limit is derived
by assuming that the neutron star core cools completely be-
tween outbursts, opposite to the usual assumption that the core
is in long term equilibrium, used to constrain the core neu-
trino emissivity. The lower limit to the core heat capacity for
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Observations:  

•After a period of intense 
accretion the neutron star 
surface cools on a time 
scale of years.


•This relaxation was first 
discovered in 2001 and 6 
sources have been studied 
to date. 


•Expected rate of 
detecting new sources 

~ 1/year.  

Figure from Rudy Wijnands (2013)

All known Quasi-persistent sources with post outburst cooling
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Neutron Star Crust: 



Cooper Pairing 
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Electrons are (nearly) free

•Band gaps are small and restricted to small patches in 
the Fermi surface. 
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Figure 3. The regimes where collective excitations dominate over single particle excitation
for ions and neutrons. Scales of relevance to electron dynamics are also shown.

§4., the gap affects the Umklapp process for T � Tum = vt ⇥U where ⇥U is the band gap
and vt is the velocity of transverse phonons [9]. For nearly free electrons ⇥U =VkFe , where
VkFe ⇧ 4⇤Ze2 nI/k2

Fe = (4e2/3⇤) kFe is the Fourier component of the lattice potential at scale
kFe .

Although electrons in the inner crust are as degenerate as terrestrial superconductors
with T/TF ⇤ 10�5 � 10�4, where TF = µe, the critical temperature is negligibly small be-
cause here electrons are relativistic. They move too quickly to adequately experience the
attraction due to retardation effects in the electron-phonon potential, and consequently the
critical temperature T c

e ⇧ ⇧p exp(�vF/e2)⌅ ⇧p is negligibly small [10]. Thus, the degen-
erate Fermi gas model provides an excellent description of electronic properties for T ⇥ TF .
In this regime, the density of states Ne(0) = µ2

e/⇤2 is large and this greatly enhances their
contribution to thermal and transport properties at low temperature.

3.3. Neutrons

Due to strong attractive interactions, neutrons in the inner crust form Cooper pairs and be-
come superfluid. The gap in the single particle spectrum is denoted by �n increases from
zero at neutron drip to a maximum value ⇤ 1 MeV at a density ⌅ ⇧ 1013 g/cm3 and de-
creases therafter. The number of thermally excited neutron quasi-particles is exponentially
suppressed when T ⌅ �n and their contribution to thermal and transport properties is typ-
ically negligible. However, depending on the variation of the gap with density, a sizable
fraction of the inner crust close to neutron drip and the vicinity of the crust-core interface
can be normal in accreting neutron stars.

Separation of Scales
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Symmetries & Derivative Expansion

1 Introduction

The low energy dynamics of strongly interacting solids and superfluids can be systematically studied
through an effective theory formulation in terms of weakly interacting phonons - the collective degrees
of freedom in these systems. In the familiar case of solids, one longitudinal phonon and two transverse
phonons arise as Goldstone modes due to the breaking of translation symmetry. In the case of a
superfluid, one mode called the superfluid phonon arises due to the breaking of the global U(1) symmetry
associated with phase rotations of a field operator 1. In special cases the ground state of the system
can spontaneously break both these symmetries. A particularly simple but non-trivial realization is a
solid immersed in a superfluid with strong interactions between the particles that form the solid and the
superfluid respectively. It is likely that a substantial region in the crust of a neutron star is occupied by
such a phase [1] and its presence may affect neutron star phenomenology. From general considerations
we can argue that the inner crust of neutron stars features a lattice of neutron rich nuclei in a bath
of unbound superfluid neutrons. The lattice sites can be viewed as clusters of protons, with a fraction
of neutrons “entrained” on the clusters [2, 3]. Other intrinsically more complex phases where a single
component exhibits both superfluid and solid characteristics have also been proposed. They include the
supersolid phase of 4He [4] and the Larkin Ovchinnikov Fulde Ferrell (LOFF) phases [5, 6] in polarized
fermion superfluids. Although these systems can in principle be realized terrestrially, they have proven
to be challenging to explore in experiments [7]. Nonetheless in all these cases the low energy dynamics
is described by an effective theory of four Goldstone modes [8]. The associated fields for the lattice
phonons are ξa=1..3(r, t) and are related to space-time dependent deformations of the lattice. Similarly,
the field associated with the superfluid mode φ(r, t) is related to the space-time dependent phase of the
condensate. Because of interactions, such as those between the neutrons and the protons in the neutron
star crust, one can not in general treat the two sectors separately and a unified treatment is required.
It is the aim of this paper to provide such a framework.

The low energy theory is described in terms of the fields φ and ξa. The symmetries associated
with translation and number conservation require that the low energy theory be invariant under the
transformation ξa=1..3(r, t) → ξa=1..3(r, t) + aa=1..3 and φ(r, t) → φ(r, t) + θ where aa=1..3 and θ are
constant shifts. This naturally implies that the low energy lagrangian can contain only spatial and
temporal gradients of these fields. Further, by requiring cubic symmetry for the crystalline state, the
quadratic part of the effective lagrangian is given by,

L =
f2
φ

2
(∂0φ)

2 −
v2φf

2
φ

2
(∂iφ)

2 +
ρ

2
∂0ξ

a∂0ξ
a −

1

4
µ(ξabξab)−

K

2
(∂aξ

a)(∂bξ
b)

−
α

2

∑

a=1..3

(∂aξ
a∂aξ

a) + gmixfφ
√
ρ ∂0φ∂aξ

a + · · · ,
(1)

where higher order terms involve higher powers of the gradients of these fields, and ξab = (∂aξb+∂bξa)−
2
3∂cξ

cδab. In the uncoupled case, the low energy coefficients (LECs) appearing above, such as ρ, µ,K
are related to the mass density, the shear modulus, and the compressibility of the solid respectively.
They determine the velocities of the phonons in the solid phase. Similarly, the velocity of the phonon
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gmix to the modifications of ρ and vφ due to entrainment [9]. An analysis of these modifications in
the context of the neutron star crust due to the underlying interaction between neutrons and protons
was the original motivation for this study. In this case, the mixing coefficient gmix is relevant for heat
transport properties in the inner crust [10], and the eigenmodes of the coupled superfluid-solid system
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Identifying the Low Energy Constants 

• LECs must be related to thermodynamic properties. 


• Each gradient produces a unique deformation of the ground 
state.  

• The energy cost associated with these (small) deformations 
provide the LECs. 

Cirigliano, Reddy, Sharma 2011

For a rigorous derivation of LECs in terms of thermodynamic 
derivatives see  arXiv:1102.5379
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Entrainment Chamel (2005)
Carter, Chamel & Haensel (2006) 
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FIG. 2: (Color online) Speeds (in units of the speed of light c) of the longitudinal (left panel) and

transverse (right panel) collective excitations in the inner crust of a neutron star. Dotted curves

show results with neither mixing nor entrainment, dashed curves include effects due to entrainment

only and solid curves include in addition the effects due to mixing.

of the crust. In these regions, the two longitudinal modes will merge and give rise to ordinary

sound as discussed at the end of Sec. III. Note, however, that the values for the speeds of

collective excitations indicated in Table II are expected to remain essentially the same for

temperatures T <∼ 1010 K. Indeed, as shown in Ref. [3], thermal effects have a minor impact

on the equilibrium composition of neutron-star crusts in this temperature range. However,

the crust of a real neutron star may not necessarily be in full thermodynamic equilibrium,

as discussed, e.g., in Sec. 3.4 of Ref. [1]. This could affect the spectrum of collective modes.

V. DISSIPATION

Lattice phonons couple strongly to electrons and easily excite electron-hole pairs in the

dense electron gas. This Landau damping of lattice phonons has been studied in Ref. [40]

and an approximate result of the lattice phonon mean free path was obtained. The mean

free path of a thermal phonon that contributes to thermal conductivity was found to be

λlph =
6π

Ze2 γ v̄

1

qD

F (Tp/T )

Λph−e
≃ 72.5

(
40

Z

)2/3 (
F (Tp/T )

v̄ Λph−e

)
rcell , (38)

where

F (Tp/T ) = 0.014 +
0.03

exp (Tp/(5T )) + 1
, (39)

13

Longitudinal Modes Shear Modes

entrainment
�̃ = g = 0

�̃ = g = 0

�̃ 6= 0
�̃ 6= 0 �̃ 6= 0

�̃ = g = 0

Longitudinal modes are strongly mixed due to strong interactions. 

Shear mode velocity is reduced due to entrainment.  
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of normal neutrons above the drip point, while models A1 and B1 predict a thick layer of
normal neutrons at the highest densities. Modifications to this simple picture of pairing in
uniform neutron matter due to the presence of the nuclei are discussed in this book in the
chapter by N. Sandulescu & J. Margueron [19]. Further, we briefly note that like in the
case of electrons, coherent Bragg scattering of neutrons by the lattice lead to band structure
effects that modify the shape of the Fermi surface, still Eq. 9 is an excellent approximation
to Cv in normal phase for reasons described in [20].

Elsewhere in the crust where T ⇥ Tc the relevant neutron contribution is from superfluid
phonons, i.e., collective instead of single particle excitations, and is given by

Csph
v =

2⇥2

15
T 3

v3
�

(11)

where

v� =

⇤
n f

mn f 2
�

�
with f 2

� =
⇤n f

⇤µn
, see §3.5.

⇥
(12)

is the superfluid phonon velocity, n f , µn and mn are the number density, chemical potential
and mass of the free neutrons, respectively. For weakly coupled systems v� = vF/

⇧
3 where

vF is the Fermi velocity. In most of the inner crust v� ⇤ vt (see Fig. 6) and hence their
contribution to the heat capacity is negligible except perhaps in a sliver where v� ⌅ vt and
T � Tc.
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Figure 5. Specific heat of ions, electrons, and for neutrons with (labelled nSF) and without
the effects of the superfluid gap (labelled nN) are shown for four representative tempera-
tures.

The specific heat due to these components is shown in Fig. 5. The ion contribution for
T � 0.1Tp varies as T 3 and is to very good approximation given by Clph

V , while electron
contribution is linear in T and dominates at low temperature. As mentioned earlier, the
neutron contribution is sensitive to the variation of the 1S0 gap. To illustrate this we show
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we discuss below the phonon contribution can become important in accreting neutron stars
where T ⌥ 108 �109 K. For T � TD the contribution from lattice phonons (lph) is given by

Clph
v =

2⇤2

15

�
T 3

v3
l
+

2 T 3

v3
t

⇥
, (4)

and vl and vt are velocities of the longitudinal, and transverse lattice phonons, respectively.
In a model where the strong interaction between the neutron superfluid and the ion lattice is
ignored it is simple to calculate these velocities. The speed of longitudinal lattice vibrations
is approximated as vl =

⇤
Kion�e/⌅ where Kion�e = ⌅(⌃(Pion+Pe)/⌃⌅) is the bulk-modulus

of the electron-ion system and the ion mass density ⌅ = Amn nI where A is the number of
bound nucleons in the ion. Since Pe ⌃ Pion, we can write

vl =

⇧
⌃Pe

⌃⌅
=

⇧p

kTFe
, (5)

which is usually referred to as the Bohm-Staver sound speed. The velocity of the transverse
lattice mode is related to µ, the shear modulus of the lattice, and is given by

vt =

⌅
µ
⌅
= ⇥

⇧p

qD
, (6)

where qD = (6⇤2nI)1/3 is the ion Debye momentum, and the constant ⇥ ⌥ 0.4 is obtained
by numerical calculations of Coulomb crystals [17]. Further, since

qD

kTFe
=

⌅
⇤

4e2

�
2
Z

⇥1/3

⌃ 1 (7)

we have vl ⌃ vt and the contribution from longitudinal modes to Cv in Eq. 4 in negligible.
Thus the lattice contribution can be written in the familiar form

Clph
v = ni

12⇤4

5

�
T
TD

⇥3

, (8)

where TD = (3/2)1/3vt qD ⌥ 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ⇥ Tp/50 but fails when T ⇤ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ⇤ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T ⇧ Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ⌅ 1

3
mn kFn T exp

�
��n

T

⇥
(T ⇧ Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell
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Figure 4. A sample of theoretical prediction for the neutron 1S0 superfluidity critical tem-
perature Tc.

In Fig. 4 model predictions for the critical temperature Tc = �n/1.76 are shown where
curves labelled "BCS" and "GMB" show the analytical results in the weak coupling valid
in the limit |akF |⇥ 1. In the Bardeen Cooper and Schrieffer (BCS) approximation �BCS =
(8/e2)exp(⇤/2a kF)EF , with a scattering length a=�18.5, fm. Corrections due to medium
polarization which appear at the same order reduce the gap to �GMB = 1/(4e)1/3�BCS from
[11]. Curves labelled "A1" and "A2" are examples of slowly growing Tc at low kF , from [12]
and [13], respectively. Curves "B1" and "B2" mimic behavior predicted by strong coupling
QMC calculations from [14] and [15] where the gap increases rapidly with density. In
models labelled "A1" and "B1" where gaps vanish at ⌅ ⇤ 1014 g/cm3. For more details on
the density and model dependence of the gap we refer the reader to the chapter by Gezerlis
and Carlson[16] in this book.

In the region where T < Tc collective excitations of the neutron fluid called superfluid
phonons, with a dispersion relation ⇧ = v⇥ q, are the relevant low energy degrees of free-
dom. This mode corresponds to fluctuations of the phase of the superfluid condensate (and
can be related to density fluctuations) and is the Goldstone mode associated with the spon-
taneous breaking of the global U(1) symmetry in superfluid ground state (the Hamiltonian
is invariant under arbitrary phase rotations of the fermion fields, but in the superfluid ground
state is preserved only by discrete rotations of ⇤/2).

3.4. Specific heat

The electron contribution the specific heat (hereafter Cv will represent the specific heat per
unit volume) is given by

Ce
v =

1
3

µ2
e T , (3)

at low temperature. Band structure affects only negligible as only small regions of the
Fermi surface are affected. At low-temperature when T ⇥ Tp electrons dominate, but as
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of normal neutrons above the drip point, while models A1 and B1 predict a thick layer of
normal neutrons at the highest densities. Modifications to this simple picture of pairing in
uniform neutron matter due to the presence of the nuclei are discussed in this book in the
chapter by N. Sandulescu & J. Margueron [19]. Further, we briefly note that like in the
case of electrons, coherent Bragg scattering of neutrons by the lattice lead to band structure
effects that modify the shape of the Fermi surface, still Eq. 9 is an excellent approximation
to Cv in normal phase for reasons described in [20].

Elsewhere in the crust where T ⇥ Tc the relevant neutron contribution is from superfluid
phonons, i.e., collective instead of single particle excitations, and is given by

Csph
v =

2⇥2

15
T 3

v3
�

(11)

where

v� =

⇤
n f

mn f 2
�

�
with f 2

� =
⇤n f

⇤µn
, see §3.5.

⇥
(12)

is the superfluid phonon velocity, n f , µn and mn are the number density, chemical potential
and mass of the free neutrons, respectively. For weakly coupled systems v� = vF/

⇧
3 where

vF is the Fermi velocity. In most of the inner crust v� ⇤ vt (see Fig. 6) and hence their
contribution to the heat capacity is negligible except perhaps in a sliver where v� ⌅ vt and
T � Tc.
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Figure 5. Specific heat of ions, electrons, and for neutrons with (labelled nSF) and without
the effects of the superfluid gap (labelled nN) are shown for four representative tempera-
tures.

The specific heat due to these components is shown in Fig. 5. The ion contribution for
T � 0.1Tp varies as T 3 and is to very good approximation given by Clph

V , while electron
contribution is linear in T and dominates at low temperature. As mentioned earlier, the
neutron contribution is sensitive to the variation of the 1S0 gap. To illustrate this we show
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we discuss below the phonon contribution can become important in accreting neutron stars
where T ⌥ 108 �109 K. For T � TD the contribution from lattice phonons (lph) is given by

Clph
v =

2⇤2

15

�
T 3

v3
l
+

2 T 3

v3
t

⇥
, (4)

and vl and vt are velocities of the longitudinal, and transverse lattice phonons, respectively.
In a model where the strong interaction between the neutron superfluid and the ion lattice is
ignored it is simple to calculate these velocities. The speed of longitudinal lattice vibrations
is approximated as vl =

⇤
Kion�e/⌅ where Kion�e = ⌅(⌃(Pion+Pe)/⌃⌅) is the bulk-modulus

of the electron-ion system and the ion mass density ⌅ = Amn nI where A is the number of
bound nucleons in the ion. Since Pe ⌃ Pion, we can write

vl =

⇧
⌃Pe

⌃⌅
=

⇧p

kTFe
, (5)

which is usually referred to as the Bohm-Staver sound speed. The velocity of the transverse
lattice mode is related to µ, the shear modulus of the lattice, and is given by

vt =

⌅
µ
⌅
= ⇥

⇧p

qD
, (6)

where qD = (6⇤2nI)1/3 is the ion Debye momentum, and the constant ⇥ ⌥ 0.4 is obtained
by numerical calculations of Coulomb crystals [17]. Further, since

qD

kTFe
=

⌅
⇤

4e2

�
2
Z

⇥1/3

⌃ 1 (7)

we have vl ⌃ vt and the contribution from longitudinal modes to Cv in Eq. 4 in negligible.
Thus the lattice contribution can be written in the familiar form

Clph
v = ni

12⇤4

5

�
T
TD

⇥3

, (8)

where TD = (3/2)1/3vt qD ⌥ 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ⇥ Tp/50 but fails when T ⇤ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ⇤ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T ⇧ Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ⌅ 1

3
mn kFn T exp

�
��n

T

⇥
(T ⇧ Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell
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we discuss below the phonon contribution can become important in accreting neutron stars
where T ⌥ 108 �109 K. For T � TD the contribution from lattice phonons (lph) is given by

Clph
v =

2⇤2

15

�
T 3

v3
l
+

2 T 3

v3
t

⇥
, (4)

and vl and vt are velocities of the longitudinal, and transverse lattice phonons, respectively.
In a model where the strong interaction between the neutron superfluid and the ion lattice is
ignored it is simple to calculate these velocities. The speed of longitudinal lattice vibrations
is approximated as vl =

⇤
Kion�e/⌅ where Kion�e = ⌅(⌃(Pion+Pe)/⌃⌅) is the bulk-modulus

of the electron-ion system and the ion mass density ⌅ = Amn nI where A is the number of
bound nucleons in the ion. Since Pe ⌃ Pion, we can write

vl =

⇧
⌃Pe

⌃⌅
=

⇧p

kTFe
, (5)

which is usually referred to as the Bohm-Staver sound speed. The velocity of the transverse
lattice mode is related to µ, the shear modulus of the lattice, and is given by

vt =

⌅
µ
⌅
= ⇥

⇧p

qD
, (6)

where qD = (6⇤2nI)1/3 is the ion Debye momentum, and the constant ⇥ ⌥ 0.4 is obtained
by numerical calculations of Coulomb crystals [17]. Further, since

qD

kTFe
=

⌅
⇤

4e2

�
2
Z

⇥1/3

⌃ 1 (7)

we have vl ⌃ vt and the contribution from longitudinal modes to Cv in Eq. 4 in negligible.
Thus the lattice contribution can be written in the familiar form

Clph
v = ni

12⇤4

5

�
T
TD

⇥3

, (8)

where TD = (3/2)1/3vt qD ⌥ 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ⇥ Tp/50 but fails when T ⇤ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ⇤ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T ⇧ Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ⌅ 1

3
mn kFn T exp

�
��n

T

⇥
(T ⇧ Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell
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we discuss below the phonon contribution can become important in accreting neutron stars
where T ⌥ 108 �109 K. For T � TD the contribution from lattice phonons (lph) is given by

Clph
v =

2⇤2

15

�
T 3

v3
l
+

2 T 3

v3
t

⇥
, (4)

and vl and vt are velocities of the longitudinal, and transverse lattice phonons, respectively.
In a model where the strong interaction between the neutron superfluid and the ion lattice is
ignored it is simple to calculate these velocities. The speed of longitudinal lattice vibrations
is approximated as vl =

⇤
Kion�e/⌅ where Kion�e = ⌅(⌃(Pion+Pe)/⌃⌅) is the bulk-modulus

of the electron-ion system and the ion mass density ⌅ = Amn nI where A is the number of
bound nucleons in the ion. Since Pe ⌃ Pion, we can write

vl =

⇧
⌃Pe

⌃⌅
=

⇧p

kTFe
, (5)

which is usually referred to as the Bohm-Staver sound speed. The velocity of the transverse
lattice mode is related to µ, the shear modulus of the lattice, and is given by

vt =

⌅
µ
⌅
= ⇥

⇧p

qD
, (6)

where qD = (6⇤2nI)1/3 is the ion Debye momentum, and the constant ⇥ ⌥ 0.4 is obtained
by numerical calculations of Coulomb crystals [17]. Further, since

qD

kTFe
=

⌅
⇤

4e2

�
2
Z

⇥1/3

⌃ 1 (7)

we have vl ⌃ vt and the contribution from longitudinal modes to Cv in Eq. 4 in negligible.
Thus the lattice contribution can be written in the familiar form

Clph
v = ni

12⇤4

5

�
T
TD

⇥3

, (8)

where TD = (3/2)1/3vt qD ⌥ 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ⇥ Tp/50 but fails when T ⇤ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ⇤ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T ⇧ Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ⌅ 1

3
mn kFn T exp

�
��n

T

⇥
(T ⇧ Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell
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of normal neutrons above the drip point, while models A1 and B1 predict a thick layer of
normal neutrons at the highest densities. Modifications to this simple picture of pairing in
uniform neutron matter due to the presence of the nuclei are discussed in this book in the
chapter by N. Sandulescu & J. Margueron [19]. Further, we briefly note that like in the
case of electrons, coherent Bragg scattering of neutrons by the lattice lead to band structure
effects that modify the shape of the Fermi surface, still Eq. 9 is an excellent approximation
to Cv in normal phase for reasons described in [20].

Elsewhere in the crust where T ⇥ Tc the relevant neutron contribution is from superfluid
phonons, i.e., collective instead of single particle excitations, and is given by

Csph
v =

2⇥2

15
T 3

v3
�

(11)

where

v� =

⇤
n f

mn f 2
�

�
with f 2

� =
⇤n f

⇤µn
, see §3.5.

⇥
(12)

is the superfluid phonon velocity, n f , µn and mn are the number density, chemical potential
and mass of the free neutrons, respectively. For weakly coupled systems v� = vF/

⇧
3 where

vF is the Fermi velocity. In most of the inner crust v� ⇤ vt (see Fig. 6) and hence their
contribution to the heat capacity is negligible except perhaps in a sliver where v� ⌅ vt and
T � Tc.
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Figure 5. Specific heat of ions, electrons, and for neutrons with (labelled nSF) and without
the effects of the superfluid gap (labelled nN) are shown for four representative tempera-
tures.

The specific heat due to these components is shown in Fig. 5. The ion contribution for
T � 0.1Tp varies as T 3 and is to very good approximation given by Clph

V , while electron
contribution is linear in T and dominates at low temperature. As mentioned earlier, the
neutron contribution is sensitive to the variation of the 1S0 gap. To illustrate this we show
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�Q

�q

�p

�p + �k

Figure 8. Feynman diagram for the Umklapp process. The double dashed line represents
recoil-free momentum transfer ⌃Q=⌃k�⌃q to the lattice, and |⌃q|< qD lies in the first Brillouin
zone.

Ṽ (k) = FZ(k)/(k2 +k2
TFe) characterizes the screened electron-ion interaction in momentum

space where k2
TFe = 4e2k2

Fe/⇧ and FZ(k) is the charge form factor of the nucleus.
Pauli blocking restricts ⌥ ⇤ T ⇥ µe, and when S(⌥,k) contains most of its strength in

the region ⌥� 3T the conductivity can be expressed in terms of the static structure function
S(k) =

�
d⌥ S(k,⌥). However, S(⌥,k) has strength at⌥⇤⌥p and ⌅e cannot be calculated in

terms of S(k) when T < Tp. Here, the frequency dependence of the dynamic structure factor
is needed but this is generally difficult to calculate in strongly coupled quantum systems.
Fortunately, when T < TD phonons are the only relevant degrees of freedom and electron
scattering is dominated by the emission or absorption of phonons [29]. In this case, S(⌥,k)
is simpler and is characterized by discrete peaks at ⌥= vk associated with the excitation of
phonons with velocity v.

In the low-energy theory, the interaction between electron and phonons is described by
the Lagrangian density

Le�ph =
1

feph
 †

e e⌦i�i where feph =

⇧⌃ k2
D

4⇧Ze2 nI
(23)

is related to electron-phonon coupling constant [30],  e is the electron field and �i is the
ion displacement (phonon) field discussed in §3.. This form of the interaction applies to
normal processes, where the momentum transfer k < qD and displacements correspond to
excitation of longitudinal phonons. However, since kFe/qD = (Z/2)1/3 > 1 large angle
electron scattering with k > qD is possible. This Umklapp process is depicted in Fig. 8
where the electron simultaneously Bragg scatter off the lattice and excite a phonon. Elastic
Bragg scattering (without phonon emission) however does not contrbute because electrons
are eigenstates of the lattice potential. Further, unlike normal processes where only longi-
tudinal modes are involved, Umklapp scattering is dominated by the emission or absorption
of transverse phonons [28, 31].

The dynamic structure factor for single-phonon emission and absorption including
Umklapp shown in Fig. 8 is given by

S(⌥,k) = nI

MI
↵

i
↵
Q

(⌃k.⇤̂i)2

2 ⌥

�
⇥(⌥� vi q)

1� exp(��⌥) +
⇥(⌥+ vi q)

exp(��⌥)�1

⇥
⇥3(⌃k� ⌃Q�⌃q) , (24)

where the first and second terms in parenthesis represent phonon emission and absorption,
respectively [28] . The phonon momentum is restricted to the first Brillouin zone q < qD,

kFe
qD

=

✓
Z

2

◆1/3

> 1

Flowers & Itoh (1976)

Cirigliano, Reddy & Sharma (2011) 

Electron Bragg scatters and emits a transverse phonon.  

� =
1

3
Cv ⇥ v ⇥ ⇥



Superfluid Conduction
Its impossible to sustain a 
temperature gradient in 
bulk superfluid helium ! 

Superfluid heat flow in the crust

Sanjay Reddy

December 23, 2011

1 Counter Flow

In ordinary superfluids such as helium II it is well know that a temperature gradient drives
rapid and ordered flow [1]. In the two-fluid model this is interpreted as the counterflow of
normal and superfluid components to ensure a net energy flow without associated mass flow
[2]. When a temperature gradient is imposed on a superfluid, initially superfluid flows to
the high temperature region in response to the chemical potential gradient and neutralizes
it on a short timescale that is associated with the superfluid flow critical velocity. The
subsequent steady state is one in which the temperature and pressure gradients are related
(to ensure that the chemical potential gradient is zero) and these gradients drive normal
fluid flow toward the low temperature region.

In what follows, we investigate the possibility of heat flow due to the ordered motion of
the normal component of the neutron superfluid across the neutron star inner crust due to
an imposed temperature gradient. Such gradients are likely to be realized in accreting and
magnetized neutron stars due to heat released from nuclear reactions and magnetic field
reconfiguration, respectively [3, 4]. In current models the di�usion of electrons is expected
to be the dominant contribution to the heat flux. In the presence of superfluid counterflow
an additional contribution to the energy flux arises due to uniform motion of the normal
component with velocity vn and the total heat flux is given by

↵Q = S(sPh)T↵vn � � ⇧T , (1)

where

S(sPh) =
1

3
C(sPh)
v =

2⇥2

15 c3s
T 3 (2)

is the entropy density of the superfluid (contained in the superfluid phonons (sPh) field),

cs ⇥ vF /
⌅
3 is the velocity of the superfluid phonon, and C(sPh)

v is the phonon specific
heat. � is the total thermal conductivity, characterizing all particles that contribute to
the di�usive heat flux. We note that both terms contribute with the same sign and aid in
transporting energy along the same direction (↵vn ⇤ � ↵⇧T ).

1

T>Tc T<Tc

Photographs: JF Allen and JMG Armitage (St Andrews University 1982).
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the high temperature region in response to the chemical potential gradient and neutralizes
it on a short timescale that is associated with the superfluid flow critical velocity. The
subsequent steady state is one in which the temperature and pressure gradients are related
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In what follows, we investigate the possibility of heat flow due to the ordered motion of
the normal component of the neutron superfluid across the neutron star inner crust due to
an imposed temperature gradient. Such gradients are likely to be realized in accreting and
magnetized neutron stars due to heat released from nuclear reactions and magnetic field
reconfiguration, respectively [3, 4]. In current models the di�usion of electrons is expected
to be the dominant contribution to the heat flux. In the presence of superfluid counterflow
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is the entropy density of the superfluid (contained in the superfluid phonons (sPh) field),

cs ⇥ vF /
⌅
3 is the velocity of the superfluid phonon, and C(sPh)

v is the phonon specific
heat. � is the total thermal conductivity, characterizing all particles that contribute to
the di�usive heat flux. We note that both terms contribute with the same sign and aid in
transporting energy along the same direction (↵vn ⇤ � ↵⇧T ).

1Why does this not occur in neutron stars ?
Answer:  Fluid motion is damped by electrons.  

Two fluid model: Counter-flow transports heat. 
(The superfluid phonon fluid)

The velocity is limited only by fluid dynamics: (i) boundary shear 
viscosity or (ii) superfluid turbulence. 

Aguilera, Cirigliano, Reddy & Sharma (2009)
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Figure 9. Electron thermal conductivity �e vs density at four different temperatures. Scat-
tering processes e-ion, e-e, and e-imp with 6 values of Qimp = 0, 1, 2, 3, 4, and 5 (as
indicated in the left panel) are included.

of impurity scattering in the inner crust for T < 108 K and for Qimp � 1. Both of these trends
are easily understood in terms of the preceding discussion of various scattering mechanisms
and their temperature dependencies. As we discuss in §5., Qimp will play an important role
in interpreting observations in accreting neutron stars when the inner crust is cold with
T < Tum.

4.5. Phonon conduction

Phonon heat conduction can become relevant when T >⇥ 108 K when the phonon heat capac-
ity becomes comparable to that of electrons, or when the electron contribution is suppressed
either due to large Qimp or magnetic fields. Its importnace depends on the phonon mean free
path being large enough to compensate for their smaller velocity. Phonon scattering pro-
cesses have been discussed in Refs. [26, 27] and we will briefly review them here. As in
terrestrial metals [29], electrons in the inner crust are efficient at damping lattice phonons.
The phonon-electron process is shown in Fig 7 (2a) which depicts a phonon decay produc-
ing an electron-hole excitation. This, Landau damping, dominates over phonon-impurity
and phonon-phonon processes for the temperature realized in the crust [26].

The electron-phonon process discussed in §4.1. and the phonon-electron process we
discuss here are essentially similar. Only here it acts to bring into equilibrium the phonon
distribution function that carries the net thermal current relative to the electron gas. Since
transverse modes dominate the heat capacity their contribution to thermal conduction is rel-
evant and longitudinal modes can be neglected. For T � Tum, Umklapp processes dominate
and transverse phonons are absorbed and emitted by large angle electron scattering on the
Fermi surface. The mean free path for these processes was estimated by Chugunov and
Haensel in [26]. For simplicity, neglecting corrections due to the Debye-Waller factor, we
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At lower temperatures of relevance to neutron stars, quan-
tum effects cannot be neglected a priori. To include them
we use the Path Integral Monte Carlo (PIMC) method (for
a review see [19] ) to obtain the ion-ion correlation functions
needed to calculate electron scattering rates and present first
results of quantum calculations of the thermal conductivity.
For typical MCPs encountered in neutron stars, we find sig-
nificant reduction of the thermal conductivity at low temper-
ature compared to those obtained in earlier work based on
treating the MCP as an OCP plus uncorrelated impurities
[9–11].

The article is organized as follows. In section II we review
well-known results for the electron thermal conductivity and
its relation to the ion-ion correlation function. We discuss the
quantum calculation of this correlation function in Euclidean
time using PIMC in section III and present our results in
section V. Finally we summarize and conclude in section VI.

II. THERMAL CONDUCTIVITY

In the crust where electrons are degenerate and weakly
coupled, their thermal conductivity

κe =
1

3
CV vFeλκ =

π2T ne

3ϵFe

1

νκ
(2)

where CV is the heat capacity of the relativistic electron gas,
λκ is the electron mean free path, and vFe = kFe/ϵFe and
ϵFe =

√
k2

Fe + m2
e are the electron Fermi velocity and Fermi

energy, respectively [8, 9]. The second equality is obtained
by noting that the specific heat of a degenerate electron gas
is CV = π2neT/(vFekFe) where ne is the electron density and
electron collision rate νκ = vFe/λκ. Under typical conditions
electron-electron collisions are negligible and the total scat-
tering rate νκ = νee

κ + νei
κ ≃ νei

κ and in the following we will
only consider the electron-ion scattering process. This rate
can be written as [20]

νκ = ν0
κ

⟨Z2⟩
⟨Z⟩

Λκ (3)

where

ν0
κ =

4α2
emϵFe

3π
, (4)

is the characteristic collision frequency and

Λκ =

∫ 2kFe

0
dq h(q, kTF, kFe) Sκ(q) , (5)

is called the Coulomb logarithm 1. Here

h(q, kTF, kFe) =
q3

(q2 + k2
TF)

2

(
1 −

q2

4k2
Fe

)
, (6)

and ⟨Zn⟩ =
∑

i xiZn
i , kFe is the electron Fermi–momentum,

kTF = 1/λe is the Thomas–Fermi wave–vector and

Sκ(q) =

∫ ∞

−∞
dω⟨S′(q⃗, ω)⟩q̂K(βω, q) (7)

is the structure factor for the thermal conductivity [20]
which contains all the information about ion–ion correla-
tions. S′(q⃗, ω) is the dynamic structure factor with contribu-
tions from elastic Bragg scattering removed because this con-
tributes to the electron ground state wave-function and leads
to their band structure but does not contribute to transport
properties. ⟨. . . ⟩q̂ denotes the average over the direction of
unit vector q̂ = q⃗/q and the function

K(z = βω, q) =
z

ez − 1

[
1 +

z2

π2

(
3p2

F

q2
−

1

2

)]
. (8)

incorporates the final state blocking of electrons and detailed
balance that ensures typical energy transfers is of the order
of the temperature. Finally, the second term in parenthesis
incorporates energy exchanging small angle scattering con-
tributions to the thermal conductivity.

The charge–charge dynamic structure factor is the Fourier
transform of the correlation function

S(q⃗, t) =
1

⟨Z2⟩
⟨ρ†(q⃗, t)ρ(q⃗, t)⟩β , (9)

where the factor ⟨Z2⟩ ensures the correct normalization

S(q, t = 0)
q→∞−−−→ 1 and ⟨. . . ⟩β denote thermal averages at a

temperature 1/β. The charge density operator ρ(q⃗, t) is

ρ(q⃗, t) =
1√
Ni

Ni∑

i=1

Zie
iq⃗·r⃗i(t) (10)

with Zi and r⃗i(t) the charge and position of the ith ion at
time t.

At high temperatures T ≫ Ωpl the bulk of the response
is expected in the region where z ≪ 1. Here K(βω, q) ≈ 1
and Sκ(q) = S(q). However when T < Ωpl this approxima-
tion fails and dynamical information is necessary to calcu-

1 Although in the plasma physics literature the Coulomb logarithm
is usually defined without Sκ(q) in the integrand, in the context of
dense astrophysical plasmas, the quantity defined by Eq. 5 is also
called the Coulomb logarithm.

3

late Sκ(q). With decreasing temperature, electron scattering
only probes the response at small |ω| of order the tempera-
ture and it is imperative to identify the strength of S′(q⃗, ω)
at |ω| ≪ Ωpl to calculate the thermal conductivity.

In the astrophysical context the MCP is often approxi-
mated as a perfect crystal with ions of charge ⟨Z⟩ at the
lattice sites plus a randomly distributed impurity charge
Zj − ⟨Z⟩ [9, 21]. In this picture the total collision rate has
two separate contributions νκ = νph

κ + νimp
κ . The first con-

tribution is due to the absorption or emission of phonons
by electrons. These processes are inelastic and consequently
suppressed at low temperature. In contrast, impurity scat-
tering is elastic and the temperature independent scattering
rate is given by

νimp
κ = ν0

κ
Qimp

⟨Z⟩
Λimp

κ , (11)

where

Qimp = ⟨Z2⟩ − ⟨Z⟩2 (12)

is called impurity–parameter and the Coulomb logarithm for
uncorrelated impurities is

Λimp
κ =

∫ 2pF

0
dq h(q, kTF, kFe) , (13)

=

(
αem

π
+

1

2

)
ln

(
αem + π

αem

)
− 1 . (14)

In the neutron star context one finds that even for modest
values of the Qimp ≃ 5, νimp

κ ≫ ν⟨Z⟩
κ for typical temperatures

in the range 106 − 108 K in the denser regions of the crust
where Ωpl > T [4].

The above mentioned approach to describe electron scat-
tering in the MCP is only approximate. It neglects correla-
tions between minority and majority species and correlations
between minority species can also be important as nuclei with
small Z can cluster [17]. In the vicinity of an impurity we
expect static distortions of the majority lattice. This would
induce a non-periodic component to the Coulomb field which
is bigger than the field associated with effective impurity
charge Zimp − ⟨Z⟩. To account for these effects we require
a method that can capture the dynamics of all species of
ions on equal footing. In the classical limit, the dynamic
structure function S′(q⃗, ω) of the MCP has been calculated
using Molecular Dynamics (MD), while the static structure
function S(q) of MCP has been calculated also with Clas-
sical Monte Carlo (CMC) methods [12, 17, 18]. In what
follows we describe the PIMC technique needed to perform
the quantum calculation of the response of a MCP.

III. PATH INTEGRAL MONTE CARLO
SIMULATIONS

The Path Integral Monte Carlo method is an exact
many–body technique to calculate equilibrium properties of
strongly interacting quantum particles with either Boltz-
mann or Bose statistics [19]. Because we expect ions to be
spatially localized by strong Coulomb interactions even at
low temperature when their thermal De Broglie wavelength
are large, its a good approximation to treat them as Boltz-
mann particles. There are two major advantages to using
PIMC instead of CMC. First, it naturally incorporates zero-
point motion of the ions and second, it is possible to obtain
some dynamical information about the system by computing
the euclidean (imaginary–time) correlation function

F (q⃗, τ) =
T r

[
ρ̂†e−τĤ ρ̂e−(β−τ)Ĥ

]

T r[e−βĤ ]

=

∫ ∞

−∞
dωe−τωS(q⃗, ω)

(15)

where τ ∈ [0, β] is the imaginary–time interval. The latter
will turn out to be particularly useful in describing S(q⃗, ω)
at ω ≈ 0. As discussed earlier the elastic response with
ω ≈ 0 provides the temperature independent contribution to
electron scattering and dominates at low temperature.

The traces in Eq. (15) are performed over the 3Ni–
dimensional configuration space of the ions and the full path
[0, β] is split into M slices. This procedure allows reliable
approximations for the density matrices ⟨R|exp(−∆τĤ)|R′⟩
at the higher (inverse) temperature ∆τ = β/M . For the
conditions explored in this study, we found the primitive
approximation very accurate by comparing it to the exact
two–particle density matrix obtained in the Feynman–Kac
approach (see [19] for details). The final result of the PIMC
calculation is F (q⃗, τ) at M discrete values of imaginary–time
τ and for a large number of momentum transfers compatible
with the periodic boundary conditions of the simulation box,
ie. q⃗ = (2π/L)(nx, ny, nz) with L = (Ni/ni)1/3 the length of
the box and nx, ny, nz integers.

The only systematic bias present in the current computa-
tion is due to finite–size effects which in this case are mostly
caused by the long–range nature of the interaction. However,
due to screening a detailed resolution of long distance effects
through Ewald summations [22] is unnecessary. We find that
summing over image charges in two nearest neighbor cells
in all directions is adequate (this corresponds to including
a total 26 cells surrounding the simulation box). We have
checked the converge of this procedure for both energies and
structure factors using systems composed of different number
of ions Ni ranging from 686 to 2662 and found convergence
when Ni ! 1024 − 1458 in good agreement with earlier find-

FIG. 7: Electron thermal conductivity κe in the neutron-star crust, with (solid) and without

(dashed) entrainment effects included, at five densities n = 0.0003, 0.001, 0.01, 0.02, and 0.08 fm−3

as labeled on the curves. The minimum of κe occurs at T ∼ 0.1Tp, marked by a square on the

corresponding curve; κe ∝ T−1 in the quantum regime, T ≪ Tp, while it only weakly increases

with T in the classical regime at higher temperatures.

Having described the impact of entrainment on reducing the electron thermal conductivity

and increasing the lattice specific heat, we now discuss their combined effect on the thermal

time scale, Eq. (43). We plot CV /κ in Fig. 8 for five different temperatures. For T = 109 K,

the impact of entrainment is negligible since T is comparable or larger than ΘD of the

transverse modes, as already pointed out previously. As the temperature is decreased,

entrainment leads to a significant enhancement in CV /κ, hence also in τ : at ρ = 1013 g cm3

and for T = 108 K, τ can be increased by more than one order of magnitude. For T = 107 K,

the lowest temperature considered here, the effect of entrainment is smaller, being moderated

by the dominance of the electron contribution to CV .

Although electrons dominate heat conduction under normal conditions, phonons can

contribute either at high temperature when Ccoll
V ≥ Ce

V or when large magnetic fields suppress

electron conduction transverse to the field [40, 41]. In the inner crust, the lattice and

superfluid phonons contributions were estimated in Ref. [40] and Ref. [41], respectively.

From kinetic theory and in the case where phonon conduction is diffusive (rather than

convective), the thermal conductivity is given by

κcoll =
1

3
Ccoll

V v λ , (50)

20

Changes to the 
phonon 
spectrum due 
to mixing and 
entrainment 
suppress the 
conductivity. 
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Figure 9. Electron thermal conductivity �e vs density at four different temperatures. Scat-
tering processes e-ion, e-e, and e-imp with 6 values of Qimp = 0, 1, 2, 3, 4, and 5 (as
indicated in the left panel) are included.

of impurity scattering in the inner crust for T < 108 K and for Qimp � 1. Both of these trends
are easily understood in terms of the preceding discussion of various scattering mechanisms
and their temperature dependencies. As we discuss in §5., Qimp will play an important role
in interpreting observations in accreting neutron stars when the inner crust is cold with
T < Tum.

4.5. Phonon conduction

Phonon heat conduction can become relevant when T >⇥ 108 K when the phonon heat capac-
ity becomes comparable to that of electrons, or when the electron contribution is suppressed
either due to large Qimp or magnetic fields. Its importnace depends on the phonon mean free
path being large enough to compensate for their smaller velocity. Phonon scattering pro-
cesses have been discussed in Refs. [26, 27] and we will briefly review them here. As in
terrestrial metals [29], electrons in the inner crust are efficient at damping lattice phonons.
The phonon-electron process is shown in Fig 7 (2a) which depicts a phonon decay produc-
ing an electron-hole excitation. This, Landau damping, dominates over phonon-impurity
and phonon-phonon processes for the temperature realized in the crust [26].

The electron-phonon process discussed in §4.1. and the phonon-electron process we
discuss here are essentially similar. Only here it acts to bring into equilibrium the phonon
distribution function that carries the net thermal current relative to the electron gas. Since
transverse modes dominate the heat capacity their contribution to thermal conduction is rel-
evant and longitudinal modes can be neglected. For T � Tum, Umklapp processes dominate
and transverse phonons are absorbed and emitted by large angle electron scattering on the
Fermi surface. The mean free path for these processes was estimated by Chugunov and
Haensel in [26]. For simplicity, neglecting corrections due to the Debye-Waller factor, we
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At lower temperatures of relevance to neutron stars, quan-
tum effects cannot be neglected a priori. To include them
we use the Path Integral Monte Carlo (PIMC) method (for
a review see [19] ) to obtain the ion-ion correlation functions
needed to calculate electron scattering rates and present first
results of quantum calculations of the thermal conductivity.
For typical MCPs encountered in neutron stars, we find sig-
nificant reduction of the thermal conductivity at low temper-
ature compared to those obtained in earlier work based on
treating the MCP as an OCP plus uncorrelated impurities
[9–11].

The article is organized as follows. In section II we review
well-known results for the electron thermal conductivity and
its relation to the ion-ion correlation function. We discuss the
quantum calculation of this correlation function in Euclidean
time using PIMC in section III and present our results in
section V. Finally we summarize and conclude in section VI.

II. THERMAL CONDUCTIVITY

In the crust where electrons are degenerate and weakly
coupled, their thermal conductivity

κe =
1

3
CV vFeλκ =

π2T ne

3ϵFe

1

νκ
(2)

where CV is the heat capacity of the relativistic electron gas,
λκ is the electron mean free path, and vFe = kFe/ϵFe and
ϵFe =

√
k2

Fe + m2
e are the electron Fermi velocity and Fermi

energy, respectively [8, 9]. The second equality is obtained
by noting that the specific heat of a degenerate electron gas
is CV = π2neT/(vFekFe) where ne is the electron density and
electron collision rate νκ = vFe/λκ. Under typical conditions
electron-electron collisions are negligible and the total scat-
tering rate νκ = νee

κ + νei
κ ≃ νei

κ and in the following we will
only consider the electron-ion scattering process. This rate
can be written as [20]

νκ = ν0
κ

⟨Z2⟩
⟨Z⟩

Λκ (3)

where

ν0
κ =

4α2
emϵFe

3π
, (4)

is the characteristic collision frequency and

Λκ =

∫ 2kFe

0
dq h(q, kTF, kFe) Sκ(q) , (5)

is called the Coulomb logarithm 1. Here

h(q, kTF, kFe) =
q3

(q2 + k2
TF)

2

(
1 −

q2

4k2
Fe

)
, (6)

and ⟨Zn⟩ =
∑

i xiZn
i , kFe is the electron Fermi–momentum,

kTF = 1/λe is the Thomas–Fermi wave–vector and

Sκ(q) =

∫ ∞

−∞
dω⟨S′(q⃗, ω)⟩q̂K(βω, q) (7)

is the structure factor for the thermal conductivity [20]
which contains all the information about ion–ion correla-
tions. S′(q⃗, ω) is the dynamic structure factor with contribu-
tions from elastic Bragg scattering removed because this con-
tributes to the electron ground state wave-function and leads
to their band structure but does not contribute to transport
properties. ⟨. . . ⟩q̂ denotes the average over the direction of
unit vector q̂ = q⃗/q and the function

K(z = βω, q) =
z

ez − 1

[
1 +

z2

π2

(
3p2

F

q2
−

1

2

)]
. (8)

incorporates the final state blocking of electrons and detailed
balance that ensures typical energy transfers is of the order
of the temperature. Finally, the second term in parenthesis
incorporates energy exchanging small angle scattering con-
tributions to the thermal conductivity.

The charge–charge dynamic structure factor is the Fourier
transform of the correlation function

S(q⃗, t) =
1

⟨Z2⟩
⟨ρ†(q⃗, t)ρ(q⃗, t)⟩β , (9)

where the factor ⟨Z2⟩ ensures the correct normalization

S(q, t = 0)
q→∞−−−→ 1 and ⟨. . . ⟩β denote thermal averages at a

temperature 1/β. The charge density operator ρ(q⃗, t) is

ρ(q⃗, t) =
1√
Ni

Ni∑

i=1

Zie
iq⃗·r⃗i(t) (10)

with Zi and r⃗i(t) the charge and position of the ith ion at
time t.

At high temperatures T ≫ Ωpl the bulk of the response
is expected in the region where z ≪ 1. Here K(βω, q) ≈ 1
and Sκ(q) = S(q). However when T < Ωpl this approxima-
tion fails and dynamical information is necessary to calcu-

1 Although in the plasma physics literature the Coulomb logarithm
is usually defined without Sκ(q) in the integrand, in the context of
dense astrophysical plasmas, the quantity defined by Eq. 5 is also
called the Coulomb logarithm.

3

late Sκ(q). With decreasing temperature, electron scattering
only probes the response at small |ω| of order the tempera-
ture and it is imperative to identify the strength of S′(q⃗, ω)
at |ω| ≪ Ωpl to calculate the thermal conductivity.

In the astrophysical context the MCP is often approxi-
mated as a perfect crystal with ions of charge ⟨Z⟩ at the
lattice sites plus a randomly distributed impurity charge
Zj − ⟨Z⟩ [9, 21]. In this picture the total collision rate has
two separate contributions νκ = νph

κ + νimp
κ . The first con-

tribution is due to the absorption or emission of phonons
by electrons. These processes are inelastic and consequently
suppressed at low temperature. In contrast, impurity scat-
tering is elastic and the temperature independent scattering
rate is given by

νimp
κ = ν0

κ
Qimp

⟨Z⟩
Λimp

κ , (11)

where

Qimp = ⟨Z2⟩ − ⟨Z⟩2 (12)

is called impurity–parameter and the Coulomb logarithm for
uncorrelated impurities is

Λimp
κ =

∫ 2pF

0
dq h(q, kTF, kFe) , (13)

=

(
αem

π
+

1

2

)
ln

(
αem + π

αem

)
− 1 . (14)

In the neutron star context one finds that even for modest
values of the Qimp ≃ 5, νimp

κ ≫ ν⟨Z⟩
κ for typical temperatures

in the range 106 − 108 K in the denser regions of the crust
where Ωpl > T [4].

The above mentioned approach to describe electron scat-
tering in the MCP is only approximate. It neglects correla-
tions between minority and majority species and correlations
between minority species can also be important as nuclei with
small Z can cluster [17]. In the vicinity of an impurity we
expect static distortions of the majority lattice. This would
induce a non-periodic component to the Coulomb field which
is bigger than the field associated with effective impurity
charge Zimp − ⟨Z⟩. To account for these effects we require
a method that can capture the dynamics of all species of
ions on equal footing. In the classical limit, the dynamic
structure function S′(q⃗, ω) of the MCP has been calculated
using Molecular Dynamics (MD), while the static structure
function S(q) of MCP has been calculated also with Clas-
sical Monte Carlo (CMC) methods [12, 17, 18]. In what
follows we describe the PIMC technique needed to perform
the quantum calculation of the response of a MCP.

III. PATH INTEGRAL MONTE CARLO
SIMULATIONS

The Path Integral Monte Carlo method is an exact
many–body technique to calculate equilibrium properties of
strongly interacting quantum particles with either Boltz-
mann or Bose statistics [19]. Because we expect ions to be
spatially localized by strong Coulomb interactions even at
low temperature when their thermal De Broglie wavelength
are large, its a good approximation to treat them as Boltz-
mann particles. There are two major advantages to using
PIMC instead of CMC. First, it naturally incorporates zero-
point motion of the ions and second, it is possible to obtain
some dynamical information about the system by computing
the euclidean (imaginary–time) correlation function

F (q⃗, τ) =
T r

[
ρ̂†e−τĤ ρ̂e−(β−τ)Ĥ

]

T r[e−βĤ ]

=

∫ ∞

−∞
dωe−τωS(q⃗, ω)

(15)

where τ ∈ [0, β] is the imaginary–time interval. The latter
will turn out to be particularly useful in describing S(q⃗, ω)
at ω ≈ 0. As discussed earlier the elastic response with
ω ≈ 0 provides the temperature independent contribution to
electron scattering and dominates at low temperature.

The traces in Eq. (15) are performed over the 3Ni–
dimensional configuration space of the ions and the full path
[0, β] is split into M slices. This procedure allows reliable
approximations for the density matrices ⟨R|exp(−∆τĤ)|R′⟩
at the higher (inverse) temperature ∆τ = β/M . For the
conditions explored in this study, we found the primitive
approximation very accurate by comparing it to the exact
two–particle density matrix obtained in the Feynman–Kac
approach (see [19] for details). The final result of the PIMC
calculation is F (q⃗, τ) at M discrete values of imaginary–time
τ and for a large number of momentum transfers compatible
with the periodic boundary conditions of the simulation box,
ie. q⃗ = (2π/L)(nx, ny, nz) with L = (Ni/ni)1/3 the length of
the box and nx, ny, nz integers.

The only systematic bias present in the current computa-
tion is due to finite–size effects which in this case are mostly
caused by the long–range nature of the interaction. However,
due to screening a detailed resolution of long distance effects
through Ewald summations [22] is unnecessary. We find that
summing over image charges in two nearest neighbor cells
in all directions is adequate (this corresponds to including
a total 26 cells surrounding the simulation box). We have
checked the converge of this procedure for both energies and
structure factors using systems composed of different number
of ions Ni ranging from 686 to 2662 and found convergence
when Ni ! 1024 − 1458 in good agreement with earlier find-
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Figure 9. Electron thermal conductivity �e vs density at four different temperatures. Scat-
tering processes e-ion, e-e, and e-imp with 6 values of Qimp = 0, 1, 2, 3, 4, and 5 (as
indicated in the left panel) are included.

of impurity scattering in the inner crust for T < 108 K and for Qimp � 1. Both of these trends
are easily understood in terms of the preceding discussion of various scattering mechanisms
and their temperature dependencies. As we discuss in §5., Qimp will play an important role
in interpreting observations in accreting neutron stars when the inner crust is cold with
T < Tum.

4.5. Phonon conduction

Phonon heat conduction can become relevant when T >⇥ 108 K when the phonon heat capac-
ity becomes comparable to that of electrons, or when the electron contribution is suppressed
either due to large Qimp or magnetic fields. Its importnace depends on the phonon mean free
path being large enough to compensate for their smaller velocity. Phonon scattering pro-
cesses have been discussed in Refs. [26, 27] and we will briefly review them here. As in
terrestrial metals [29], electrons in the inner crust are efficient at damping lattice phonons.
The phonon-electron process is shown in Fig 7 (2a) which depicts a phonon decay produc-
ing an electron-hole excitation. This, Landau damping, dominates over phonon-impurity
and phonon-phonon processes for the temperature realized in the crust [26].

The electron-phonon process discussed in §4.1. and the phonon-electron process we
discuss here are essentially similar. Only here it acts to bring into equilibrium the phonon
distribution function that carries the net thermal current relative to the electron gas. Since
transverse modes dominate the heat capacity their contribution to thermal conduction is rel-
evant and longitudinal modes can be neglected. For T � Tum, Umklapp processes dominate
and transverse phonons are absorbed and emitted by large angle electron scattering on the
Fermi surface. The mean free path for these processes was estimated by Chugunov and
Haensel in [26]. For simplicity, neglecting corrections due to the Debye-Waller factor, we
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At lower temperatures of relevance to neutron stars, quan-
tum effects cannot be neglected a priori. To include them
we use the Path Integral Monte Carlo (PIMC) method (for
a review see [19] ) to obtain the ion-ion correlation functions
needed to calculate electron scattering rates and present first
results of quantum calculations of the thermal conductivity.
For typical MCPs encountered in neutron stars, we find sig-
nificant reduction of the thermal conductivity at low temper-
ature compared to those obtained in earlier work based on
treating the MCP as an OCP plus uncorrelated impurities
[9–11].

The article is organized as follows. In section II we review
well-known results for the electron thermal conductivity and
its relation to the ion-ion correlation function. We discuss the
quantum calculation of this correlation function in Euclidean
time using PIMC in section III and present our results in
section V. Finally we summarize and conclude in section VI.

II. THERMAL CONDUCTIVITY

In the crust where electrons are degenerate and weakly
coupled, their thermal conductivity

κe =
1

3
CV vFeλκ =

π2T ne

3ϵFe

1

νκ
(2)

where CV is the heat capacity of the relativistic electron gas,
λκ is the electron mean free path, and vFe = kFe/ϵFe and
ϵFe =

√
k2

Fe + m2
e are the electron Fermi velocity and Fermi

energy, respectively [8, 9]. The second equality is obtained
by noting that the specific heat of a degenerate electron gas
is CV = π2neT/(vFekFe) where ne is the electron density and
electron collision rate νκ = vFe/λκ. Under typical conditions
electron-electron collisions are negligible and the total scat-
tering rate νκ = νee

κ + νei
κ ≃ νei

κ and in the following we will
only consider the electron-ion scattering process. This rate
can be written as [20]

νκ = ν0
κ

⟨Z2⟩
⟨Z⟩

Λκ (3)

where

ν0
κ =

4α2
emϵFe

3π
, (4)

is the characteristic collision frequency and

Λκ =

∫ 2kFe

0
dq h(q, kTF, kFe) Sκ(q) , (5)

is called the Coulomb logarithm 1. Here

h(q, kTF, kFe) =
q3

(q2 + k2
TF)

2

(
1 −

q2

4k2
Fe

)
, (6)

and ⟨Zn⟩ =
∑

i xiZn
i , kFe is the electron Fermi–momentum,

kTF = 1/λe is the Thomas–Fermi wave–vector and

Sκ(q) =

∫ ∞

−∞
dω⟨S′(q⃗, ω)⟩q̂K(βω, q) (7)

is the structure factor for the thermal conductivity [20]
which contains all the information about ion–ion correla-
tions. S′(q⃗, ω) is the dynamic structure factor with contribu-
tions from elastic Bragg scattering removed because this con-
tributes to the electron ground state wave-function and leads
to their band structure but does not contribute to transport
properties. ⟨. . . ⟩q̂ denotes the average over the direction of
unit vector q̂ = q⃗/q and the function

K(z = βω, q) =
z

ez − 1

[
1 +

z2

π2

(
3p2

F

q2
−

1

2

)]
. (8)

incorporates the final state blocking of electrons and detailed
balance that ensures typical energy transfers is of the order
of the temperature. Finally, the second term in parenthesis
incorporates energy exchanging small angle scattering con-
tributions to the thermal conductivity.

The charge–charge dynamic structure factor is the Fourier
transform of the correlation function

S(q⃗, t) =
1

⟨Z2⟩
⟨ρ†(q⃗, t)ρ(q⃗, t)⟩β , (9)

where the factor ⟨Z2⟩ ensures the correct normalization

S(q, t = 0)
q→∞−−−→ 1 and ⟨. . . ⟩β denote thermal averages at a

temperature 1/β. The charge density operator ρ(q⃗, t) is

ρ(q⃗, t) =
1√
Ni

Ni∑

i=1

Zie
iq⃗·r⃗i(t) (10)

with Zi and r⃗i(t) the charge and position of the ith ion at
time t.

At high temperatures T ≫ Ωpl the bulk of the response
is expected in the region where z ≪ 1. Here K(βω, q) ≈ 1
and Sκ(q) = S(q). However when T < Ωpl this approxima-
tion fails and dynamical information is necessary to calcu-

1 Although in the plasma physics literature the Coulomb logarithm
is usually defined without Sκ(q) in the integrand, in the context of
dense astrophysical plasmas, the quantity defined by Eq. 5 is also
called the Coulomb logarithm.

Impurity scattering is important 
at low temperature. Flowers & Itoh (1976)

3

late Sκ(q). With decreasing temperature, electron scattering
only probes the response at small |ω| of order the tempera-
ture and it is imperative to identify the strength of S′(q⃗, ω)
at |ω| ≪ Ωpl to calculate the thermal conductivity.

In the astrophysical context the MCP is often approxi-
mated as a perfect crystal with ions of charge ⟨Z⟩ at the
lattice sites plus a randomly distributed impurity charge
Zj − ⟨Z⟩ [9, 21]. In this picture the total collision rate has
two separate contributions νκ = νph

κ + νimp
κ . The first con-

tribution is due to the absorption or emission of phonons
by electrons. These processes are inelastic and consequently
suppressed at low temperature. In contrast, impurity scat-
tering is elastic and the temperature independent scattering
rate is given by

νimp
κ = ν0

κ
Qimp

⟨Z⟩
Λimp

κ , (11)

where

Qimp = ⟨Z2⟩ − ⟨Z⟩2 (12)

is called impurity–parameter and the Coulomb logarithm for
uncorrelated impurities is

Λimp
κ =

∫ 2pF

0
dq h(q, kTF, kFe) , (13)

=

(
αem

π
+

1

2

)
ln

(
αem + π

αem

)
− 1 . (14)

In the neutron star context one finds that even for modest
values of the Qimp ≃ 5, νimp

κ ≫ ν⟨Z⟩
κ for typical temperatures

in the range 106 − 108 K in the denser regions of the crust
where Ωpl > T [4].

The above mentioned approach to describe electron scat-
tering in the MCP is only approximate. It neglects correla-
tions between minority and majority species and correlations
between minority species can also be important as nuclei with
small Z can cluster [17]. In the vicinity of an impurity we
expect static distortions of the majority lattice. This would
induce a non-periodic component to the Coulomb field which
is bigger than the field associated with effective impurity
charge Zimp − ⟨Z⟩. To account for these effects we require
a method that can capture the dynamics of all species of
ions on equal footing. In the classical limit, the dynamic
structure function S′(q⃗, ω) of the MCP has been calculated
using Molecular Dynamics (MD), while the static structure
function S(q) of MCP has been calculated also with Clas-
sical Monte Carlo (CMC) methods [12, 17, 18]. In what
follows we describe the PIMC technique needed to perform
the quantum calculation of the response of a MCP.

III. PATH INTEGRAL MONTE CARLO
SIMULATIONS

The Path Integral Monte Carlo method is an exact
many–body technique to calculate equilibrium properties of
strongly interacting quantum particles with either Boltz-
mann or Bose statistics [19]. Because we expect ions to be
spatially localized by strong Coulomb interactions even at
low temperature when their thermal De Broglie wavelength
are large, its a good approximation to treat them as Boltz-
mann particles. There are two major advantages to using
PIMC instead of CMC. First, it naturally incorporates zero-
point motion of the ions and second, it is possible to obtain
some dynamical information about the system by computing
the euclidean (imaginary–time) correlation function

F (q⃗, τ) =
T r

[
ρ̂†e−τĤ ρ̂e−(β−τ)Ĥ

]

T r[e−βĤ ]

=

∫ ∞

−∞
dωe−τωS(q⃗, ω)

(15)

where τ ∈ [0, β] is the imaginary–time interval. The latter
will turn out to be particularly useful in describing S(q⃗, ω)
at ω ≈ 0. As discussed earlier the elastic response with
ω ≈ 0 provides the temperature independent contribution to
electron scattering and dominates at low temperature.

The traces in Eq. (15) are performed over the 3Ni–
dimensional configuration space of the ions and the full path
[0, β] is split into M slices. This procedure allows reliable
approximations for the density matrices ⟨R|exp(−∆τĤ)|R′⟩
at the higher (inverse) temperature ∆τ = β/M . For the
conditions explored in this study, we found the primitive
approximation very accurate by comparing it to the exact
two–particle density matrix obtained in the Feynman–Kac
approach (see [19] for details). The final result of the PIMC
calculation is F (q⃗, τ) at M discrete values of imaginary–time
τ and for a large number of momentum transfers compatible
with the periodic boundary conditions of the simulation box,
ie. q⃗ = (2π/L)(nx, ny, nz) with L = (Ni/ni)1/3 the length of
the box and nx, ny, nz integers.

The only systematic bias present in the current computa-
tion is due to finite–size effects which in this case are mostly
caused by the long–range nature of the interaction. However,
due to screening a detailed resolution of long distance effects
through Ewald summations [22] is unnecessary. We find that
summing over image charges in two nearest neighbor cells
in all directions is adequate (this corresponds to including
a total 26 cells surrounding the simulation box). We have
checked the converge of this procedure for both energies and
structure factors using systems composed of different number
of ions Ni ranging from 686 to 2662 and found convergence
when Ni ! 1024 − 1458 in good agreement with earlier find-
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FIG. 4. Coulomb log for impurity scattering calculated using
Simp(q) from the relation in Eq. (21) and Eq. (22) are shown
and labelled PIMC-EUC and PIMC-STATIC, respectively. The
simple impurity model prediction from Eq. (11) is also shown
(black solid line).

It is important to stress that, despite the higher density,
these calculations where targeted to describe the outer crust,
and therefore neglect effects of finite size of the ions as well
as the presence of interstitial neutrons. There is good agree-
ment between our results and those obtained with molecular
dynamics at smaller value of Γ ≃ 300 but the trend with in-
creasing Γ is different. The origin of this difference is unclear
and warrants further work.

VI. SUMMARY AND CONCLUSIONS

We have calculated the Euclidean charge-charge correla-
tion of MCP using PIMC simulations and used it to extract
the low energy response needed to calculate the electron ther-
mal conductivity of high density matter at low temperatures
encountered in neutron stars. The behavior of the Euclidean
correlation function at large imaginary time was found to
be dominated by slowly varying compositional modes asso-
ciated with impurity induced lattice distortions. These con-
tribute to the low energy strength in the ion dynamic struc-
ture and dominates electron scattering when T ≤ Ωpl. The
role of impurity scattering in MCP has been studied in pre-
vious work in the high temperature classical regime using
MD simulations [36]. Our study is the first to extend the
results to lower temperatures of relevance to neutron stars
and includes quantum effects. The results we obtain are in
agreement with the MD results at higher temperature which
found that the simple impurity scattering formula underes-
timates the low energy response [17, 26]. However, we find
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FIG. 5. Impurity parameter correction factor L(Γ) (cf. Eq. (24))
as a function of Γ for the 3 mixtures considered in this work.
Points labelled PIMC-EUC and PIMC-STATIC are obtained by
calculating the Coulomb logarithm using Simp(q) from the rela-
tion in Eq. (21) and Eq. (22), respectively. Also shown the MD
results from [17] (black diamonds) and [26] (orange diamonds),
together with the liquid–solid transition region as a purple band.

that at low temperature this enhancement is substantially
larger and implies that when T ≪ Ωpl the electron collision
rate in typical MCP encountered in accreting neutron stars
is about factor of 4 larger than earlier estimates based on the
simple impurity scattering formula.

We have performed calculations for three MCP charac-
terized by the impurity parameter Qimp ≃ 2, 15 and 30 at
various temperatures and find that the electron scattering
rate increases linearly with Qimp. This allowed us to de-
fine a temperature dependent effective impurity parameter
Q̃imp = L(Γ)Qimp which can be used to calculate the elec-
tron thermal conductivity using the simple impurity formula
in Eq. (11). In our simulations we found that the ions are
highly localized and the Bragg peaks associated with a BCC
lattice persists. This suggests that electron scattering is pre-
dominantly due to distortions of the lattice rather than due
to scattering of randomly distributed impurity charge and is
a likely explanation for the enhanced response at low ener-
gies that we observe. When some fraction of the impurities
occupy interstitial spaces through thermal motion these dis-
tortions can be screened and offer an explanation for the
reduction in the L at higher temperature.

Finally, we comment on the implications of our study for
the interpretation of observed thermal relaxation in accret-
ing neutron stars. Models that best fit observations require a
relatively large thermal conductivity in the inner crust with
Q̃imp ! 4 [3, 4, 6, 25]. Although our results do not directly
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late Sκ(q). With decreasing temperature, electron scattering
only probes the response at small |ω| of order the tempera-
ture and it is imperative to identify the strength of S′(q⃗, ω)
at |ω| ≪ Ωpl to calculate the thermal conductivity.

In the astrophysical context the MCP is often approxi-
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lattice sites plus a randomly distributed impurity charge
Zj − ⟨Z⟩ [9, 21]. In this picture the total collision rate has
two separate contributions νκ = νph

κ + νimp
κ . The first con-

tribution is due to the absorption or emission of phonons
by electrons. These processes are inelastic and consequently
suppressed at low temperature. In contrast, impurity scat-
tering is elastic and the temperature independent scattering
rate is given by
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κ
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where
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In the neutron star context one finds that even for modest
values of the Qimp ≃ 5, νimp

κ ≫ ν⟨Z⟩
κ for typical temperatures

in the range 106 − 108 K in the denser regions of the crust
where Ωpl > T [4].

The above mentioned approach to describe electron scat-
tering in the MCP is only approximate. It neglects correla-
tions between minority and majority species and correlations
between minority species can also be important as nuclei with
small Z can cluster [17]. In the vicinity of an impurity we
expect static distortions of the majority lattice. This would
induce a non-periodic component to the Coulomb field which
is bigger than the field associated with effective impurity
charge Zimp − ⟨Z⟩. To account for these effects we require
a method that can capture the dynamics of all species of
ions on equal footing. In the classical limit, the dynamic
structure function S′(q⃗, ω) of the MCP has been calculated
using Molecular Dynamics (MD), while the static structure
function S(q) of MCP has been calculated also with Clas-
sical Monte Carlo (CMC) methods [12, 17, 18]. In what
follows we describe the PIMC technique needed to perform
the quantum calculation of the response of a MCP.

III. PATH INTEGRAL MONTE CARLO
SIMULATIONS

The Path Integral Monte Carlo method is an exact
many–body technique to calculate equilibrium properties of
strongly interacting quantum particles with either Boltz-
mann or Bose statistics [19]. Because we expect ions to be
spatially localized by strong Coulomb interactions even at
low temperature when their thermal De Broglie wavelength
are large, its a good approximation to treat them as Boltz-
mann particles. There are two major advantages to using
PIMC instead of CMC. First, it naturally incorporates zero-
point motion of the ions and second, it is possible to obtain
some dynamical information about the system by computing
the euclidean (imaginary–time) correlation function

F (q⃗, τ) =
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ρ̂†e−τĤ ρ̂e−(β−τ)Ĥ

]

T r[e−βĤ ]

=

∫ ∞

−∞
dωe−τωS(q⃗, ω)

(15)

where τ ∈ [0, β] is the imaginary–time interval. The latter
will turn out to be particularly useful in describing S(q⃗, ω)
at ω ≈ 0. As discussed earlier the elastic response with
ω ≈ 0 provides the temperature independent contribution to
electron scattering and dominates at low temperature.

The traces in Eq. (15) are performed over the 3Ni–
dimensional configuration space of the ions and the full path
[0, β] is split into M slices. This procedure allows reliable
approximations for the density matrices ⟨R|exp(−∆τĤ)|R′⟩
at the higher (inverse) temperature ∆τ = β/M . For the
conditions explored in this study, we found the primitive
approximation very accurate by comparing it to the exact
two–particle density matrix obtained in the Feynman–Kac
approach (see [19] for details). The final result of the PIMC
calculation is F (q⃗, τ) at M discrete values of imaginary–time
τ and for a large number of momentum transfers compatible
with the periodic boundary conditions of the simulation box,
ie. q⃗ = (2π/L)(nx, ny, nz) with L = (Ni/ni)1/3 the length of
the box and nx, ny, nz integers.

The only systematic bias present in the current computa-
tion is due to finite–size effects which in this case are mostly
caused by the long–range nature of the interaction. However,
due to screening a detailed resolution of long distance effects
through Ewald summations [22] is unnecessary. We find that
summing over image charges in two nearest neighbor cells
in all directions is adequate (this corresponds to including
a total 26 cells surrounding the simulation box). We have
checked the converge of this procedure for both energies and
structure factors using systems composed of different number
of ions Ni ranging from 686 to 2662 and found convergence
when Ni ! 1024 − 1458 in good agreement with earlier find-
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low temperature when their thermal De Broglie wavelength
are large, its a good approximation to treat them as Boltz-
mann particles. There are two major advantages to using
PIMC instead of CMC. First, it naturally incorporates zero-
point motion of the ions and second, it is possible to obtain
some dynamical information about the system by computing
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where τ ∈ [0, β] is the imaginary–time interval. The latter
will turn out to be particularly useful in describing S(q⃗, ω)
at ω ≈ 0. As discussed earlier the elastic response with
ω ≈ 0 provides the temperature independent contribution to
electron scattering and dominates at low temperature.

The traces in Eq. (15) are performed over the 3Ni–
dimensional configuration space of the ions and the full path
[0, β] is split into M slices. This procedure allows reliable
approximations for the density matrices ⟨R|exp(−∆τĤ)|R′⟩
at the higher (inverse) temperature ∆τ = β/M . For the
conditions explored in this study, we found the primitive
approximation very accurate by comparing it to the exact
two–particle density matrix obtained in the Feynman–Kac
approach (see [19] for details). The final result of the PIMC
calculation is F (q⃗, τ) at M discrete values of imaginary–time
τ and for a large number of momentum transfers compatible
with the periodic boundary conditions of the simulation box,
ie. q⃗ = (2π/L)(nx, ny, nz) with L = (Ni/ni)1/3 the length of
the box and nx, ny, nz integers.

The only systematic bias present in the current computa-
tion is due to finite–size effects which in this case are mostly
caused by the long–range nature of the interaction. However,
due to screening a detailed resolution of long distance effects
through Ewald summations [22] is unnecessary. We find that
summing over image charges in two nearest neighbor cells
in all directions is adequate (this corresponds to including
a total 26 cells surrounding the simulation box). We have
checked the converge of this procedure for both energies and
structure factors using systems composed of different number
of ions Ni ranging from 686 to 2662 and found convergence
when Ni ! 1024 − 1458 in good agreement with earlier find-
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ture and it is imperative to identify the strength of S′(q⃗, ω)
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tering in the MCP is only approximate. It neglects correla-
tions between minority and majority species and correlations
between minority species can also be important as nuclei with
small Z can cluster [17]. In the vicinity of an impurity we
expect static distortions of the majority lattice. This would
induce a non-periodic component to the Coulomb field which
is bigger than the field associated with effective impurity
charge Zimp − ⟨Z⟩. To account for these effects we require
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function S(q) of MCP has been calculated also with Clas-
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ρ̂†e−τĤ ρ̂e−(β−τ)Ĥ
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Qimp ! Q̃imp = L(�) Qimp

Path Integral Monte Carlo 
and Molecular Dynamics 

suggests that impurity 
distribution is not random.   

Enhances impurity scattering by a factor of 2-4.   
Roggero & Reddy (2016)
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Figure 11. Models for the crust relaxation of MXB1659-29. See text for description. The
six data points in the left panel are from [40], assuming a source distance of 8.5 kpc.

5.2.1. Mapping the thermal conductivity: MXB1659-29.

The crust relaxation of MXB 1659-29 has been studied in detail by Brown & Cumming in
[43], and our results amply confirm their analysis. The accretion outburst was long enough
that the crust could reach a steady state: this is very important since it implies that the
initial T profile for the crust relaxation was independent of CV , providing some relief from
the CV/� degeneracy in ⇤th, Eq. 39.

As was shown in [43] there is a one-to-one mapping between the cooling curve, Te(t),
and the temperature profile of the crust, T (z) at the end of the outburst at time t0. At time
t � t0 after relaxation commences, the observed surface temperature Te is determined by the
temperature T (zt�t0) at a depth zt�t0 such that the thermal relaxation time from the surface
to this depth is ⇤th ⇥ t. (This is the "l2-effect" in Eq.39.) The schematic in the grey shaded
inset in the left panel of Fig. 11 shows: phase "1" when Te is determined by the outer crust
evolution; in "2" it is controlled by the evolution of matter at densities ⇥ ⇥ 1011 � 1013 g
cm�3; in phase "3" the evolution is sensitive to the deep inner crust; and, finally, in phase
"4", the crust has relaxed with the core and Te reflects the core temperature. Approximating
CV and � by power laws in T , the evolution is described by power laws, i.e., straight lines
in a Te-Log(t � t0) plot.

The thermal conductivity of a pure crystalline crust turns out to be much too high to
reproduce observed cooling, but good fits are obtained when � is reduced due to additional
scattering by impurities. The cooling curves in the left panel of Fig. 11 illustrate three
cases with impurity parameters Qimp = 2.5, 5, and 7.5, as well as a pure crystalline crust,
Qimp = 0. A value of Qimp = 5 is favored in this set of results, but is dependent on the
assumed crust thickness and accretion rate (see [43] for a complete study). A finer study
[45] with a density dependent Qimp reveals that the cooling curves are mostly sensitive to
the value of Qimp at ⇥ > 1013 g cm�3, so that MXB 1659-29, and also KS 1731-260, are

•Late time signal is sensitive 
to inner crust thermal and 
transport  properties.


•Variations in the pairing 
gap (changes the fraction of 
normal neutrons)may be 
discernible !  

Page & Reddy (2012)  

Shternin & Yakovlev (2007)
Brown & Cumming (2009)

Page & Reddy (2012)  
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5.2.1. Mapping the thermal conductivity: MXB1659-29.

The crust relaxation of MXB 1659-29 has been studied in detail by Brown & Cumming in
[43], and our results amply confirm their analysis. The accretion outburst was long enough
that the crust could reach a steady state: this is very important since it implies that the
initial T profile for the crust relaxation was independent of CV , providing some relief from
the CV/� degeneracy in ⇤th, Eq. 39.

As was shown in [43] there is a one-to-one mapping between the cooling curve, Te(t),
and the temperature profile of the crust, T (z) at the end of the outburst at time t0. At time
t � t0 after relaxation commences, the observed surface temperature Te is determined by the
temperature T (zt�t0) at a depth zt�t0 such that the thermal relaxation time from the surface
to this depth is ⇤th ⇥ t. (This is the "l2-effect" in Eq.39.) The schematic in the grey shaded
inset in the left panel of Fig. 11 shows: phase "1" when Te is determined by the outer crust
evolution; in "2" it is controlled by the evolution of matter at densities ⇥ ⇥ 1011 � 1013 g
cm�3; in phase "3" the evolution is sensitive to the deep inner crust; and, finally, in phase
"4", the crust has relaxed with the core and Te reflects the core temperature. Approximating
CV and � by power laws in T , the evolution is described by power laws, i.e., straight lines
in a Te-Log(t � t0) plot.

The thermal conductivity of a pure crystalline crust turns out to be much too high to
reproduce observed cooling, but good fits are obtained when � is reduced due to additional
scattering by impurities. The cooling curves in the left panel of Fig. 11 illustrate three
cases with impurity parameters Qimp = 2.5, 5, and 7.5, as well as a pure crystalline crust,
Qimp = 0. A value of Qimp = 5 is favored in this set of results, but is dependent on the
assumed crust thickness and accretion rate (see [43] for a complete study). A finer study
[45] with a density dependent Qimp reveals that the cooling curves are mostly sensitive to
the value of Qimp at ⇥ > 1013 g cm�3, so that MXB 1659-29, and also KS 1731-260, are
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Transport Properties of the Core 



Low energy excitations in the core
Neutrons are superfluid (T<Tnc):  Electrons + 4 Goldstone modes (3 
neutron modes and 1 electron-proton mode).  Bedaque, Rupak, Savage, 
(2003), Bedaque, Nicholson (2013), Bedaque and Reddy (2013).


Neutrons are normal (T>Tnc): Electrons, neutrons + 1 Goldstone 
boson (electron-proton mode).    
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scalar. Di↵erent symmetric traceless tensors break the ro-
tation group in di↵erent ways so there are several possible
3
P2 phases. Around the critical temperature one can rely on
BCS and strong coupling estimates of the parameters of the
Ginsburg-Landau free energy to conclude that the ground
state is of the form �0

ij

⇠ diag(1, 1,�2) (or, of course, any
rotation of this matrix)[3, 4]. The structure of the gap equa-
tions are such that, at least within the BCS framework, the
relative order of the di↵erent states is not changes as temper-
ature, density or microscopic interactions change [5] so it is
reasonable to assume that the ground state of neutron mat-
ter is in a phase characterized by the �0

ij

⇠ diag(1, 1,�2)
form of the condensate. This will be an assumption underly-
ing our analysis although many of our qualitative conclusions
are independent of it.

The presence of the condensate�0
ij

⇠ diag(1, 1,�2) breaks
spontaneously the symmetry of the system under rotations,
except for those around the z-axis. Thus, as first realized in
[1] we expect the presence of two gapless excitations above
the ground state, named “angulons”, corresponding to rota-
tions of the condensate around the x and y axis. Angulons
were then studied in more detail in [6] where, with mild as-
sumptions, their properties were quantitatively estimated.

These properties are succinctly encapsulated is the la-
grangian given by
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n

⇡ �1.91 is the neutron magnetic moment in units of the
nuclear Bohr magneton, B is the magnetic field, k

Fn

the neu-
tron Fermi momentum, M the nucleon mass, v

F

= k

Fn

/M is
the neutron fermi velocity, and e =

p
↵

em

/4⇡2 the electron
charge. The values in eq. (3) receive Fermi liquid corrections
not yet computed. The fields �1,2 are linear combinations of
the fields describing rotations of the condensate around the
x and y axis which mix among themselves; in terms of the
original fields the lagrangian is analytic at small momenta.

We now discuss the two remaining massless modes, these
now being associated with density fluctuations. The first
mode is one that would exist in a pure 3P2 ( and also a 1S0)

n

n

(fm�3) 0.08 0.16 0.20 0.24 0.32
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0.024 0.043 0.050 0.057 0.070
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0.015 0.070 0.128 0.210 0.430

v

2
np -0.034 -0.016 0.024 0.086 0.268

v1 0.12 0.21 0.23 0.25 0.28

v2 0.17 0.26 0.36 0.46 0.71

TABLE I. Ambient conditions, low energy constants and eigen-
mode velocities v1 and v2 in units of the velocity of light for the
equation of state from [11]

neutron superfluid and it corresponds to the fluctuations of
� - the overall isotropic phase of the condensate. The other
mode is related to density fluctuations of proton condensate
+ the electron gas and is denoted by the scalar field ⇠. The
general low energy e↵ective field theory of these scalar modes
is well studied [7–9] and the low energy Largrangian density
is given by
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where we have also included the coupling to the electron
field  

e

. The coe�cients of the leading order terms in the
derivative expansion are related to simple thermodynamic
derivates and can be obtained from the equation of state.
They are given by
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) is the en-
ergy density of the neutron-proton system. The e↵ective
coupling between phonons in the ep system and electron-
hole states is calculated as in the jellium model and is given
by fep =

p
m

p

kFp/⇡
2 [10]. Enp arises solely due to nucleon-

nucleon interactions and its value depends on the density, the
equilibrium proton fraction and the equation of state model
chosen. The low energy constants calculated using a rep-
resentative microscopic equation of state from [11] and the
eigenmode velocities in units of the speed of light are shown
in Table I.

The propagation of angulons and superfluid phonons can
be damped by several processes. In the the following we es-
timate the mean free paths of phonons and angulons at low
temperature k

B

T ⌧ � to find that dominant decay mecha-
nism is due to the excitation of electron-hole states. First,
we analyze the mean free paths of the two longitudinal super-
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grangian given by
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g

n

⇡ �1.91 is the neutron magnetic moment in units of the
nuclear Bohr magneton, B is the magnetic field, k

Fn

the neu-
tron Fermi momentum, M the nucleon mass, v

F

= k

Fn

/M is
the neutron fermi velocity, and e =

p
↵

em

/4⇡2 the electron
charge. The values in eq. (3) receive Fermi liquid corrections
not yet computed. The fields �1,2 are linear combinations of
the fields describing rotations of the condensate around the
x and y axis which mix among themselves; in terms of the
original fields the lagrangian is analytic at small momenta.

We now discuss the two remaining massless modes, these
now being associated with density fluctuations. The first
mode is one that would exist in a pure 3P2 ( and also a 1S0)

n

n

(fm�3) 0.08 0.16 0.20 0.24 0.32

x

p

0.024 0.043 0.050 0.057 0.070

v

2
p

0.029 0.049 0.060 0.072 0.104

v

2
n

0.015 0.070 0.128 0.210 0.430

v

2
np -0.034 -0.016 0.024 0.086 0.268

v1 0.12 0.21 0.23 0.25 0.28

v2 0.17 0.26 0.36 0.46 0.71

TABLE I. Ambient conditions, low energy constants and eigen-
mode velocities v1 and v2 in units of the velocity of light for the
equation of state from [11]

neutron superfluid and it corresponds to the fluctuations of
� - the overall isotropic phase of the condensate. The other
mode is related to density fluctuations of proton condensate
+ the electron gas and is denoted by the scalar field ⇠. The
general low energy e↵ective field theory of these scalar modes
is well studied [7–9] and the low energy Largrangian density
is given by
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where we have also included the coupling to the electron
field  

e

. The coe�cients of the leading order terms in the
derivative expansion are related to simple thermodynamic
derivates and can be obtained from the equation of state.
They are given by
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where Eij = @

2
E(n

n

, n

p

)/(@n
i

@n

j

) and E(n
n

, n

p

) is the en-
ergy density of the neutron-proton system. The e↵ective
coupling between phonons in the ep system and electron-
hole states is calculated as in the jellium model and is given
by fep =

p
m

p

kFp/⇡
2 [10]. Enp arises solely due to nucleon-

nucleon interactions and its value depends on the density, the
equilibrium proton fraction and the equation of state model
chosen. The low energy constants calculated using a rep-
resentative microscopic equation of state from [11] and the
eigenmode velocities in units of the speed of light are shown
in Table I.

The propagation of angulons and superfluid phonons can
be damped by several processes. In the the following we es-
timate the mean free paths of phonons and angulons at low
temperature k

B

T ⌧ � to find that dominant decay mecha-
nism is due to the excitation of electron-hole states. First,
we analyze the mean free paths of the two longitudinal super-

Superfluid Phonons: 

Angulons: 

Bedaque and Reddy (2013),
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fluid phonons. In the absence of any mixing between these
modes the e � p mode couples strongly to the electron-hole
excitations and its damping rate and the mean free paths are
given by

�ep(! = v

p

q) =
3⇡

2
v

3
p

q, (6)

�ep(! = v
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q) =
c

�ep(!)
' 1.4⇥ 10�9
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10 keV
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� 
0.3

v

p

�
cm ,

respectively. The thermal average mean free path is well
defined and is given by h�ep(T )i = ⇡/(18⇣[3] v

p

T ) ⇡
10�9 (0.3/v

p

) T

�1
8 cm, where T8 is the temperature mea-

sured in units of 108 K.
vnp mixes the the proton-electron mode with the neutron

superfluid phonon mode. We find that both eigenmodes de-
cay predominantly by coupling to electron-hole excitations
(Landau damping). This mixing is similar to the mixing
between the longitudinal phonons of the nuclear lattice and
the neutron superfluid phonons in the inner crust of the neu-
tron star [9]. The velocity and damping rates of the two
longitudinal eigenmodes can be obtained as solutions to the
equation
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2
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2 � 2i ! �e�p(!))� 2v4np!
4 = 0 (7)

In the limit of weak mixing the scattering rate of the pre-
dominantly ep-mode is ⇡ �ep(! = v

p

q) given in eq. (7), and
the scattering rate of the predominantly neutron superfluid
mode is

�
�
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and when v

n

� v

p

and v

p

⌧ 1, �
�

(! = v q) ⇡ v

4
np�ep(!).

Since typical values of v

4
np are in the range 10�4 � 10�1,

we can conclude that the mean free path of the predom-
inantly neutron superfluid mode will be in the range �

�

⇡
10�5(0.3/v) T�1

8 cm to �

�

⇡ 10�8(0.3/v) T�1
8 cm. Although

they are typically much larger than those corresponding to
ep mode, as we shall see later, these are still too small to
contribute significantly to any transport phenomena.

We now turn to the calculation of the angulon mean free
path.The angulon-angulon scattering amplitude is / p

2
/f

2
�

since the powers of p are fixed by dimensional analysis. Its
contribution to the mean free path can then be easily esti-
mated and we find �ang�ang ⇡ v

3
�

f

4
�

/T

5. For T . 109 K,
�ang�ang � R where R ' 10 km is the radius of the neutron
star, and implies that angulon-angulon processes are irrele-
vant.

Angulons mix with the magnetic photons due to two pro-
cesses. One mixing mechanism is due to the magnetic mo-
ment of the neutron and is described by the lagrangian in
eq. (2) the other is mediated by protons which, as charged

n p

FIG. 1. The top line shows the magnetic moment and proton me-
diated mixing processes, respectively. Angulon, photon, electron,
neutron and proton propagators are shown as a dotted, wavy and
solid black, solid red and solid blue lines lines, respectively and
nucleon loops include both normal and anomalous diagrams. The
lower graphs contribute to the imaginary part of the self-energy of
the angulon-magnetic photon mixed mode (left) and the electron-
proton-neutron phonon mode (right).

particles, couple to photons. These two processes are de-
picted in Fig. 1. The latter indirect coupling necessarily in-
volves a spin flip of both neutrons (on account of form the
angulon-neutron coupling) and protons. Thus, only the mag-

netic photon mixes with the angulon and this mixing is sup-
pressed by a power of the proton velocity change ⇠ p/M , the
same suppression appearing in the magnetic moment process.
We find that the proton mediated mixing is smaller than the
mixing generated by the neutron magnetic moment. For the
estimates we present here, we will neglect the proton medi-
ated mixing.

Since magnetic photons are damped by electron-hole exci-
tations, mixing ensures that angulons are also damped. The
angulon scattering rate o↵ electrons is given by
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From the angulon width estimated above we can determine
the angulon mean free path
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⇡ 1.7�4
v

3
F


kFe

100 MeV
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where � = v

�

/v

F

and v

�

is the mean velocity of the angulon.

Mixing and Damping of Goldstone Bosons 
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Modes decay rapidly due to the coupling to the large density of 
electron-hole states. Do not contribute to transport. 
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Electron Scattering in the Core 

e e

Superconducting protons:  
Both electric and magnetic photon exchange is 
screened. Debye and Meissner screening are strong. 
Large suppression in scattering rates.    

Normal protons: 
Magnetic interaction (current-current)  is dynamically 
screened due to Landau damping. This screening is 
weak and scattering rates are large. 
Pethick and Heiselberg (1993), Shternin and Yakovlev (2006,2007)

3

is the differential transition probability for a scattering
process p1p2 → p′

1p
′
2; |M12|2 is the squared matrix ele-

ment summed over particle spin states (it includes also
the symmetry factor to avoid double counting of the same
collisions events); primes refer to particles after the colli-
sion. In Eqs. (7)–(9) we use the system of units in which
c = kB = ! = 1. The same system will be used below
unless the contrary is indicated.

In the absence of muons we have

κeµ = κe, τ−1
e = νe = νee + νep. (10)

A. Dynamical screening of electromagnetic
interaction

The physics of the dynamical plasma screening is thor-
oughly analyzed by Heiselberg and Pethick [18]. These
authors consider quark-quark collisions in a quark plasma
through one-gluon exchange in the weak-coupling limit.
Such collisions are similar to electromagnetic scattering
of charged particles in an ordinary plasma. Electromag-
netic interactions of muons and electrons in neutron star
cores are usually accompanied by small momentum and
energy transfers which greatly simplifies the theory. The
squared matrix element for small energy transfers in a
collision p1p2 → p′

1p
′
2 of nonidentical particles 1 and 2

is

|M12|2 ∝

∣∣∣∣∣
J (0)

1′1J (0)
2′2

q2 + Πl
−

Jt1′1 · Jt2′2

q2 − ω2 + Πt

∣∣∣∣∣

2

, (11)

where !q = p′
1 − p1 is a momentum transfer, !ω =

ε′1− ε1 is an energy transfer (in standard physical units),

J (ν)
i = (J (0)

i′i , Ji′i) = (ū′
iγ

νui) is the transition 4-current
(ν=0,. . . ,3), γν is a Dirac matrix, ui is a normalized
bispinor (ūiui = 2mi), ūi is a Dirac conjugate (see, e.g.,
Berestetskĭı, Lifshitz and Pitaevskii [21]); Jti′i is the com-
ponent of Ji′i transverse to q. The longitudinal com-
ponent of Ji′i (parallel to q) is related to the time-like

(charge density) component J (0)
i′i via charge conservation.

It is excluded from Eq. (11) with the aid of the continuity
equation as explained by Heiselberg and Pethick [18]. For
collisions of identical particles (ee and µµ in our case), the

matrix element contains two parts, M12 = M (1)
12 + M (2)

12 ,
which correspond to two channels, (1 → 1′; 2 → 2′) and
(1 → 2′; 1′ → 2). However, in the small-momentum-
transfer approximation, the interference term is small,
both channels give equal contributions, and the relation-
ship (11) is not violated.

Equation (11) contains the polarization functions Πl

and Πt which depend on ω and q and describe plasma
screening of interparticle interaction by longitudinal
and transverse plasma perturbations (plasmons), respec-
tively. In the random phase approximation (RPA), these
functions are the sums of terms for all charged particles
i (electrons, muons and protons). In the classical limit

(q ≪ pFi, ω ≪ vFipFi) one has (e.g., Alexandrov, Bog-
dankevich and Rukhadze [22])

Πl =
∑

i

4αp2
Fi

πvFi
χl(xi),

Πt =
∑

i

4αp2
FivFi

π
χt(xi), (12)

where xi = ω/(qvFi), α = e2/!c ≈ 1/137 is the fine
structure constant, and

χl(x) = 1 −
x

2
ln
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x + 1

x − 1

)
,

χt(x) =
x2

2
+

x(1 − x2)

4
ln

(
x + 1

x − 1

)
. (13)

For typical conditions of very strong degeneracy in neu-
tron star cores, it is sufficient to use the expressions for
Πl and Πt in the limit of q ≪ pFi and xi ≪ 1, in which
χl(x) ≈ 1 and χt(x) ≈ iπx/4. In this limit,

Πl =
∑

i

3ω2
i

v2
Fi

= q2
l , (14)

Πt = i
π

4

ω

q

∑

i

3ω2
i

vFi
= i

π

4

ω

q
q2
t , (15)

where ωi = (4πe2ni/m∗
i )

1/2 is the plasma frequency
of particles i, and m∗

i is the effective particle mass at
the appropriate Fermi surface. We have already defined
m∗

e and m∗
µ for electrons and muons which form almost

ideal Fermi gases. Their effective masses differ from the
bare masses owing to relativistic effects. As for protons
(i = p), which are nonrelativistic in neutron star cores,
their effective mass m∗

p differs from the bare proton mass
due to strong interactions with surrounding nucleons. In
the approximation (14) and (15) one can also neglect ω2

in the denominator of the second term in (11). Equations
(13) are strictly valid for Fermi gases, which is a good ap-
proximation for the electrons and muons, but the protons
constitute a Fermi liquid. Fortunately, the asymptotic
expressions (14) and (15), sufficient for our calculations,
remain valid for the Fermi liquid. This is because a ki-
netic equation for quasiparticles in the Fermi liquid at
low ω is similar to a familiar kinetic equation for Fermi
gases (see, e.g., Ref. [23]).

In Eqs. (14) and (15) we have introduced ql and qt

[cm−1] defined as (in standard physical units)

q2
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4α

π

∑

i

cm∗
i pFi
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, (16)

q2
t =

4α

π

∑

i

m∗
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Fi
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. (17)

Generally, we have qt ≤ ql. If all charged particles were
ultrarelativistic then qt → ql.
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nuclear saturation density. The typical electron/proton fraction is on the order of a few percent at n = n

0

, and increases with
density. When the electron Fermi energy exceeds the mass of the muon, matter also contains an admixture of muons. This
matter containing neutrons, protons, electrons, and muons in a liquid state may persist up to the highest densities ⇡ 1015 g
cm�3 at the center of the star in the absence of phase transitions to other exotic forms of matter containing hyperons, kaons,
or quarks (for a recent review see [2]). At the high densities in the core the neutron Fermi momentum is large, and s-wave
interactions between neutrons become repulsive. Superfluid pairing is only possible in p-waves, and p-wave pairing has been
found to be fragile and model dependent, with estimates of the critical temperature T

n

c

⇡ 108 K [11]. In contrast, because
the proton density is small, s-wave interactions remain strongly attractive for protons and s-wave proton superconductivity
with a critical temperature T

p

c

⇡ 108 � 1010 K is expected.
Throughout these di↵erent phases of matter inside the neutron star, electrons remain relativistic, degenerate, and weakly

interacting. They consequently play an important role in transport phenomena that shape the thermal, magnetic field, and
spin evolution of neutron stars. In this article we calculate the electron-neutron coupling, which depends on the polarizability
of the medium, and show that it is relevant. In earlier work electron-neutron scattering due to the intrinsic magnetic moment
of the neutron was considered and found to be unimportant [5]. Here, in contrast, we find that electron-neutron scattering
due to the induced coupling is important for determining the electronic transport properties in the neutron star core.

We begin with a derivation of the induced interaction in the core and in the inner crust in sections II and III, respectively.
In section IV we derive general formulae for the the electron thermal conductivity, electrical conductivity, and shear viscosity.
We present our results for these electronic transport properties, and compare them to those obtained in earlier work in section
V to highlight situations in which electron-neutron scattering could be important. Our conclusions and some limitations of
our study are presented in section VI. Appendix A contains an illustrative derivation of the e↵ective coupling, and in appendix
B we collect relevant formulae from previous studies which were used to make comparisons. Throughout we use natural units,
setting ~ = 1, c = 1, and k

B

= 1, and the electric charge e =
p
4⇡↵ where ↵ = 1/137 is the fine structure constant. Since the

electron Fermi momentum k

Fe

' 100 MeV � m

e

for typical densities encountered in the neutron star inner crust and core,
throughout we treat the electrons as ultra-relativistic particles with velocity v

e

= c = 1.

II. INDUCED ELECTRON-NEUTRON INTERACTION IN THE CORE

In free space, and at low momenta, the electron-neutron interaction is weak as it arises due to the small neutron magnetic
moment. In contrast, in the dense plasma inside neutron stars, electrons can couple to neutrons due to an interaction induced
by the polarizability of the charged protons. This can be understood intuitively by noting that the presence of the neutron
in the medium will disturb its immediate vicinity, and a↵ect in particular the proton density distribution. This will create
either a positively or negatively charged cloud around the neutrons depending on whether the neutron-proton interaction
is attractive or repulsive. At low density since the neutron-proton interaction is attractive, the neutron will acquire a net
positive charge while at the high density where the interaction can be repulsive, the charge cloud surrounding the neutron
will be negative.

The e↵ective coupling between neutrons and electrons is mediated by the in-medium photon (the plasmon) and can be
derived using standard techniques in quantum field theory (for more details see appendix A). An e↵ective Lagrangian for
the electron-neutron coupling can be derived in analogy with the plasmon-neutrino coupling described in Refs. [12, 13]. The
Feynman diagram in Fig. 1 shows the the exchange of a plasmon (wavy-line) which couples electrons to protons. The protons

e

e

n

n

p

p

FIG. 1: E↵ective interaction between electrons and neutrons induced by protons in the medium. The wavy line represents the plasmon.

in turn couple to neutrons by the short-range strong interaction depicted by a filled circle. From the diagram it follows that

Induced interaction is strong due to a 
strong neutron-proton interaction. Much 
larger than the magnetic moment 
interaction.   
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the plasmon-neutron coupling can be described by the e↵ective Lagrangian

L
��n
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p
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np
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p

A
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, (1)

where n and A

⌫

are the neutron and plasmon fields, V
np

is the short-range nuclear potential, and ⇧µ⌫

p

is the proton polarization
correction to the photon in the plasma which can be decomposed into longitudinal and transverse components and is given
by
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where i, j are spatial indices and the four-momentum q

µ = (!, qq̂) [14]. ⇧L

p

and ⇧T

p

are complex functions in general but we
neglect the imaginary part in defining the plasmon-neutron coupling for the following reasons. When the protons are in the
normal phase, the imaginary part corresponds to real proton excitations and leads to Landau damping of the plasmon. Its
magnitude is small (proportional to m

2

p

!/q where m

p

is proton mass) and vanishes in the static limit ! ! 0 [15]. Instead
if protons are superconducting, the imaginary part is zero for ! < 2�

p

where �
p

is the energy gap in the proton spectrum
[16]. The real part of the longitudinal polarization function is denoted as �

p

(!, q) and is given by
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where n

p

= p̄�

0

p = p

†
p is the proton density operator. The real part of the transverse polarization function is related to the

velocity-velocity correlation function of the proton fluid. Note that q
µ

⇧µ⌫ = 0 so that this e↵ective electron-neutron coupling
is manifestly gauge invariant.

Since the proton fraction in neutron stars is typically only a few percent, the proton Fermi momentum is small and protons
can be treated in the non-relativistic limit. The neutrons are also only mildly relativistic in the vicinity of nuclear saturation
density with a velocity v

Fn

= k

Fn

/m

n

' 1/3. This, together with the fact that scattering kinematics is restricted to the
region ! < q, implies that it is reasonable to neglect the spatial components of the currents in Eq. 1. Retaining only the
density-density component, the e↵ective interaction is described by the Lagrangian

L
e�n

= �ē�

0

e U
enp
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n , (4)

where e is the electron field and
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is the induced interaction, and the Thomas-Fermi momentum q

TF

includes the screening of electric charge due to protons,
electrons, and muons, and is defined by
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We now turn to discuss �
p

and V

np

, both of which are needed to calculate the e↵ective electron-neutron coupling C
enp

(q),
which characterizes the strength of the electron-neutron interaction relative to the Coulomb interaction between electrons
and protons. First, we note that due to the strong degeneracy of electrons at low temperature, the energy transfer ! ⇡ T

is small compared to the momentum transfer q and other relevant energy scales associated with the dense medium. For this
reason, the e↵ective coupling can be calculated in the static limit. In this limit, the susceptibility �

p

(q) ⌘ �

p

(! = 0, q) is
well known from non-relativistic many-body theory for a non-interacting Fermi gas and is given by
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where the one-loop polarization function ⇧0

p

is defined in Eq. A5 and y = q/2k
Fp

[15]. In a strongly interacting system,
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where the one-loop polarization function ⇧0
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is defined in Eq. A5 and y = q/2k
Fp

[15]. In a strongly interacting system,
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higher order corrections to the one-loop polarization function can become relevant but are known not change the qualitative
behavior. We estimate the size of these corrections by noting that in the long-wavelength limit �

p

(q ! 0) = �@n

p

/@µ

p

where n

p

and µ

p

are the proton number density and chemical potential, respectively. Using microscopic calculations of the
dense matter equation of state (EoS) reported in Refs. [17] and [18] we have calculated this derivative to find corrections in
the range 20% � 50% in the vicinity of n = n

0

, and an enhancement by a factor of two at the highest densities (n ' 0.48
fm�3) encountered in the core. In contrast, corrections to �
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(q) due to proton superconductivity are small in the static limit
for typical values of the superconducting gap �
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and can be safely neglected [16].
The potential V
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(q) describes the interaction between neutrons and protons in the medium and is in general a complicated
function of density and momentum. However, later in section IV we shall find that typical momentum transfer involved in
electron collisions is in the range of a few times q
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, and this justifies a low momentum expansion of the form
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The e↵ective interaction at zero momentum exchange can be extracted from the EoS of dense matter through the relation
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where E(n
n

, n

p

) is the energy density of the liquid of neutrons and protons with density n

n

and n

p

, respectively. We use EoS
models described in Refs. [17] and [18], which are based on non-perturbative calculations using realistic two and three nucleon
interactions, to calculate E(n

n

, n

p

) and the second derivative @

2E(n
n

, n
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)/@n
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. Numerical di↵erences between them can
be viewed as a rough error estimate and for this reason we shall present results for both EoSs. The second term in the

expansion V

(2)

np

cannot be derived from the EoS, but it is related to the L = 1 Fermi liquid parameters. Since we are unaware

of a microscopic calculation of these parameters in neutron-rich matter, we have opted to use a range V (2)

np

= 5⇥10�6�5⇥10�5

MeV�2 as suggested by calculations in symmetric nuclear matter from Ref. [19].
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FIG. 2: Left panel: The strength of the induced electron-neutron interaction defined in Eq. 5 as a function of q at nuclear saturation
density n0 = 0.16 fm�3. Right panel: C2

enp(q = 3qTF) as a function of density.

The momentum and density dependence of the strength of the induced coupling C
enp

is shown in Fig. 2 for the two models

defined as follows. In model A, we use the EoS from Ref. [17] to obtain V

(0)

np

and the band is obtained by varying V

(2)

np

over

the range mentioned above. In model B, we use the EoS from Ref. [18] to obtain V

(0)

np

and the band is obtained by varying

V

(2)

np

over the same range.
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FIG. 8: The ratio ⌘ref/⌘en for two proton critical temperatures, T p
c = 109 K (left) and T p

c = 1010 K (right) for densities in the core.

two representative values of the proton critical temperature to asses the relative importance of electron-neutron scattering.
⌘

ref

is calculated using the fitting formula from [8] and is described in Appendix B 2 for reference. As before, in regions
where ⌘

ref

/⌘

en

> 1, electron-neutron scattering is the dominant scattering mechanism for electrons. The results in the figure
indicate that electron-neutron scattering is relevant everywhere in the core. Further, because ⌘

ref

is a weaker function of the
superconducting gap compared to 

ref

, we find that ⌘
ref

/⌘

en

> 1 even when T ' T

p

c

.
The general trend that the electron-neutron contribution is more relevant for ⌘ rather than , and that it remains relevant

even when proton superconductivity is weak or absent, can be understood by noting that screening is more important for 
than it is for ⌘. This is because low momentum scattering with energy transfer ! ' T can make an important contribution
to  and is reflected by the fact that  / ⇤3 where ⇤ is the momentum scale set by the physics of screening, while ⌘ / ⇤
(c.f. the dependence on q

TF

in Eqs. 40 and 42). In the case of the density-density interaction that we have considered
between electrons and neutrons ⇤ = q

TF

⇡ (4↵m
p

k

Fp

/⇡)1/2, while for the current-current interaction between electrons
considered in [7, 8] the relevant scale of the screening momentum is ⇤ ⇡ (⇡↵k2

Fp

�
p

)1/3 when protons are superconducting,

and ⇤ ⇡ (2↵Tk2
Fp

)1/3 when protons are normal.
We have calculated both 

en

and ⌘

en

for the case when neutrons are superfluid and found them to be too large compared
to 

ref

and ⌘

ref

to be relevant. Here, electron scattering occurs either by absorption or emission of the superfluid phonon with
energy ! = qv

n

. Since large energy transfer is exponentially suppressed due to degeneracy and typical ! ' T , the electron-
phonon scattering is highly peaked in the forward direction and contributes little to the electron transport properties. Finally,
we note that the electrical conductivity is only relevant when protons are normal, and in this case we find that electron-
neutron scattering can be as relevant as electron-proton scattering when hC2

enp

i & 1. However, this warrants a careful study
of the induced interaction between the electron and neutron currents mediated by transverse plasmons in the normal state
and is beyond the scope of this study.

B. Electron Transport in the Crust

In the inner crust, ions form a crystal and electron-ion scattering is suppressed due to correlations for T < T

P

where
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is the ion plasma temperature and !
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is the plasma frequency of ions with charge Z, mass
M
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, and number density n

I

. The dominant electron scattering processes considered in earlier work were due to electron-
phonon and electron-impurity interactions. When the impurity concentration is negligible, the electron contribution to , �,
and ⌘ at low temperature is limited by the emission or absorption of lattice phonons by electrons and has been studied in
earlier work [5, 25–27]. The importance of Umklapp scattering was realized early in Ref. [5] because this allows the electron
momentum to change by a large amount, K = (2⇡/a)(n

x

x̂ + n

y

ŷ + n

z

ẑ), where n

i

are integers, even for relatively small
energy transfer ! ' T ⌧ |K| . For this reason, electron-ion scattering remains very e↵ective down to low temperatures until

Shear Viscosity in the Core
When neutrons are normal and protons are superconducting electron-
neutron scattering dominates
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The electron-phonon coupling is well known, and at small momentum it is described by the Lagrangian

L
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where ⇠

i

is the canonically normalized phonon field which is related to ion density fluctuations, �n
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, and f
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[15]. Density fluctuations of the ion lattice also couple to the neutrons due to the short-range neutron-ion potential
V
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. The coupling between low energy neutrons and lattice phonons is described by the Lagrangian

L
n�ph

= �V

nI

f

I

n

†
n r

i

⇠

i

. (18)

The electron-neutron interaction follows from Fig. 4, where the phonon-electron and phonon-neutron vertices are given
by Eq. 17 and Eq. 18, respectively. Using the longitudinal phonon propagator D(q) = (!2 � !

2(q))�1 where the phonon
dispersion relation is !2(q) = v

2

l

q

2 and v

l

is the velocity of the longitudinal mode, we find that the induced interaction is
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In the static limit where ! ⌧ v

l

q this simplifies to
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which coincides with the result obtained earlier in Eq. 10 because C
enI

(q) = �V

nI

Zf

2

I

/v

2

l

for small q < ⇡/a.

IV. ELECTRON CONDUCTIVITIES AND SHEAR VISCOSITY

We now turn to the calculation of the electron thermal conductivity, electrical conductivity, and shear viscosity due to
electron-neutron scattering. Both in the crust and in the core, the thermal and electrical conductivity, and the shear viscosity
are given by
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respectively, and these expressions are written in a form familiar from kinetic theory. The relevant transport mean free
paths are obtained as simple variational solutions to the Boltzmann equation for degenerate and relativistic electrons [5]. For
electron-neutron scattering described by an e↵ective interaction of the form in Eq. 5, the mean free paths are given by
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respectively. Here, the strength of the induced coupling in the general case is defined as C
en

which stands for C
enp

in the core
and C

enI

in the crust, and
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Bertoni, Rrapaj and Reddy (2014)



Summary

• Accreting neutron stars provide a unique opportunity to 
study thermal and transport properties. 

• Thermal relaxation in neutron stars is sensitive to the low 
temperature properties of the crust.   

• Thermal and transport properties of the inner crust 
(super-solid) can be calculated in terms of a few low-
energy constants. 

• Goldstone bosons in the crust and the core can decay into 
electron-hole states - this limits their contribution to 
transport.   

• The induced interactions between electrons and neutrons 
can be relevant in the neutron star core. 


