

Dense matter in gravitational-wave sources: mergers involving neutron stars

Jocelyn Read

Two polarizations: + and x

Gravitational waves

- Changing curvature of space around moving objects
- Information about change propagates outward at speed of light
- Linearized GR \rightarrow wave equation
- GW stretch and squeeze the distance between freely-falling objects (Pirani 1957)
- Measure strain: h ~ ΔL/L (amplitude, not energy)

Propagation

GW source: orbiting objects

Polarization vs. inclination

⁴ Demo by Eric Flynn, CSUF

Frequency of GW traces the frequency of orbits

Parameters that modify the waveform (may be measurable)

- Masses
- Sky position
- Luminosity distance and orientation
- Spins
- Eccentricity
- Neutron-star EOS

Sky localization for source at 160 MPc with 3 detectors ~2019 (http://arxiv.org/abs/1304.0670)

Compact Binary Coalescence in LIGO

Detection prospects of Advanced LIGO design

- binary neutron star mergers to ~200 Mpc
- neutron star–black hole mergers to ~0.5 Gpc
- (10-10 M_{sun}) binary black hole mergers to ~1 Gpc
- unmodeled transients with energy of some galactic supernovae predictions
- (LIGO White Paper: <u>https://dcc.ligo.org/LIGO-</u> <u>T1400054/public</u>, rates above sky-averaged)

BNS detections 0.4 - 400 yr⁻¹ NSBH detections 0.2 - 300 yr⁻¹ LSC/VSC <u>1003.2480</u>

BBH mergers 9 – 240 Gpc⁻³ yr⁻¹ LSC/VSC 1606.04856

GW Astronomy Roadmap

 10^{-21}

Epoch		2015 - 2016	2016 - 2017	2017 - 2018	2019 +
Estimated run duration		4 months	6 months	9 months	(per year)
Burst range/Mpc	LIGO	40-60	60 - 75	75 - 90	105
	Virgo		20 - 40	40 - 50	40 - 80
BNS range/Mpc	LIGO	40-80	80 - 120	120 - 170	200
	Virgo		20 - 60	60 - 85	$65 \!-\! 115$
Estimated BNS detections		0.0005 - 4	0.006 - 20	0.04 - 100	0.2 - 200

Advanced LIGO

Early (2015-16, 40-80 Mpc)

Merging compact stars

t=21.0023 ms

Numerical simulations: K. Hotokezaka, YITP

BNS spectrum (JR et al 1306.4065), 1.35-1.35, 100 Mpc

f (Hz)

BNS spectrum (JR et al 1306.4065) 1.35-1.35, 100 Mpc

Dense matter in merging NS

Hard to modify inspiral: e.g. transfer of ~ 10^{46} erg at ~100Hz modifies phase by 10^{-3} radians (Tsang et al 1110.0467) (but see e.g. Weinberg 1509.06975)

Tidal effects: Leading order modification of dynamics as stars approach each other

Love number k_2 $\lambda = \frac{2}{3}k_2R^5 \quad (G=c=1)$ Radius R

Tidal effects on waveforms

Energy goes into deforming the neutron star(s), tidal bulges add a bit to the gravitational radiation

Contribute to waveform formally at 5 and 6 PN - Vines et al (arXiv:1101.1673)

Equation of State: pressure and density

Equation of state determines λ (mass)

Extend leading-orders PN model to merger:

Example implications for LIGO: EOS constraint from multiple BNS detections

What about BHNS?

With aLIGO, tidal parameter can be measured to 10-100% error at 100 Mpc (Lackey et al 1303.6298)

1:7 mass ratio: NS with radii of 12 and 14 are marginally distinguishable at 100 MPc (Foucart et al. 1212.4810)

(small fraction of ALIGO range)

- Leading order *parameter* (λ or Λ) is effective for describing full inspiral/merger for both BNS and BHNS (JR et al <u>1306.4065</u>, Bernuzzi et al <u>1402.6244</u>)
- Leading order PN waveforms give good estimates of EOS-dependent effect size/measurability (e.g. JR et al 1306.4065 compares PN to hybrid error estimates)
- Leading PN waveforms with tidal corrections are NOT sufficient for measuring EOS effects (Favata 1310.8288, Yagi/Yunes: 1310.8358, Wade et al. 1402.5156)

 We know more than PN! e.g. BBH analyses (LIGO/VIRGO 1602.03840,1606.04855,1606.04856 ...) use Phenomenological and Effective-One-Body Inspiral+Merger waveform models calibrated to numerical simulation

https://arxiv.org/abs/1606.04856

Focus on inspiral-to-merger for EOS measurement (post-merger? See e.g. Clark et al 1509.08522)

f (Hz)

Frameworks for modeling gravitational waves for neutron-star mergers

- Effective-one-body (EOB)
 - PN maps to reduced-mass object orbiting Schwarzschild
 - + tidal corrections + high order effects (Bernuzzi et al 1412.4553, Hinderer et al 1602.00599, ...)
- New: Phenomenological model based on modifying simple PN framework, fit to numerical merger (Park et al, in prep)
 - Useful to have two framework for systematics estimates!

BNS merger waveforms?

6 examples from Hotokezaka *et al.*1105.4370: Numerical simulation Point-particle T4

Tidal effects in EOB models: Bernuzzi et al 1412.4553

- EOB plus tidal corrections plus resummation procedure
- First semi-analytic model to capture merger phase

Comparison with long high-res BNS simulations Hotokezaka et al 1502.03457v1

 EOB model fits compact stars well, some additional tidal effect seen in simulations of larger stars (13km+).

Additional physical effects: dynamical tides?

- Dynamical tide effects known, effects estimated in PN context (Kokkotas & Schaefer gr-qc/9502034, Flanagan & Hinderer 0709.1915)
 - Orbital tide approaches resonance with NS f-mode

Add dynamic tides in EOB models (Hinderer et al 1602.00599)

- two key parameters: tidal deformability and fundamental oscillation frequency
- NR agreement mitigates systematic error concerns for GW obs

Are PN tidal contributions sufficient for inspiral? Barkett *et al.*, 1509.05782

 BBH simulation + tidal corrections (and the particular PN choice T4+tidal) are *effective* model for (near) equal-mass systems *until last orbits*

New: phenomenological model

- Assume T4 inspiral,
- include dynamic tides, but fit effective frequency to drive merger
- Simple relation with
 Λ
- Future: other parameters to improve fit? Physical motivation? Amplitude?

Conner Park, Veronica Lockett-Ruiz, JR ³¹

Phenomenological modification of common PN model gives effective inspiral-to-merger waveform

- Waveform depends only on masses and As
- Phenom.
 coalescence fit to numerical merger
- Future: Explicit error estimates. Test systematic error in parameter estimation.

Conner Park, Veronica Lockett-Ruiz, JR 32

Conclusions

- Dense matter modifies end of inspiral/merger for BNS (cold EOS)
- Post-merger, BHNS harder to observe
- Favorable rates/signal strength required to constrain!