Measuring NS Masses with Radio Pulsars

Scott Ransom National Radio Astronomy Observatory / University of Virginia

Why Measure NS Masses / Radii?

- The best observables to determine NS EOS
- Radio pulsars give masses, x-rays give radii

From Lattimer & Prakash 2007

How to determine the EOS?

- All neutron stars should live on the same EOS curve on the Mass-Radius diagram
- Optimally, measure M and R simultaneously
 - Can be done in x-rays, but many potential systematics, and may only give M/R
 - NASA's NICER (Neutron Star Composition Explorer) will fly on ISS in 2017

Neutron star Interior Composition Explore R

Pulsar Timing Can Give Precise Masses

Watts et al. 2015

Pulsar Timing Can Give Precise Masses

Watts et al. 2015

MSP J1614-2230

Mpsr = $1.97(4) M_{\odot}$

Demorest et al. 2010, *Nature,* 467, 1081D

PSR J0348+0432

Mpsr = $2.01(4) M_{\odot}$

Antoniadis et al 2013, *Science*, 340, 448

- These 2 measurements are incredibly constraining since high-density nuclear physics becomes highly nonlinear and uncertain as you go above 2 solar masses
- "hyperon puzzle" exotics expected at these densities

Unambiguously account for every rotation of a pulsar over years

Measurement - Model = Timing Residuals

Predict each pulse to ~200 ns over 2 yrs!

Table 1 Physical parameters for PSR J1614-2230					
Parameter	Value				
Ecliptic longitude (λ)	245.78827556(5)°				
Ecliptic latitude (β)	-1.256744(2)				
Proper motion in $\hat{\lambda}$	$9.79(7) \text{ mas yr}^{-1}$				
Proper motion in β	-30(3) mas yr ⁻¹				
Parallax	0.5(6) mas				
Pulsar spin period	3.1508076534271(6) ms				
Period derivative	$9.6216(9) \times 10^{-21} \text{ s} \text{ s}^{-1}$				
Reference epoch (MJD)	53,600				
Dispersion measure*	$34.4865 \mathrm{pc}\mathrm{cm}^{-3}$				
Orbital period	8.6866194196(2)d				
Projected semimajor axis	11.2911975(2) light s				
First Laplace parameter ($esin \omega$)	$1.1(3) \times 10^{-7}$				
Second Laplace parameter ($e\cos \omega$)	$-1.29(3) \times 10^{-6}$				
Companion mass	0.500(6)M _☉				
Sine of inclination angle	0.999894(5)				
Epoch of ascending node (MJD)	52,331.1701098(3)				
Span of timing data (MJD)	52,469–55,330				
Number of TOAs†	2,206 (454, 1,752)				
Root mean squared TOA residual	1.1 μs				
Right ascension (J2000)	16 h 14 min 36.5051(5) s				
Declination (J2000)	-22° 30' 31.081(7)''				
Orbital eccentricity (e)	$1.30(4) imes 10^{-6}$				
Inclination angle	89.17(2)°				
Pulsar mass	$1.97(4)M_{\odot}$				
Dispersion-derived distance‡	1.2 kpc				
Parallax distance	>0.9 kpc				
Surface magnetic field	$1.8 imes 10^8 \mathrm{G}$				
Characteristic age	5.2 Gyr				
Spin-down luminosity	Demorest et al 2				

Demorest et al. 2010, Nature

Post-Keplerian Orbital Parameters

Besides the normal 5 "Keplerian" parameters (P_{orb}, e, a*sin*(*i*)/c, T₀, ω), General Relativity gives:

$$\begin{split} \dot{\omega} &= 3 \left(\frac{P_b}{2\pi}\right)^{-5/3} (T_{\odot}M)^{2/3} (1-e^2)^{-1} & \text{(Orbital Precession)} \\ \gamma &= e \left(\frac{P_b}{2\pi}\right)^{1/3} T_{\odot}^{2/3} M^{-4/3} m_2 (m_1 + 2m_2) & \text{(Grav redshift + time dilation)} \\ \dot{P}_b &= -\frac{192\pi}{5} \left(\frac{P_b}{2\pi}\right)^{-5/3} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right) (1-e^2)^{-7/2} T_{\odot}^{5/3} m_1 m_2 M^{-1/3} \\ r &= T_{\odot} m_2 \\ s &= x \left(\frac{P_b}{2\pi}\right)^{-2/3} T_{\odot}^{-1/3} M^{2/3} m_2^{-1} & \text{(Shapiro delay: "range" and "shape")} \end{split}$$

where: $T_{\odot} \equiv GM_{\odot}/c^{3} = 4.925490947 \ \mu s$, $M = m_{1} + m_{2}$, and $s \equiv sin(i)$

These are only functions of:

- the (precisely!) known Keplerian orbital parameters P_b, e, asin(i)
- the mass of the pulsar m_1 and the mass of the companion m_2

Post-Keplerian Orbital Parameters

Besides the normal 5 "Keplerian" parameters (P_{orb}, e, a*sin*(*i*)/c, T₀, ω), General Relativity gives:

$$\dot{\omega} = 3 \left(\frac{P_b}{2\pi}\right)^{-5/3} (T_0 M)^{2/3} (1 - e^2)^{-1}$$
 (Orbital Precession)

$$\gamma = e \left(\frac{P_b}{2\pi}\right)^{1/3} T_0^{2/3} M^{-4/3} m_2 (m_2 + 2m_2)$$
 (Grav redshift + time dilation)

$$\dot{P}_b = -\frac{192\pi}{5} \left(\frac{P_b}{2\pi}\right)^{-5/3} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right) (1 - e^2)^{-7/2} T_0^{5/3} m_2 (m_2 M)^{-1/3}$$

$$r = T_0 m_2$$
 (Shapiro delay: "range" and "shape")

$$s = x \left(\frac{P_b}{2\pi}\right)^{-2/3} T_0^{-1/3} M^{2/3} m_2^{-1}$$

where: $T_{\odot} \equiv GM_{\odot}/c^3 = 4.925490947 \ \mu s$, $M = m_1 + m_2$, and $s \equiv sin(i)$

These are only functions of:

- the (precisely!) known Keplerian orbital parameters P_h, e, asin(i)
- the mass of the pulsar m_1 and the mass of the companion m_2

Post-Keplerian Orbital Parameters

Besides the normal 5 "Keplerian" parameters (P_{orb}, e, a*sin*(*i*)/c, T₀, ω), General Relativity gives:

where: $T_{\odot} \equiv GM_{\odot}/c^{3} = 4.925490947 \ \mu s$, $M = m_{1} + m_{2}$, and $s \equiv sin(i)$

These are only functions of:

- the (precisely!) known Keplerian orbital parameters P_b, e, asin(i)
- the mass of the pulsar m_1 and the mass of the companion m_2

Pulsar Flavors

Pulsar Flavors

Double NSs (mildly recycled, eccentric orbits)

Millisecond

(low B, very fast, very stable, WD companions, circular orbits)

Pulsar Flavors

Double NSs (mildly recycled, eccentric orbits)

Millisecond

(low B, very fast, very stable, WD companions, circular orbits)

Precession of Periastron

- Gives total system mass
- Mercury is 42"/century
 >16°/yr for double PSR
- DNS systems are deg/yr
- Need eccentric system
- "Easy" to measure
- *If* orbits are random, distribution is flat in cos(i)
- Possible (unlikely?) classical contributions (i.e. rotating WD, tidal effects)

From new MSP Terzan5ai

Pulsars in Globular Clusters

- Clusters of ancient stars (9-12 billion years old) that orbit our galaxy
- Contain 10⁵-10⁶ stars, many of which have binary companions
- Very high central densities (100-10,000 stars/ly³) result in stellar encounters and collisions!
- They are effectively millisecond pulsar factories (and strange ones at that!)
- Number known has quadrupled since 2000 (over 140 known now)

Highly eccentric (e=0.847)

- P_{psr} ~ 4.158 ms
- $P_{orb} = 8.07 \text{ days}$
- ~5µs timing in ~5min

M28C

P_{psr} ~ 16.76 ms

 $P_{orb} = 20.6 \text{ days}$

NGC6440B: A Massive PSR?

Freire et al. 2008, ApJ, 675, 670

Precession in 15+ PSRs in Clusters

<u>Name</u>	<u>P(ms)</u>	<u> Pb(d)</u>	E	<u>Mcmin</u>	<u>Mtot</u>	<u>Mpmed</u>
Ter5ai	21.228	0.85	0.440	0.49	1.887(1)	1.32
Ter5J	80.338	1.10	0.350	0.34	2.205(3)	1.74
Ter5I	9.570	1.33	0.428	0.21	2.1660(5)	1.87
Ter5Z	2.463	3.49	0.761	0.22	1.743(3)	1.48
Ter5U	3.289	3.57	0.605	0.39	2.246(2)	1.73
Ter5W	4.205	4.88	0.016	0.25	2.09(7)	1.69
Ter5X	2.999	5.00	0.302	0.25	1.92(1)	1.60
M5B	7.947	6.85	0.138	0.13	2.3(1)	2.12
M28C	4.158	8.08	0.847	0.26	1.631(1)	1.33
IGC6544B	4.186	9.96	0.747	1.22	2.567(2)	1.17
IGC6441A	111.601	17.33	0.712	0.59	2.0(2)	1.35
IGC1851A	4.991	18.79	0.888	0.92	2.44(5)	1.34
IGC6440B	16.760	20.55	0.570	0.08	2.8(3)	2.68
Ter5Q	2.812	30.30	0.722	0.46	2.422(9)	1.79
M28D	79.835	30.41	0.776	0.38	1.2(7)	

SMR, PCCF, Freire et al 2007, 2008a+b, Lynch et al 2011

NGC6652A: new eccentric binary

- Cluster is a Fermi gamma-ray source: likely undetected MSPs
- Megan DeCesar (with Paul Ray and SMR) observed cluster with GBT
- Found 1 pulsar:
 - 3.89 ms
 - DM = 63 pc/cm³ (low)
 - Unknown binary
- Initial timing solution shows eccen = 0.95!

Shapiro Delay

Volume 13, Number 26

PHYSICAL REVIEW LETTERS

28 December 1964

FHISICAL REVIEW

FOURTH TEST OF GENERAL RELATIVITY

Irwin I. Shapiro Lincoln Laboratory,* Massachusetts Institute of Technology, Lexington, Massachusetts (Received 13 November 1964)

Irwin Shapiro 1964 Shapiro et al. 1968, 1971

Shapiro Delay with a MSP

MSP B1855+09

Ryba & Taylor 1991 Kaspi, Ryba & Taylor 1994

NRAO / Bill Saxton

Shapiro Delay

Gravitational Wave Detection with a Pulsar Timing Array

- Need very good MSPs
- Significance scales directly with the number of MSPs being timed. Lack of good MSPs is currently the biggest limitation
- Must time the pulsars for 10+ years at a precision of ~100 nano-seconds!

J1909-3744

J1640+2224 and J1741+1351 require Kopeikin terms (i.e. XDOT)

Apparent orbit size 'x = asini/c'

changes as pulsar moves

across sky

Fonseca et al. 2016 (submitted)

See also Desvignes et al. 2016 and Reardon et al. 2015 for EPTA and PPTA Results

Red = New Purple = Much Improved Orange = OMDOT as well

Distribution of cos(i) is not flat??

PSR J1903+0327

- Fully recycled PSR
- Highly eccentric orbit
- Massive main-sequence star companion
- High precision timing despite being distant and in Galactic plane

J1903+0327 (Eccentric MSP) Timing

One Orbit (Orbital Phase)

Champion et al. 2008, *Science*, 320, 1309

J1903+0327 (Eccentric MSP) Timing

Champion et al. 2008, *Science*, 320, 1309

Additional Arecibo timing

Much improved Shapiro delay PSR = $1.67(2) M_{\odot}$

Possibly formed in a triple system?

Freire et al. 2011, MNRAS, 412, 2763

Lynch et al. 2012, ApJ, 745, 109L

A MSP in a stellar triple system

- PSR J0337+1715: In 2013, from the GBT Driftscan survey, a 2.7 ms PSR in a hierarchical triple system!
 - 1.6 day inner binary with hot WD
 - 327 day outer orbit with cool WD
 - Very strong 3-body effects...

Ransom et al. 2014, Nature, 505, 520

PSR J0348+0432

- 39.1 ms GBT Driftscan pulsar
- 2.4hr relativistic orbit with WD
- He WD is ~10,120K, log(g) ~6.0
- Mass ratio of 11.70 +/- 0.13!
- Orbital period decay coming...

NS mass ~ 2.01(4) Msun! (interesting tests of GR)

Antoniadis et al Science, 2013, 340, 448

PSR J0348+0432

Original "Black Widow": B1957+21

- New radial vel curve: 353(4) km/s amplitude (corr. for ctr-of-light)
- i=65(2)deg from lightcurve models
- Mp ~ 2.40+/-0.12Msun
- Mp > 1.66 Msun

van Kerkwijk, Breton, & Kulkarni, 2011 ApJ, 728, 95

Black Widows: J1311-3430

- 94-min orbit gamma-ray MSP
- Similar analysis to B1957+21
- Radial vel curve: 609(8) km/s amplitude
- Mpsr > 2.1 Msun (!)

More to come? 15+ new Black Widows with *Fermi* J2215+5135 also seems massive (Schroeder & Halpern 2014)

Caveats: Model Systematics

- W/ good photometry and spectra direct heating fits poorly
 - Demands ' L_X ' > L_{PSR} ...
 - Asymmetry in several cases $\Delta \phi \sim 0.01$
 - bad minima ($\chi 2$ /DoF ~3-10)
- E.g. J1311-3430
 - Direct large L_x , low i: 2.68⁺/-0.14 M₀.
 - Artificial cool spot at L₁ increases i, decreases M_{NS}.
 With arbitrary pattern allows M_{NS} ~1.9-2.9 M₀.

• E.g. J2215+5135

- Direct $M_{NS} = 2.45^{+0.22} /_{-0.11} M_0$...
- Keck spectra to resolve T_{eff}, RV variation
- New fit $M_{P}=1.60M_{0}/M_{c}=0.23M_{0}$
- But unexplained phase shift, poor colors remain. Missing ingredient...

Slide from Roger Romani's JINA-CEE 2016 Talk at Ohio Univ

Two Mass Distributions?

Two (or more) Mass Distributions?

Ozel et al., 2012, ApJ, 757, 550

See also: Kiziltan et al, arXiv:1309.6635

- Double neutron-star systems could be a special case
- NSs might not collapse to Black Holes

Bi-modal MSP Mass Distribution?

 Enough MSP masses now that distribution may be more complex

Antoniadis et al., 2016, ApJ submitted (arXiv:1605.01665)

How to do better?

- Improved fidelity and systematics instrumentation
- Better pulsars (right ones are rare) searches
- PSRs are faint (sensitivity limited) bigger telescopes

These improvements dramatically help all pulsar science!

R. Jenet & P. Demorest

Ultrawideband Receivers+Backends

Fig: Paul Demorest

Searches for Millisecond Pulsars 250 Masses come from binaries - majority of MSPs are binaries Fermi! - they have the best timing - almost always circular orbits 200 - only few percent provide masses May find faster MSPs as well Jumber of MSPs 150 Currently know of only ~1-2% of the binary pulsars in the Galaxy 100 50 0 1980 1995 2000 2005 2010 1985 1990 2015 Year

Currently ~70 new Radio/gamma-ray MSPs because of *Fermi*!

~10-20% of them look like they will be "good timers" ~30% are strange eclipsing systems: "Redbacks" and "Black-Widows"

Courtesy: Paul Ray

What about the future?

- We only know of about 2,000 out of ~50,000+ pulsars in the Galaxy!
 - Many of them will be "Holy Grails"
 - Sub-MSP, PSR-Black Hole systems, MSP-MSP binary
- Several new huge telescopes...

We need them because we are sensitivity limited!

Square Kilometer Array

- SKA-1 (650 M€) 2020+, SKA-2 (3-5G€) 2025+
- 2 (or 3) arrays in S. Africa and W. Australia
- Should find most of the pulsars in the Galaxy
 - But will be incredibly difficult can't record the data!

SKA Phase 1 Pulsar Searching

- See Smits et al. 2009
- ~20,000 each of potentially visible normal pulsars, RRATs, and MSPs
- SKA1 has the potential to find a large fraction (~50%?) of these pulsars
- Highly specialized computing
- Survey speed for Phase 1 with 15m dishes and fully sampled primary beam is: 42x Parkes MB, 140x GBT, 54x Arecibo, 23x FAST

Simulation by J. Cordes

Major PSR search problem: data rates

Summary

- Useful NS masses require luck and high-precision timing
- Moore's law caused a MSP revolution in the last ~5 years:
 - New broad-bandwidth instrumentation
 - New high-sensitivity searches
- We know of only a small percent of the pulsars in the Galaxy (productive searches)
- Only a small percent of the ones we know provide good masses (or other great science: new exotic pulsars)
- Many more high-precision NS masses (including high- and low-mass ones) will be measured with upcoming telescopes, such as <u>MeerKAT, FAST, and the SKA</u>