Magicity evolution and electron capture rates toward the dripline and their impact on core-collapse

Adriana Raduta - IFIN-HH Bucharest

The Phases of Dense Matter, 17-23 July 2016, Seattle

Nuclear abundances during CC

wide nuclear distributions

As the collapse proceeds:

- wider distributions (increasing T)
- increasingly heavy nuclei (increasing n_B)
- increasingly n-rich nuclei (decreasing Y_e)
- \bullet at low Y_e experimental masses are not available
 - \rightarrow abundances are model dependent
- N magic numbers

Nuclear composition, EC rates and CC evolution

Core composition and collapse evolution depend on EC rates [Aufderheide et al, ApJS **91**, 389 (1994), post-Si burning stage] [Langanke et al, PRL **90**, 241102 (2003), core-collapse]

Finite-T: many configurations and possible, averaging over NSE distributions Electron capture rate:

$$\langle \lambda^{(NSE)} \rangle = \frac{\sum \lambda(A, Z) n(A, Z)}{\sum n(A, Z)}$$

$$n(A,Z) \propto g_{A,Z}(T) \left(\frac{M_{A,Z}T}{2\pi}\right)^{3/2} \exp\left(\frac{-M_{A,Z}}{T}\right)$$

$$g_{A,Z}(T) = g_{A,Z}^{GS} + \int_0^{E_{max}} d\epsilon \rho(\epsilon) \exp(-\epsilon/T)$$

subject to major uncertainties coming from nuclear masses, excited states densities

Nuclear composition, EC rates and CC evolution

Core composition and collapse evolution depend on EC rates [Aufderheide et al, ApJS **91**, 389 (1994), post-Si burning stage] [Langanke et al, PRL **90**, 241102 (2003), core-collapse]

Finite-T: many configurations and possible, averaging over NSE distributions Electron capture rate:

- λ_{EC} are known only for a limited number of nuclei (sd- and pf-shells) and limited thermodyn. conditions
- for CC, weak-int. tabulations are not sufficient too scarce in T not wide enough in n_e
- analytic param. are *probably* not appropriate for (*T*, *n_e*), nor representative for n-rich nuclei

・ 同 ト ・ ヨ ト ・ ヨ ト

T (MeV)

Pre-bounce evolution

Thermodynamic conditions from Juodagalvis et al., NPA848, 454 (2010) $0.05M_{\odot}$ enclosed mass; $15M_{\odot}$ and $25M_{\odot}$ progenitors;

NSE, EC rates from shell model + RPA with param. single part. occ. numbers

Matter composition - mass fractions

NSE model of Gulminelli and Raduta, PRC 92, 055803 (2015)

Nuclear masses from Audi et al., Chinese Physics C36, 1287 (2012); ibid. C36, 1603 (2012) + Duflo and Zuker, PRC **52**, R23 (1995);

level densities from von Egidy and D. Bucurescu, PRC 72, 044311 (2005), PRC 73, 049901 (2006).

Matter composition - average and most probable N and Z

NSE model of Gulminelli and Raduta, PRC 92, 055803 (2015)

Nuclear masses from Audi et al., Chinese Physics C36, 1287 (2012); ibid. C36, 1603 (2012) + Duflo and Zuker, PRC **52**, R23 (1995);

level densities from von Egidy and D. Bucurescu, PRC 72, 044311 (2005), PRC 73, 049901 (2006).

Matter composition - N magic numbers

Nuclear masses from Audi et al., Chinese Physics C36, 1287 (2012); ibid. C36, 1603 (2012) + Duflo and Zuker, PRC **52**, R23 (1995);

Magicity evolution in n-rich nuclei

- HFB22 microscopic model predicts magicity quenching for *N* = 50
- at variance, HFB22 preserves magicity for N = 82
- phenomenological models (DZ, FRDM) do not account for magicity quenching

Magicity quenching in n-rich N = 28 nuclei

Shell gap evolution due to NN interaction (central, SO, tensor, 3B)

Expected to occur also for N = 50, 82

Controlled magicity quenching

- NSE-average EC is the contribution of several tens of nuclei
- SNA is never acceptable

Fowler, Fuller, Newman, Astrophys. J. 293, 1 (1985)

- EC rates are modified by up to 30%
- stronger modif. if the unblocking effect of N > 40 nuclei is overestimated
- strong sensitivity to individual rates

non-monotonic evolution make the consequences on CC difficult to anticipate need for experimental data on n-rich N = 50, 82 nuclei

AR, Gulminelli, Oertel, PRC93, 025803 (2016)

Electron capture rates

$$\lambda^{\alpha} = \frac{\ln 2}{\kappa} \sum_{i} \frac{(2J_{i}+1)\exp(-E_{i}/k_{B}T)}{G(A,Z,T)} \sum_{j} B_{ij} \Phi_{ij}^{\alpha}$$

accurate nuclear structure data

experimental uncertainties / EC rates at finite temperature [Cole et al., PRC86, 015809]

finite temperature and electron density: limited number of nuclei, on a finite grid 17 < A < 39 Oda et al., ADNDT 56, 231 (1994);

- $45 \ge A \ge 65$ Langanke & Martinez-Pinedo, ADNDT 79, 1 (2001);
- $65 \le A \le 80$ Pruet et al., ApJS149, 189 (2003);
- $18 \le A \le 100$ Nabi et al., ADNDT 71, 149 (1999); ibid. 88, 237476 (2004);

analytic param. used otherwise

$$\begin{split} \lambda_{EC} &= \frac{\ln 2 \cdot B}{K} \left(\frac{T}{m_e c^2} \right)^5 \left[F_4(\eta) - 2\chi F_3(\eta) + \chi^2 F_2(\eta) \right], \ \eta = (Q - \Delta E) / T, \\ \Delta E &= 2.5 \text{ MeV}, \ B = 4.6 \end{split}$$

Langanke et al, PRL90, 241102 (2003)

Electron capture rates

Question: how do the uncertainties on EC rates affect CC?

Answer: Sullivan et al, Ap.J 816, 44 (2016) modified EC rates by by factors ranging from 0.1 and 10 (present exp. error bars)

- systematic modifications
- statistic modifications

Conclusions:

• Systematic modif. impact by +16/-4% the mass of the inner core at bounce and by $\pm 20\%$ the ν_e luminosity-peak

no effect

..... very nice but unrealistic

..... maybe a significant deviation monotonically dependent on X would be more realistic and make an effect

e.g.:
$$X = (N - Z)/A$$

EC rates on n-rich nuclei at high (T, n_e)

- no microscopic calculations
- analytic param. [Langanke et al, PRL90, 241102 (2003)] fitted on *pf-nuclei* and (T, n_e) -values too low for CC are used

Question: Could λ_{EC}^{n-rich} depart from λ_{EC}^{pf} such as to obtain, globally, an effect similar to the one of Sullivan et al, Ap.J 816, 44?

$\Delta E(I, \delta)$

 ${\rm GT}_+$ centroid energy depends linearly on I=1-2Z/A , it manifests odd-even effects

square: EE; circles: O; triangles: OO (pairing effect)

similar effect in experimental data

 $\Delta E = E_f - E_i$, E_f assimilated with the centroid of GT_+

 $\Delta E(I, \delta)$

 GT_+ centroid energy depends on I = 1 - 2Z/A, it manifests odd-even effects $\Delta E = E_f - E_i$, E_f assimilated with the centroid of GT_+

 $45 \le A \le 65$

improved agreement (linear vs. quadratic *I*-dependence)

lower λ_{EC} for n-rich nuclei; the most important nuclei according to Sullivan 2016 λ_{EC} reduction not systematic but progressive; though expected to play a role

 $\Delta E(I, \delta)$

improved agreement

fitting param. depend on T, n_e

ee/o/oo ordering is the same as in Langanke and Martinez-Pinedo, NPA673, 481

Nuclear abundances: I - Q

Nucl. abundances are dominated by the binding energies, strong correlation between *I* and *Q*, similar $T(n_B)$, $Y_e(n_B)$

qualitative results, highly sensitive to individual rates

preliminary results

- systematic reduction of EC
- non monotonic over the trajectory
- EC rates are more important than magicity quenching; not always in the same direction
- the net effect will be given by simulations (in progress...)
- identification of most important nuclei; *are they exp. accessible?*

preliminary results

light nuclei are important as well despite the low Q-values and λ_{EC}

NSE-average EC rates and CC evolution

Adriana Raduta (IFIN-HH)

Modeling dependence

interactions between unbound nucleons:

no	yes	yes					
binding energies:							
LDM	exp+DZ10	exp+FRDM					
upper excitation energy:							
В	$\min(S_n, S_p)$	В					
nucleon-cluster interaction:							
excluded volume	excl. vol $+$ e-clusters	excl. vol.					
electron screening (Wigner-Seitz)							

significant model depencence

Nucleus in a nucleon gas

$$\begin{split} \rho^{WS}(r) &= \rho_0 / \left[1 + \exp\left((r - R^{ws})/a\right)\right] \\ &+ \rho_{gas} / \left[1 + \exp\left(-(r - R^{ws})/a\right)\right] \end{split}$$

$$\begin{split} \rho^{WS}(r) &= \rho^{WS}_{r-cl}(r) + \rho^{WS}_{r-gas}(r); \\ A^{WS} &= A^r + \rho_g \left(V^{WS} - \mathcal{V}_{cl} \right), \\ E^{WS} &= E^r + \epsilon_g \left(V^{WS} - \mathcal{V}_{cl} \right). \end{split}$$

Nucleus in a nucleon gas

the nucleus is the high density component! $\rho^{WS}(\mathbf{r}) = \rho_0 / \left[1 + \exp\left((\mathbf{r} - R^{ws})/a\right)\right] + \rho_{gas} / \left[1 + \exp\left(-(\mathbf{r} - R^{ws})/a\right)\right]$

$$\begin{split} \rho^{WS}(r) &= \rho^{WS}_{r-cl}(r) + \rho^{WS}_{r-gas}(r); \\ A^{WS} &= A^r + \rho_g \left(V^{WS} - \mathcal{V}_{cl} \right); \\ E^{WS} &= E^r + \epsilon_g \left(V^{WS} - \mathcal{V}_{cl} \right); \end{split}$$

the nucleus is the **bound** component!

 $\left(
ho_0 -
ho_{gas} \right) / \left[1 + \exp\left((r - R^{ws}) / a \right) \right] +
ho_{gas}(r),$

$$\begin{split} \rho^{WS}(r) &= \rho^{WS}_{e-cl}(r) + \rho^{WS}_{e-gas}(r); \\ A^{WS} &= A^e + \rho_g V^{WS}, \\ E^{WS} &= E^e + \epsilon_g V^{WS}, \end{split}$$

Nucleus in a nucleon gas

the nucleus is the high density component!

 $egin{aligned} \mathcal{A}^e &= \mathcal{A}^r \left(1 -
ho_{gas} \mathcal{V}_{cl}
ight), \ \mathcal{E}^e &= \mathcal{E}^r \left(1 - \epsilon_{gas} \mathcal{V}_{cl}
ight), \end{aligned}$

similar to an excluded volume correction

at T = 0: mapping between r- and e-clusters Papakonstantinu et al., PRC 88, 045805 (2013) the nucleus is the bound component!

< ロ > < 同 > < 回 > < 回 >

Extended NSE models

Souza et al., PRC 79, 054602 (2009) Heckel et al., PRC80, 015805 (2009) Botvina and Mishustin, NPA 843, 98 (2010) Hempel, Schaffner-Bielich, NPA 837, 210 (2010) AR and Gulminelli, PRC82, 065801 (2010) Blinnikov et al., A&A. 535, A37 (2011)

NSE with e-clusters [Gulminelli and Raduta, PRC 92, 055803 (2015)]

$$Z_{\beta\mu_{B}\mu_{3}}^{cl} = \sum_{k} \exp\left[-\beta \sum_{i} n_{i}^{(k)} G_{\beta\mu_{B}\mu_{3}}^{e}(i)\right] = \prod_{i} \sum_{n=0}^{\infty} \frac{\left[\exp\left(-\beta G_{\beta\mu_{B}\mu_{3}}^{e}(i)\right)\right]^{n}}{n!}$$
$$= \prod_{i} \exp\omega_{\beta\mu_{B}\mu_{3}}(i).$$

cluster multiplicities

$$< n_i >_{\beta,\mu_B,\mu_3} = \omega_{\beta\mu_B\mu_3}(i) = \exp\left[-\beta \left(F^e_\beta(A,\delta,\rho_g,y_g,\rho_p) - \mu_B A_e - \mu_3 I_e\right)\right].$$

Advantages:

• in the limit $T \to \infty$. NSE \to SNA

Adriana Raduta (IFIN-HH)

Conclusions

- n-rich nuclei with unconstrained masses and EC rates might impact the CC evolution
- identify the most important nuclei and propose experiments/theoretical calculations

Ongoing work:

- CC simulations,
- systematic EC rates calculations within QRPA
 A. F. Fantina, E. Khan, G. Col, N. Paar, and D. Vretenar PRC86, 035805;
 N. Paar, G. Colo, E. Khan and D. Vretenar, PRC80, 055801 (2009);

Collaborators: F. Gulminelli (Caen, France), M. Oertel (Meudon, France)

Partial support from NewCompStar, COST Project MP1304

Weak interaction rates

$$\lambda^{\alpha} = \frac{\ln 2}{K} \sum_{i} \frac{(2J_{i}+1)\exp(-E_{i}/k_{B}T)}{G(A,Z,T)} \sum_{j} B_{ij} \Phi_{ij}^{\alpha}$$

$$K = \frac{2\pi^{3}\ln 2\hbar^{7}}{G_{F}^{2}V_{ud}^{2}g_{v}^{2}m_{e}^{5}c^{4}} = const.$$

$$G_{F} = \text{Fermi cc}$$

 $V_{ud} =$ the up-down element of the quark mixing matrix

 g_v =the weak vector cc =1

partition fct. of the parent: $G(A, Z, T) = \sum_{i} \exp(-E_i/k_B T)$

reduced trans. prob. of the transition: $B_{ij} = B_{ij}(F) + B_{ij}(GT)$

Phase space integral:

$$\Phi_{ij}^{EC} = \int_{w_e}^{\infty} wp \left(Q_{ij} + w \right)^2 F(Z, w) S_e(w) (1 - S_{\nu}(Q_{ij} + w)) dw$$

K. Langanke, G. Martínez-Pinedo / Nuclear Physics A 673 (2000) 481–508

Adriana Raduta (IFIN-HH) Magicity evolution toward dripline and its in

EC rates: Analytical expressions

$$\begin{split} \lambda_{EC} &= \log < ft > I_e \qquad \text{Fuller, Fowler, Newman, Astrophy.J 293, 1 (1985)} \\ \text{for } Q_n > -m_e c^2, \ \tilde{\eta}_e = \eta_e^F - \eta_e^L, \ \eta_e^F = \mu_e / T, \ \eta_e^L = m_e c^2 / T \\ I_e &= \left(\frac{T}{m_e c^2}\right)^5 F_4(\tilde{\eta}_e) + \left(4\eta_e^L + 2\zeta_n\right) F_3(\tilde{\eta}_e) + \left[6\left(\eta_e^L\right)^2 + 6\eta_e^L\zeta_n + \left(\zeta_n\right)^2\right] F_2(\tilde{\eta}_e) \\ &+ \left[4\left(\eta_e^L\right)^3 + 6\left(\eta_e^L\right)^2 \zeta_n + 2\eta_e^L\left(\zeta_n\right)^2\right] F_1(\tilde{\eta}_e) + \left[\left(\eta_e^L\right)^4 + 2\left(\eta_e^L\right)^3 \zeta_n + \left(\eta_e^L\zeta_n\right)^2\right] F_0(\tilde{\eta}_e) \end{split}$$

for
$$Q_n < -m_e c^2$$
, $\eta_e^L = |\zeta_n|$, $\zeta_n = Q_n/T$ (threshold case)
 $I_e = \left(\frac{T}{m_e c^2}\right)^5 \left[F_4(\tilde{\eta}_e) + 2|\zeta_n|F_3(\tilde{\eta}_e) + \zeta_n^2 F_2(\tilde{\eta}_e)\right]$

Langanke et al., PRL90, 241102 (2003)

$$\lambda_{EC} = \frac{\ln 2 \cdot B}{K} \left(\frac{T}{m_e c^2} \right)^5 \left[F_4(\eta) - 2\chi F_3(\eta) + \chi^2 F_2(\eta) \right]$$

$$K = 6146 \text{ s, } \chi = (Q - \Delta E)/T, \ \eta = \chi + \mu_e/T,$$

$$\mathcal{B} = 4.6 \text{ MeV and } \Delta E = 2.5 \text{ MeV (from fit of microsc. results)}$$

 Q_{EC}

33 / 36

æ

< ロ > < 同 > < 回 > < 回 >

Improved $\lambda_{EC}(Q)$

Т	n _e	ΔE	$\Delta E = \text{cst.}$ $\Delta E(I) = a_1 I + a_0$		$+ a_0$	$\Delta E(I,\delta) = a_1(\delta)I + a_0(\delta)$		$\Delta E(I,\delta) = a_1(\delta)I^2 + a_0(\delta)$				
(MeV)	(fm^{-3})	ΔE	χ^2	a_1	a ₀	χ^2	a_1	<i>a</i> 0	χ^2	a_1	a ₀	χ^2
0.86	$5.93 \cdot 10^{-6}$	2.96	20.8	2.01	2.71	20.8	-1.23	3.52	6.52	-20.8	3.72	6.43
							-10.0	6.30	3.74	-70.0	6.37	3.42
							-1.31	1.54	1.92	-20.7	1.73	1.87
0.86	$5.93 \cdot 10^{-5}$	3.81	11.4	56.3	-2.33	7.25	57.7	-2.23	3.50	259	0.40	3.89
							50.8	0.09	1.68	193	3.00	1.89
							56.4	-3.92	1.30	239	-1.16	1.47
2.59	$5.93 \cdot 10^{-6}$	2.35	7.75	26.3	-0.298	6.32	22.6	0.18	1.99	93.5	1.30	2.17
							23.9	2.38	1.55	88.1	3.74	1.67
							19.9	-1.84	0.69	82.8	-0.87	0.75
2.59	$5.93 \cdot 10^{-5}$	2.44	9.23	73.1	-4.84	5.11	70.7	-4.55	2.31	334	-1.64	2.66
							70.6	-2.46	1.36	295	1.03	1.58
							70.1	-6.39	0.86	323	-3.41	0.99

æ

イロン イロン イヨン イヨン

Average-NSE EC rates

Preliminary results

Evolution of neutron shell gaps

- the mechanism that creates the large SO N=28 shell gap between $f_{7/2}$ and $p_{3/2}$ is probably due to 3B forces [Holt et al., JPG 2012; Hagen et al., PRL2012]
 - \blacktriangleright also the d_{5/2}-s_{1/2} sub-shell gap in N=14 comes from SO
 - ► SO shell gap expected also $N = 50 (g_{9/2}-d_{5/2})$ (Sorlin and Porquet, Phys. Scr. T 2013, effective monopole terms $V_{nn}^{g_{9/2}g_{9/2}}$ =-200 keV, $V_{nn}^{g_{9/2}d_{5/2}}$ =+130 keV extracted from ^{88,90}Zn spectroscopy)
 - ► SO shell gap expected also in N = 82 ($h_{11/2}$ - $f_{7/2}$) but probably hard to see because of pairing with neutrons on $s_{1/2}$, $d_{3/2}$.
- SO magic numbers N=14, 28 and 50 disappear far from stability, while N = 82 does not; N = 82 does not come from h_{11/2} and f_{7/2}; h_{11/2} lower than d_{3/2}. (Phys. Scr. T 2013)
- nucl.-potential is more diffuse towards the drip line; low-1 orbits more bound than high-1 orbits; level inversion; all N-magic numbers are expected to vanish in n-rich nuclei.
- n-p interaction modified due to reduced overlap between n (loosely bound) and p (deeply bound) wave functions.