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Nuclear abundances during CC
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wide nuclear distributions

As the collapse proceeds:
• wider distributions (increasing T )

• increasingly heavy nuclei (increasing nB)

• increasingly n-rich nuclei (decreasing Ye)

• at low Ye experimental masses are not avail-
able

→ abundances are model dependent

• N magic numbers
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Nuclear composition, EC rates and CC evolution
Core composition and collapse evolution depend on EC rates
[Aufderheide et al, ApJS 91, 389 (1994), post-Si burning stage ]
[Langanke et al, PRL 90, 241102 (2003), core-collapse ]

Finite-T : many configurations and possible, averaging over NSE distributions
Electron capture rate:

〈λ(NSE)〉 =

∑
λ(A,Z )n(A,Z )∑

n(A,Z )

n(A,Z ) ∝ gA,Z (T )

(
MA,ZT

2π

)3/2

exp

(
−MA,Z

T

)

gA,Z (T ) = gGS
A,Z +

∫ Emax

0

dερ(ε) exp(−ε/T )

subject to major uncertainties coming from nuclear masses, excited states

densities
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Nuclear composition, EC rates and CC evolution

Core composition and collapse evolution depend on EC rates
[Aufderheide et al, ApJS 91, 389 (1994), post-Si burning stage ]
[Langanke et al, PRL 90, 241102 (2003), core-collapse ]

Finite-T : many configurations and possible, averaging over NSE distributions
Electron capture rate:

〈λ(NSE)〉 =

∑
λ(A,Z )n(A,Z )∑

n(A,Z )
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λEC are known only for a limited number of
nuclei (sd- and pf-shells) and limited
thermodyn. conditions

for CC, weak-int. tabulations are not
sufficient too scarce in T not wide enough
in ne

analytic param. are probably not

appropriate for (T , ne), nor representative

for n-rich nuclei
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Pre-bounce evolution

Thermodynamic conditions from Juodagalvis et al., NPA848, 454 (2010)
0.05M� enclosed mass; 15M� and 25M� progenitors;

NSE, EC rates from shell model + RPA with param. single part. occ. numbers
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T (nB), Ye(nB) have similar
patterns, slight progenitor
dependence

more massive progenitors lead to
higher T and nB and lower Ye

for Ye < 0.32 no exp. values exist

for B(A,Z )
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Matter composition - mass fractions

NSE model of Gulminelli and Raduta, PRC 92, 055803 (2015)

Nuclear masses from Audi et al., Chinese Physics C36, 1287 (2012); ibid. C36,
1603 (2012) + Duflo and Zuker, PRC 52, R23 (1995);

level densities from von Egidy and D. Bucurescu, PRC 72, 044311 (2005), PRC

73, 049901 (2006).
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dep. on thermo conditions heavy
(Z ≥ 20) or light (2 ≤ A < 20)
nuclei and nucleons dominate

heavy nuclei bound an important
amount of matter and neutrons

I if suject to uncertainties
they can impact the
evolution
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Matter composition - average and most probable N and Z

NSE model of Gulminelli and Raduta, PRC 92, 055803 (2015)

Nuclear masses from Audi et al., Chinese Physics C36, 1287 (2012); ibid. C36,
1603 (2012) + Duflo and Zuker, PRC 52, R23 (1995);

level densities from von Egidy and D. Bucurescu, PRC 72, 044311 (2005), PRC

73, 049901 (2006).
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increasing 〈N〉, 〈Z 〉
〈N〉 increases faster than 〈Z 〉
large RMS

〈N〉 6= NMP , 〈Z 〉 6= ZMP

NMP=28, 50; magic numbers

competition of N-magic numbers
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Matter composition - N magic numbers

Nuclear masses from Audi et al., Chinese Physics C36, 1287 (2012); ibid. C36,

1603 (2012) + Duflo and Zuker, PRC 52, R23 (1995);
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T =2 MeV, nB = 1.18 · 10−3 fm−3, Ye = 0.275

points: abundances

lines: borders of exp.

masses
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Magicity evolution in n-rich nuclei
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HFB22 microscopic model predicts
magicity quenching for N = 50

at variance, HFB22 preserves magicity
for N = 82

phenomenological models (DZ,
FRDM) do not account for magicity
quenching
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Magicity quenching in n-rich N = 28 nuclei

Sorlin and Porquet, Phys. Scr. T152, 014003 (2013)

Shell gap evolution due to NN interaction (central, SO, tensor, 3B)

Expected to occur also for N = 50, 82
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Controlled magicity quenching

Bm(A,Z ) = BLDM(A,Z ) + f (α,∆Z ) [BDZ (A,Z )− BLDM(A,Z )]

f (x ,∆Z , α) = exp [αx/∆Z ], α < 0

∆Z = 10, ∆Z = 5, α = log(10−2)

n(A,Z ) ∝ exp (B(A,Z )/T ) (Saha eqs.)

if the shell gap is reduced:

diminised production of N-magic nuclei;

more non-magic nuclei

Consequences of shell quenching on
r-process nucleosynthesis [Pearson et al, PLB387, 445 (1996)]:

better agreement with solar system abundances for A ≈ 110
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NSE-average EC rates
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〈λEC 〉 =
∑

A,Z n(A,Z )λ(A,Z )/
∑

A,Z n(A,Z )

NSE-average EC is the contribution of several tens of nuclei

SNA is never acceptable

EC on protons
(Fuller et al., Ap.J 1982)

EC on other species
(PRL90, 241102 (2003))
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NSE-average EC rates
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EC rates from Langanke et al, PRL90, 241102 (2003),

Fowler, Fuller, Newman, Astrophys. J. 293, 1 (1985)

EC rates are modified by up to 30%

stronger modif. if the unblocking effect of N > 40 nuclei is overestimated

strong sensitivity to individual rates
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NSE-average EC rates
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non-monotonic evolution make the consequences on CC difficult to anticipate
need for experimental data on n-rich N = 50, 82 nuclei

AR, Gulminelli, Oertel, PRC93, 025803 (2016)
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Electron capture rates

λα = ln 2
K

∑
i
(2Ji+1) exp(−Ei/kBT )

G(A,Z ,T )

∑
j BijΦ

α
ij

accurate nuclear structure data

experimental uncertainties / EC rates at finite temperature [Cole et al., PRC86,
015809]

finite temperature and electron density: limited number of nuclei, on a finite grid
17 ≤ A ≤ 39 Oda et al., ADNDT 56, 231 (1994);
45 ≥ A ≥ 65 Langanke & Martinez-Pinedo, ADNDT 79, 1 (2001);
65 ≤ A ≤ 80 Pruet et al., ApJS149, 189 (2003);
18 ≤ A ≤ 100 Nabi et al., ADNDT 71, 149 (1999); ibid. 88, 237476 (2004);

analytic param. used otherwise

λEC = ln 2·B
K

(
T

mec2

)5 [
F4(η)− 2χF3(η) + χ2F2(η)

]
, η = (Q −∆E )/T ,

∆E = 2.5 MeV, B=4.6

Langanke et al, PRL90, 241102 (2003)
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Electron capture rates
Question: how do the uncertainties on EC rates affect CC?

Answer: Sullivan et al, Ap.J 816, 44 (2016) modified EC rates by by factors
ranging from 0.1 and 10 (present exp. error bars)

systematic modifications

statistic modifications

Conclusions:

Systematic modif. impact by +16/-4% the mass of the inner core at bounce
and by ±20% the νe luminosity-peak

no effect

......... very nice but unrealistic

......... maybe a significant deviation monotonically dependent on X would
be more realistic and make an effect
e.g.: X = (N − Z )/A
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EC rates on n-rich nuclei at high (T , ne)
• no microscopic calculations
• analytic param. [Langanke et al, PRL90, 241102 (2003)] fitted on pf-nuclei and
(T , ne)-values too low for CC are used

Question: Could λn−richEC depart from λpfEC such as to obtain, globally, an effect

similar to the one of Sullivan et al, Ap.J 816, 44?
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45 ≤ A ≤ 65 L03 is not that good at high (T , ne)

Langanke and Martinez-Pinedo, ADNDT 79, 1 (2001).
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∆E (I , δ)

GT+ centroid energy depends linearly on I = 1− 2Z/A,
it manifests odd-even effects

square: EE; circles: O; triangles: OO (pairing effect)
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similar effect in experimental data

∆E = Ef − Ei , Ef assimilated with the centroid of GT+
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∆E (I , δ)

GT+ centroid energy depends on I = 1− 2Z/A, it manifests odd-even effects
∆E = Ef − Ei , Ef assimilated with the centroid of GT+
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45 ≤ A ≤ 65

improved agreement (linear vs. quadratic I -dependence)

lower λEC for n-rich nuclei; the most important nuclei according to Sullivan 2016

λEC reduction not systematic but progressive; though expected to play a role
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∆E (I , δ)

2

2.5

3

3.5

4

4.5

5

5.5

-15 -10 -5 0 5 10 15 20

∆E=cst.

∆E(I) O

∆E(I) OO

∆E(I) EE

tables

Q (MeV)

lo
g

1
0
 (

λ
E

C
 (

s
-1

))

2

2.5

3

3.5

4

4.5

5

-15 -10 -5 0 5 10 15 20

L03

tables

∆E(I) O

∆E(I) OO

∆E(I) EE

Q (MeV)

lo
g

1
0
 (

λ
E

C
 (

s
-1

))

45 ≤ A ≤ 65 17 ≤ A ≤ 39
Langanke & Martinez-Pinedo, ADNDT (2001) Oda et al., ADNDT (1994)

improved agreement

fitting param. depend on T , ne

ee/o/oo ordering is the same as in Langanke and Martinez-Pinedo, NPA673, 481
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Nuclear abundances: I − Q
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Nucl. abundances are dominated by the binding energies,

strong correlation between I and Q, similar T (nB), Ye(nB)

A ≥ 20, −5 < 〈Q〉 < −21 MeV

2 ≤ A ≤ 19, 〈Q〉 ≈ −23 MeV;

is λEC (Q) accurate enough?

”universality” does not hold when

inclusive distrib. are considered
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NSE-average EC rates
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qualitative results,
highly sensitive to individual rates

preliminary results

systematic reduction of EC

non monotonic over the
trajectory

EC rates are more important
than magicity quenching; not
always in the same direction

the net effect will be given by
simulations (in progress...)

identification of most important
nuclei; are they exp. accessible?
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NSE-average EC rates
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preliminary results

light nuclei are important as well despite the low Q-values and λEC
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NSE-average EC rates and CC evolution

Sullivan et al, ApJ 816, 44 (2016)

lower EC rates:

larger mass of the inner
core at bounce
(up to 16%)

larger νe luminosity peaks
(up to 20%)

78
28Ni, 79

29Cu, 79
29Zn - the most

important
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Modeling dependence
Nuclear abundances within (extended) NSE courtesy of M. Oertel

interactions between unbound nucleons:
no yes yes

binding energies:
LDM exp+DZ10 exp+FRDM

upper excitation energy:
B min(Sn,Sp) B

nucleon-cluster interaction:
excluded volume excl. vol+ e-clusters excl. vol.

electron screening (Wigner-Seitz)

significant model depencence
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Nucleus in a nucleon gas

the nucleus is the high density component!

ρWS(r) = ρ0/ [1 + exp ((r − Rws)/a)]
+ρgas/ [1 + exp (−(r − Rws)/a)]

ρWS(r) = ρWS
r−cl(r) + ρWS

r−gas(r);

AWS = Ar + ρg
(
V WS − Vcl

)
,

EWS = E r + εg
(
V WS − Vcl

)
.

Adriana Raduta (IFIN-HH) Magicity evolution toward dripline and its impact on electron capture rates during core-collapse26 / 36



Nucleus in a nucleon gas

the nucleus is the high density component! the nucleus is the bound component!

ρWS(r) = ρ0/ [1 + exp ((r − Rws)/a)] (ρ0 − ρgas) / [1 + exp ((r − Rws)/a)]
+ρgas/ [1 + exp (−(r − Rws)/a)] + ρgas(r),

ρWS(r) = ρWS
r−cl(r) + ρWS

r−gas(r); ρWS(r) = ρWS
e−cl(r) + ρWS

e−gas(r);

AWS = Ar + ρg
(
V WS − Vcl

)
; AWS = Ae + ρgV WS ,

EWS = E r + εg
(
V WS − Vcl

)
; EWS = E e + εgV WS ,
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Nucleus in a nucleon gas

the nucleus is the high density component! the nucleus is the bound component!

Ae = Ar (1− ρgasVcl),
E e = E r (1− εgasVcl),

similar to an excluded volume correction

at T = 0: mapping between r- and e-clusters

Papakonstantinu et al., PRC 88, 045805 (2013)
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Extended NSE models
Souza et al., PRC 79, 054602 (2009)
Heckel et al., PRC80, 015805 (2009)
Botvina and Mishustin, NPA 843, 98 (2010)
Hempel, Schaffner-Bielich, NPA 837, 210 (2010)
AR and Gulminelli, PRC82, 065801 (2010)
Blinnikov et al., A&A. 535, A37 (2011)

NSE with e-clusters [Gulminelli and Raduta, PRC 92, 055803 (2015)]

Z cl
βµBµ3

=
∑
k

exp

[
−β
∑
i

n
(k)
i G e

βµBµ3
(i)

]
=
∏
i

∞∑
n=0

[
exp

(
−βG e

βµBµ3
(i)
)]n

n!

=
∏
i

expωβµBµ3(i).

cluster multiplicities

< ni >β,µB ,µ3= ωβµBµ3(i) = exp
[
−β
(
F e
β(A, δ, ρg , yg , ρp)− µBAe − µ3Ie

)]
.

Advantages:
• in the limit T →∞, NSE → SNA
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Conclusions

n-rich nuclei with unconstrained masses and EC rates might impact
the CC evolution

identify the most important nuclei and propose
experiments/theoretical calculations

Ongoing work:

CC simulations,

systematic EC rates calculations within QRPA
A. F. Fantina, E. Khan, G. Col, N. Paar, and D. Vretenar PRC86, 035805;

N. Paar, G. Colo, E. Khan and D. Vretenar, PRC80, 055801 (2009);

Collaborators: F. Gulminelli (Caen, France), M. Oertel (Meudon, France)

Partial support from NewCompStar, COST Project MP1304
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Weak interaction rates

λα = ln 2
K

∑
i
(2Ji+1) exp(−Ei/kBT )

G(A,Z ,T )

∑
j BijΦ

α
ij

K = 2π3 ln 2~7
G2
FV

2
udg

2
vm

5
ec

4 = const.

GF=Fermi cc

Vud = the up-down element of the

quark mixing matrix

gv =the weak vector cc =1

partition fct. of the parent:

G (A,Z ,T ) =
∑

i exp (−Ei/kBT )

reduced trans. prob. of the transition:

Bij = Bij(F ) + Bij(GT )

Phase space integral:

ΦEC
ij =

∫∞
we

wp (Qij + w)2 F (Z ,w)Se(w)(1− Sν(Qij + w))dw
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EC rates: Analytical expressions

λEC = log < ft > Ie Fuller, Fowler, Newman, Astrophy.J 293, 1 (1985)

for Qn > −mec2, η̃e = ηFe − ηLe , ηFe = µe/T , ηLe = mec2/T

Ie =
(

T
mec2

)5
F4(η̃e) +

(
4ηLe + 2ζn

)
F3(η̃e) +

[
6
(
ηLe
)2

+ 6ηLe ζn + (ζn)2
]

F2(η̃e)

+
[
4
(
ηLe
)3

+ 6
(
ηLe
)2
ζn + 2ηLe (ζn)2

]
F1(η̃e) +

[(
ηLe
)4

+ 2
(
ηLe
)3
ζn +

(
ηLe ζn

)2]
F0(η̃e)

for Qn < −mec2, ηLe = |ζn| ,ζn = Qn/T (threshold case)

Ie =
(

T
mec2

)5 [
F4(η̃e) + 2|ζn|F3(η̃e) + ζ2nF2(η̃e)

]

Langanke et al., PRL90, 241102 (2003)

λEC = ln 2·B
K

(
T

mec2

)5 [
F4(η)− 2χF3(η) + χ2F2(η)

]
K = 6146 s, χ = (Q −∆E )/T , η = χ+ µe/T ,
B = 4.6 MeV and ∆E = 2.5 MeV (from fit of microsc. results)
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QEC
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Improved λEC (Q)

T ne ∆E =cst. ∆E (I ) = a1I + a0 ∆E (I , δ) = a1(δ)I + a0(δ) ∆E (I , δ) = a1(δ)I 2 + a0(δ)
(MeV) (fm−3) ∆E χ2 a1 a0 χ2 a1 a0 χ2 a1 a0 χ2

0.86 5.93 · 10−6 2.96 20.8 2.01 2.71 20.8 -1.23 3.52 6.52 -20.8 3.72 6.43
-10.0 6.30 3.74 -70.0 6.37 3.42
-1.31 1.54 1.92 -20.7 1.73 1.87

0.86 5.93 · 10−5 3.81 11.4 56.3 -2.33 7.25 57.7 -2.23 3.50 259 0.40 3.89
50.8 0.09 1.68 193 3.00 1.89
56.4 -3.92 1.30 239 -1.16 1.47

2.59 5.93 · 10−6 2.35 7.75 26.3 -0.298 6.32 22.6 0.18 1.99 93.5 1.30 2.17
23.9 2.38 1.55 88.1 3.74 1.67
19.9 -1.84 0.69 82.8 -0.87 0.75

2.59 5.93 · 10−5 2.44 9.23 73.1 -4.84 5.11 70.7 -4.55 2.31 334 -1.64 2.66
70.6 -2.46 1.36 295 1.03 1.58
70.1 -6.39 0.86 323 -3.41 0.99
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Average-NSE EC rates
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Preliminary results

Adriana Raduta (IFIN-HH) Magicity evolution toward dripline and its impact on electron capture rates during core-collapse35 / 36



Evolution of neutron shell gaps

the mechanism that creates the large SO N=28 shell gap between f7/2 and
p3/2 is probably due to 3B forces [Holt et al., JPG 2012; Hagen et al.,
PRL2012]

I also the d5/2-s1/2 sub-shell gap in N=14 comes from SO
I SO shell gap expected also N = 50 (g9/2-d5/2) (Sorlin and Porquet,

Phys. Scr. T 2013, effective monopole terms V
g9/2g9/2
nn =-200 keV,

V
g9/2d5/2
nn =+130 keV extracted from 88,90Zn spectroscopy)

I SO shell gap expected also in N = 82 (h11/2-f7/2) but probably hard to
see because of pairing with neutrons on s1/2, d3/2.

SO magic numbers N=14, 28 and 50 disappear far from stability, while
N = 82 does not; N = 82 does not come from h11/2 and f7/2; h11/2 lower
than d3/2. (Phys. Scr. T 2013)

nucl.-potential is more diffuse towards the drip line; low-l orbits more bound
than high-l orbits; level inversion; all N-magic numbers are expected to
vanish in n-rich nuclei.

n-p interaction modified due to reduced overlap between n (loosely bound)

and p (deeply bound) wave functions.
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