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Outline

* Quasi-universality for rotating neutron stars

e Effect of Rapid Rotation on
— Mass — Radius constraints
— Luminosity Radius determination

— Eddington Luminosity
— Radius determinations with undetected hot spots



Mass-Radius Constraints

e Pulse-profiles (cf Fred Lamb’s talk for rotating
ms pulsars (~200 Hz) and accreting ms pulsars
(200 — 600 Hz)

 Some Eddington-Limited X-ray burst stars spin
at ~600 Hz

e Quiescent LMXB neutron stars don’t have
detected pulsations, but they *might™* spin
fast.



Digression on Black Hole “No Hair”

Black holes are very simple!
Describe a rotating BH with 2 parameters: M, a
Event Horizon radius given by:
Rey = 2M + M[(1-(a/M)?)V/2 -1]
Gravitational field outside of BH:
®(r,0) =- M/r + ®,/r3 P,(cosB) + ...
®,=M a?

Properties of a BH are independent of the properties
of the stuff that formed it.



Neutron Stars Have “Hair”

Given a mass and spin (M and Q) different EOS
predict different Radii (R )

However, given M, R, Q dimensionless
quantities: x=GM/Rc? y=Q?R3/GM
Many secondary NS properties depend only
onx,y.

| Love Q (Moment of Inertia, Love number,
Quadrupole moment) relationships

“Neutron Star Universality” (Yagi & Yunes
2013)



Example: Moment of Inertia

* Expect Moment of Inertia of the form:
| =B M R?

Where B depends on how density varies inside the
star. (Ravenhall & Pethick, 1994; Lattimer & Prakash, 2001)

* For Neutron Stars B = B(M/R, Q?R3/GM) with B
a known function
* Similar functions for quadrupole moment,

ellipticity, acceleration due to gravity,
oscillation mode frequencies, etc...



Stellar Oblateness

Universal form for oblate shape:
R(0) =R, — b cos?0 1

b =b(M/R, Q’R? )

I

drid8=0

de/di=0

111

I

Morsink, Leahy, Cadeau & Braga 2007 ApJ

II

IV

III

d6/dA=0



Fractional Increase In Mass

AM/M, = {(My/R,, @*R,3/GM,)
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Fractional Increase in Radius

AR/R not as tight as
the fractional mass
increase, but almost
universal form for
realistic spins well
below break-up
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Morsink & Fedorowich, in prep...



Mass — Radius Curves
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Mass — Radius Curves
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Mass (Solar Mass Units)
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Mass (Solar Mass Units)
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Mass (Solar Mass Units)
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Mass (Solar Mass Units)

Mapping Spin to Zero Spin Curve

Morsink & Fedorowich, in prep
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A Uniformly Emitting Blackbody Sphere

T
d @
R < >

In Newtonian physics, if d, temperature (T) d F

and flux (F) are measured then the “Luminosity R [ = o =
Radius” is given by: T g

In General Relativity, the gravitational redshift R—R 1| — 2M

Effect must be corrected for, so the actual radius is: — UL R

Unfortunately, real neutron stars aren’t uniformly emitting
blackbodies, so use more realistic spectra...



Rotational Effect on Luminosity

Radius

* An oblate star with the
same equatorial radius
as a spherical star has a
smaller cross-sectional
area A

* Flux~ A soassuming a
sphere underestimates
the equatorial radius of
the star




Luminosity Radius vs “Real” Radius

Baubock, Ozel, Psaltis,
Morsink, ApJ 2015

(Calculation 1s for pure
blackbody, also includes
Doppler boosting effects)

Mass (M)

Assuming a spherical star

could lead to

W | M 1t 1 Ml underestimating the radius
10 1 12 13 14 15 by 3_5%

Equatorial Radius (km)

----------- Luminosity Radius for zero spin R; = R(1-2M/R) 12
Luminosity Radius for spinning star (600 Hz)




Eddington Limit — Spherical Star
Maximum Allowed Flux

Hydrogen

rad grav

Newtonian Gravity: Fy = 2GMm c/d*(1+X)o;
General Relativity: Fg,, =F, (1-2M/R)!?

(1) Acceleration due to gravity is stronger at the surface
(2) Gravitational Redshift makes light appear dimmer



Eddington Limit — Rotating Star

Higher effective g

Hydrogen

Lower effective g

F F

rad grav ~  cent

At Equator: Fgy, =F, (1-2M/R)'? (1 — a Q*> R*/GM) f,

(1) a> O centrifugal reduction in effective surface gravity
(2) f; < 1 Luminosity radius reduction factor (due to rotation)

For 600 Hz, both corrections reduce Eddington by up to 15%
(AlGendy & Morsink, ApJ 2014)



Eddington-Limited X-ray Bursts

* During Type I X-ray burst radiation flux
can exceed Eddington

* Atmosphere can be pushed off of star

* Away from star, Newtonian Eddington
limit applies

* When atmosphere cools off it falls back
onto star and “touches down”

* Rotating Relativistic Eddington limit Large Edd limit
only applies when atmosphere 1s in
hydrostatic equilibrium with star Small Edd limit

* Since Edd limit is largest at pole,
touch-down takes place first at pole,
and then moves down to equator.



Effect of an undetected hot spot
on luminosity radius

e Radius determined through luminosity radius
method for many stars without pulsations —
we hormally assume that they are not rotating
and they have a homogeneous temperature

* Example — Quiescent LMXBs

 BUT, what if they are rotating and have a hot
spot that our telescope can’t detect????

Elshamouty, Heinke, Morsink, Bogdanov, &
Stevens, ApJ to appear in 2016



What happens if we can’t tell that
the star has a hot spot?

Reality What we infer: hotter T and smaller R




x Badfit » Good fit o0 > PF limit

T =0.011 keV

True R=11.5 km

‘Rmin i:km] |

I. FitR>11.5 km
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T=0035keV - II: Fit allows true R

II: FitR < 11.5 km
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XSPEC fits assuming homogeneous surface — leads to bias towards
smaller radius — Also true if star is not rotating



Conclusions

e Spinning stars are more fun!

* |f we know the spin of a star, we can factor in
effect of rotation and find the equatorial
radius of the star.

e |fitis unknown if the star is spinning, then
luminosity radius method tends to lead to
underestimating the star’s radius, if it is
actually spinning.



