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Neutron Star Structure

Tolman-Oppenheimer-Volkov equations

dp

dr
= −G

c4

(mc2 + 4πpr 3)(ε + p)

r(r − 2Gm/c2)
dm

dr
= 4π

ε

c2
r 2

-

-
--maximum mass

p(ε)

M(R)

- �
small range of
radii

ObservationsEquation of State �
J. M. Lattimer Constraining the Dense Matter Equation of State from Observations



Extremal Properties of Neutron Stars

I The most compact and massive configurations occur
when the low-density equation of state is ”soft” and the
high-density equation of state is ”stiff” (Koranda,
Stergioulas & Friedman 1997).
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Causality + GR Limits and the Maximum Mass

A lower limit to the
maximum mass sets a
lower limit to the
radius for a given mass.

Similarly, a precision
upper limit to R sets
an upper limit to the
maximum mass.

R1.4 > 8.15M� if
Mmax ≥ 2.01M�.

Mmax < 2.4M� if
R < 10.3 km.
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If quark matter exists in the interior, the minimum radii are
substantially larger.
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Although simple
average mass of
w.d. companions
is 0.23 M� larger,
weighted average is
0.04 M� smaller

Champion et al. 2008

Demorest et al. 2010
Fonseca et al. 2016
Antoniadis et al. 2013
Barr et al. 2016

Romani et al. 2012

vanKerkwijk 2010
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Mass-Radius Diagram and Theoretical Constraints
GR:
R > 2GM/c2

P <∞ :
R > (9/4)GM/c2

causality:
R >∼ 2.9GM/c2

— normal NS
— SQS

— R∞ = R√
1−2GM/Rc2

J. M. Lattimer Constraining the Dense Matter Equation of State from Observations



Neutron Star Radii and Nuclear Symmetry Energy
I Radii are highly correlated with the neutron star matter

pressure around ns − 2ns ' (0.16− 0.32) fm−3.
(Lattimer & Prakash 2001)

I Neutron star matter is nearly purely neutrons, x ∼ 0.04.
I Nuclear symmetry energy

S(n) ≡ E (n, x = 0)− E (n, 1/2)

E (n, x) ' E (n, 1/2) + S2(n)(1− 2x)2 + . . .

S(n) ' S2(n) ' Sv +
L

3ns
(n − ns) +

Ksym

18

(
n − ns
ns

)2

. . .

I Sv ∼ 32 MeV; L ∼ 50 MeV from nuclear systematics.
I Neutron matter energy and pressure at ns :

E (ns , 0) ' Sv + E (ns , 1/2) = Sv − B ∼ 16 MeV

p(ns , 0) =

(
n2∂E (n, 0)

∂n

)
ns

' Lns
3
∼ 2.5 MeV fm−3
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Theoretical Neutron Matter Calculations
Nuclei provide information
for matter up to ns .

Theoretical studies,
beginning from fitting
low-energy neutron scattering
data and few-body
calculations of light nuclei,
can probe higher densities.

I Auxiliary Field Diffusion
Quantum Monte Carlo
(Gandolfi & Carlson)

I Chiral Lagrangian
Expansion (Drischler,
Hebeler & Schwenk;
Sammarruca et al.)

2-body only

Gandolfi et al. (2015)

Drischler et al. (2015)
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Nuclear Experimental Constraints
The liquid droplet model is a useful frame of reference. Its
symmetry parameters Sv and Ss are related to Sv and L:

Ss
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' aL
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12L
+ . . .

]
.

I Symmetry contribution to the binding energy:

Esym ' SvAI
2

[
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.

I Giant Dipole Resonance (dipole polarizability)

αD '
AR2

20Sv

(
1 +

5

3

Ss

SvA1/3

)
.

I Neutron Skin Thickness
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Theoretical and Experimental Constraints

H Chiral Lagrangian

G: Quantum Monte Carlo

Sv − L constraints from
Hebeler et al. (2012)

Neutron matter constraints
are compatible with
experimental constraints.
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Neutron Star Crusts
The evidence is overwhelming that
neutron stars have crusts.

I Neutron star cooling, both long
term (ages up to millions of
years) and transient (days to
years), supports the existence
of ∼ 0.5− 1 km thick crusts
with masses ∼ 0.02− 0.05M�.

I Pulsar glitches are best
explained by n 1S0 superfluidity,
largely confined to the crust,
∆I/I ∼ 0.01− 0.05.

The crust EOS, dominated by
relativistic degenerate electrons, is
very well understood.
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Piecewise Polytropes
Crust EOS is known: n < n0 = 0.4ns .

Read, Lackey, Owen & Friedman (2009)
found high-density EOS can be modeled
as piecewise polytropes with 3 segments.

They found universal break points
(n1 ' 1.85ns , n2 ' 3.7ns) optimized fits
to a wide family of modeled EOSs.

For n0 < n < n1, assume neutron matter
EOS. Arbitrarily choose n3 = 7.4ns .

For a given p1 (or Γ1):
0 < Γ2 < Γ2c or p1 < p2 < p2c .
0 < Γ3 < Γ3c or p2 < p3 < p3c .

Minimum values of p2, p3 set by Mmax ;
maximum values set by causality.

◦
n3, p3

nm

◦
n0, p0

◦
n1, p1

◦n2, p2

13.8 14.814.3 15.3 15.7
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Causality

Even if the EOS becomes acausal at high densities, it may not
do so in a neutron star.
We automatically reject parameter sets which become acausal
for n ≤ n2. We consider two model subsets:

I Model A: If a parameter set results in causality being
violated within the maximum mass star, extrapolate to
higher densities assuming cs = c .

I Model B: Reject parameter sets that violate causality in
the maximum mass star.
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Maximum Mass and Causality Constraints

Model A: where EOS gives cs > c , force cs = c .

p
3
<

p
2
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Maximum Mass and Causality Constraints

p 3
<

p 2
Model B:
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Radius - p1 Correlation

Model A

Model B:
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Mass-Radius Constraints from Causality
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Piecewise-Polytrope RM=1.4 Distributions

Model A:

Model B:
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Piecewise-Polytrope Average Radius Distributions
Assumes P(M) from observed pulsar-timing masses

Model A:

Model B:
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Upper Limits to Maximum Mass

Model B
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Universal Relations

With the assumptions

I Known crust EOS

I Bounded neutron matter EOS (pmin < p1 < pmax)

I Two piecewise polytropes for p > p1

I Causality is not violated

I Mmax is limited from below

tight correlations among the compactness, moment of inertia,
binding energy and tidal deformability result.

We use Model B in the following.
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Moment of Inertia - Compactness Correlations
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Moment of Inertia - Radius Constraints
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Binding Energy - Compactness Correlations
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Binding Energy - Mass Correlations
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Tidal Deformatibility - Moment of Inertia
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Tidal Deformatibility - Compactness
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Tidal Deformatibility - Mass
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Binary Tidal Deformability

In a neutron star merger, both stars are tidally deformed. The
most accurate measured deformability parameter is

Λ̄ =
8

13

[
(1 + 7η − 31η2)(λ̄1 + λ̄2)

−
√

1− 4η(1 + 9η − 11η2)(λ̄1 − λ̄2)
]

where

η =
M1M2

(M1 + M2)2
.

For S/N ≈ 20− 30, typical measurement accuracies are
expected to be (Rodriguez et al. 2014; Wade et al. 2014):

Mchirp ∼ 0.01− 0.02%, Λ̄ ∼ 20− 25%

M1 + M2 ∼ 1− 2%, M2/M1 ∼ 10− 15%
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Tidal Deformatibility - Λ̄ - Mchirp

———Λ̄

−−−Mchirp
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Tidal Deformatibility - Λ̄
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Tidal Deformatibility - Λ̄

J. M. Lattimer Constraining the Dense Matter Equation of State from Observations



Simultaneous Mass/Radius Measurements
I Measurements of flux F∞ = (R∞/D)2 σT 4

eff

and color temperature Tc ∝ λ−1
max yield an

apparent angular size (pseudo-BB):

R∞/D = (R/D)/
√

1− 2GM/Rc2

I Observational uncertainties
include distance D,
interstellar absorption NH ,
atmospheric composition
Best chances are:

I Isolated neutron stars with parallax (atmosphere ??)
I Quiescent low-mass X-ray binaries (QLMXBs) in globular

clusters (reliable distances, low B H-atmosperes)
I Bursting sources (XRBs) with peak fluxes close to

Eddington limit (gravity balances radiation pressure)

FEdd =
cGM

κD2

√
1− 2GM/Rc2
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PRE Burst Models

Observational measurements:

FEdd ,∞ =
GMc

κD

√
1− 2β, β =

GM

Rc2

A =
F∞
σT 4
∞

= f −4
c

(
R∞
D

)2

Determine parameters:

α =
FEdd ,∞√

A

κD

f 4
c c

3
= β(1− 2β)

γ =
Af 4

c c
3

κFEdd ,∞
=

R∞
α
.

Solution:

β =
1

4
±
√

1− 8α

4
, α ≤ 1

8
for real solutions.
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PRE M − R Estimates

Ozel & Freire (2016)

0.164± 0.024
0.153± 0.039
0.171± 0.042
0.164± 0.037
0.167± 0.045
0.198± 0.047

αmin
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QLMXB M − R Estimates

Ozel & Freire (2016)

J. M. Lattimer Constraining the Dense Matter Equation of State from Observations



Combined R fits

Assumed P(M) is that measured from pulsar timing
(M̄ = 1.4M�).

Ozel & Freire (2015)
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Folding Observations with Piecewise Polytropes
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Bayesian Analyses

Ozel et al. (2015)

Steiner et al. (2012)
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Role of Systematic Uncertainties

Systematic uncertainties plague radius measurements.

I Non-uniform temperature distributions

I Interstellar absorption

I Atmospheric composition: In quiescent sources, He or C
atmospheres can produce about 50% larger radii.

I Non-spherical geometries: In bursting sources, improper
to use spherically-symmetric Eddington flux formula.

I Disc shadowing: In burst sources, leads to
underprediction of A = f −4

c (R∞/D)2, overprediction of
α ∝ 1/

√
A, and underprediction of R∞ ∝

√
α.
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Additional Proposed Radius and Mass Constraints

I Pulse profiles Hot or cold regions
on rotating neutron stars alter
pulse shapes: NICER and LOFT
will enable timing and
spectroscopy of thermal and
non-thermal emissions. Light
curve modeling → M/R;
phase-resolved spectroscopy → R.

I Moment of inertia Spin-orbit
coupling of ultra- relativistic
binary pulsars (e.g., PSR
0737+3039) vary i and contribute
to ω̇: I ∝ MR2.

I Supernova neutrinos Millions of
neutrinos detected from a
Galactic supernova will measure
BE= mBN −M, < Eν >, τν .

I QPOs from accreting sources
ISCO and crustal oscillations

NASA

Neutron star Interior Composition ExploreR

Large Observatory For x-ray Timing

ESA/NASA
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Conclusions

I Neutron matter calculations and nuclear experiments are
consistent with each other and set reasonably tight
constraints on symmetry energy behavior near the nuclear
saturation density.

I These constraints, together with assumptions that
neutron stars have hadronic crusts and are causal, predict
neutron star radii R1.4 in the range 12.0± 1.0 km.

I Astronomical observations of photospheric radius
expansion X-ray bursts and quiescent sources in globular
clusters suggest R1.4 ∼ 10.5± 1 km, unless maximum
mass and EOS priors are implemented.

I Should observations require smaller or larger neutron star
radii, a strong phase transition in extremely neutron-rich
matter just above the nuclear saturation density is
suggested. Or should GR be modified?
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