Constraining the Dense Matter Equation of State from Observations

J. M. Lattimer

Department of Physics & Astronomy Stony Brook University

18 July, 2016, INT Workshop INT-16-2b Dense Matter Seattle, WA

 Ω

Outline

- \triangleright The Dense Matter EOS and Neutron Star Structure
	- \triangleright General Causality, Maximum Mass and GR Limits
	- ▶ Neutron Matter and the Nuclear Symmetry Energy
	- \triangleright Theoretical and Experimental Constraints on the Symmetry Energy
- \triangleright Extrapolating to High Densities with Piecewise Polytropes
- \blacktriangleright Radius Constraints Without Radius Observations
- \blacktriangleright Universal Relations
- \triangleright Observational Constraints on Radii
	- ▶ Photospheric Radius Expansion Bursts
	- ▶ Thermal Emission from Quiescent Binary Sources
	- ▶ Ultra-Relativistic Neutron Star Binaries
	- \triangleright Neutron Star Mergers
	- \blacktriangleright Supernova Neutrinos
	- \triangleright Pulse Modeling of X-ray Bursts and X-ray Pulsars
	- \triangleright Effect[s](#page-0-0) of Systematic Uncertainties

Neutron Star Structure

Tolman-Oppenheimer-Volkov equations

Extremal Properties of Neutron Stars

Causality $+$ GR Limits and the Maximum Mass

A lower limit to the maximum mass sets a lower limit to the radius for a given mass.

Similarly, a precision upper limit to R sets an upper limit to the maximum mass.

 $R_{1.4} > 8.15 M_{\odot}$ if $M_{\rm max} > 2.01 M_{\odot}$.

 $M_{\rm max}$ < 2.4 M_{\odot} if $R < 10.3$ km

If quark matter exists in the interior, the minimum radii are substantially larger.

 Ω

Mass-Radius Diagram and Theoretical Constraints

J. M. Lattimer **Constraining the Dense Matter Equation of State from Observ**

Neutron Star Radii and Nuclear Symmetry Energy

- \triangleright Radii are highly correlated with the neutron star matter pressure around $n_s - 2n_s \simeq (0.16 - 0.32)$ fm⁻³. (Lattimer & Prakash 2001)
- ► Neutron star matter is nearly purely neutrons, $x \sim 0.04$.
- \blacktriangleright Nuclear symmetry energy

 $S(n) \equiv E(n, x = 0) - E(n, 1/2)$ $E(n, x) \simeq E(n, 1/2) + S_2(n)(1-2x)^2 + \ldots$ $S(n) \simeq S_2(n) \simeq S_v +$ L $3n_s$ $(n - n_s) + \frac{K_{sym}}{18} \left(\frac{n - n_s}{n_s} \right)$ n_{s} \setminus^2 . . . ► $S_v \sim 32$ MeV; $L \sim 50$ MeV from nuclear systematics. \blacktriangleright Neutron matter energy and pressure at n_s : $E(n_{s},0) \simeq S_{v} + E(n_{s},1/2) = S_{v} - B \sim 16 \,\,{\rm MeV}$ $p(n_s, 0) = \left(n^2 \frac{\partial E(n, 0)}{\partial n_s}\right)$ ∂n \setminus ns $\simeq \frac{Ln_s}{\sqrt{2}}$ 3 \sim 2.5 MeV fm $^{-3}$

Theoretical Neutron Matter Calculations

Nuclei provide information for matter up to n_s .

Theoretical studies, beginning from fitting low-energy neutron scattering data and few-body calculations of light nuclei, can probe higher densities.

- \blacktriangleright Auxiliary Field Diffusion Quantum Monte Carlo (Gandolfi & Carlson)
- \triangleright Chiral Lagrangian Expansion (Drischler, Hebeler & Schwenk; Sammarruca et al.)

Nuclear Experimental Constraints

The liquid droplet model is a useful frame of reference. Its symmetry parameters S_v and S_s are related to S_v and L:

$$
\frac{S_s}{S_v} \simeq \frac{aL}{r_o S_v} \left[1 + \frac{L}{6S_v} - \frac{K_{sym}}{12L} + \dots \right].
$$

 \triangleright Symmetry contribution to the binding energy:

$$
\mathcal{E}_{sym} \simeq S_{\nu}Al^2 \left[1 + \frac{S_s}{S_{\nu}A^{1/3}}\right]^{-1}.
$$

 \triangleright Giant Dipole Resonance (dipole polarizability)

$$
\alpha_D \simeq \frac{AR^2}{20S_v} \left(1 + \frac{5}{3} \frac{S_s}{S_v A^{1/3}} \right).
$$

 \blacktriangleright Neutron Skin Thickness

$$
r_{np} \simeq \sqrt{\frac{3}{5}} \frac{2r_o I}{3} \frac{S_s}{S_v} \left(1 + \frac{S_s}{S_v A^{1/3}}\right)^{-1} \left(1 + \frac{10}{3} \frac{S_s}{S_v A^{1/3}}\right).
$$

J. M. Lattimer **Constraining the Dense Matter Equation of State from Observ**

Theoretical and Experimental Constraints

- H Chiral Lagrangian
- G: Quantum Monte Carlo
- $S_v L$ constraints from Hebeler et al. (2012)

Neutron matter constraints are compatible with experimental constraints.

Neutron Star Crusts

The evidence is overwhelming that neutron stars have crusts.

- \triangleright Neutron star cooling, both long term (ages up to millions of years) and transient (days to years), supports the existence of \sim 0.5 $-$ 1 km thick crusts with masses $\sim 0.02 - 0.05 M_{\odot}$.
- \blacktriangleright Pulsar glitches are best explained by $n^{1}S_{0}$ superfluidity, largely confined to the crust, $\Delta I / I \sim 0.01 - 0.05$.

The crust EOS, dominated by relativistic degenerate electrons, is very well understood.

Piecewise Polytropes

Crust EOS is known: $n < n_0 = 0.4 n_s$.

Read, Lackey, Owen & Friedman (2009) found high-density EOS can be modeled as piecewise polytropes with 3 segments. They found universal break points $(n_1\simeq 1.85n_{\rm s}, n_2\simeq 3.7n_{\rm s})$ optimized fits

to a wide family of modeled EOSs.

For $n_0 < n < n_1$, assume neutron matter EOS. Arbitrarily choose $n_3 = 7.4 n_s$.

For a given p_1 (or Γ_1): $0 < \Gamma_2 < \Gamma_{2c}$ or $p_1 < p_2 < p_{2c}$. $0 < \Gamma_3 < \Gamma_{3c}$ or $p_2 < p_3 < p_{3c}$.

Minimum values of p_2, p_3 set by M_{max} ; maximum values set by causality.

 $\log(\rho)$ in $\frac{a}{cm}$ ³ J. M. Lattimer **Constraining the Dense Matter Equation of State from Observation**

Even if the EOS becomes acausal at high densities, it may not do so in a neutron star.

We automatically reject parameter sets which become acausal for $n \leq n_2$. We consider two model subsets:

- \triangleright Model A: If a parameter set results in causality being violated within the maximum mass star, extrapolate to higher densities assuming $c_s = c$.
- \triangleright Model B: Reject parameter sets that violate causality in the maximum mass star.

 Ω

Maximum Mass and Causality Constraints

Model A: where EOS gives $c_s > c$, force $c_s = c$.

Maximum Mass and Causality Constraints

J. M. Lattimer **Constraining the Dense Matter Equation of State from Observ**

Radius - p_1 Correlation

J. M. Lattimer **Constraining the Dense Matter Equation of State from Observation**

Mass-Radius Constraints from Causality

Piecewise-Polytrope $R_{M=1.4}$ Distributions

J. M. Lattimer **Constraining the Dense Matter Equation of State from Observ**

Piecewise-Polytrope Average Radius Distributions

Upper Limits to Maximum Mass

J. M. Lattimer **Constraining the Dense Matter Equation of State from Observ**

With the assumptions

- \triangleright Known crust EOS
- \triangleright Bounded neutron matter EOS ($p_{min} < p_1 < p_{max}$)
- \triangleright Two piecewise polytropes for $p > p_1$
- \triangleright Causality is not violated
- \blacktriangleright M_{max} is limited from below

tight correlations among the compactness, moment of inertia, binding energy and tidal deformability result.

We use Model B in the following.

へのへ

Moment of Inertia - Compactness Correlations

J. M. Lattimer **Constraining the Dense Matter Equation of State from Observ**

Moment of Inertia - Radius Constraints

J. M. Lattimer **Constraining the Dense Matter Equation of State from Observ**

Binding Energy - Compactness Correlations

J. M. Lattimer **Constraining the Dense Matter Equation of State from Observation**

Binding Energy - Mass Correlations

J. M. Lattimer **Constraining the Dense Matter Equation of State from Observation**

Tidal Deformatibility - Moment of Inertia

Tidal Deformatibility - Compactness

Tidal Deformatibility - Mass

Binary Tidal Deformability

In a neutron star merger, both stars are tidally deformed. The most accurate measured deformability parameter is

$$
\begin{aligned} \bar{\Lambda}=&\frac{8}{13}\Big[(1+7\eta-31\eta^2)(\bar{\lambda}_1+\bar{\lambda}_2)\\ &-\sqrt{1-4\eta}(1+9\eta-11\eta^2)(\bar{\lambda}_1-\bar{\lambda}_2)\Big] \end{aligned}
$$

where

$$
\eta = \frac{M_1 M_2}{(M_1 + M_2)^2}.
$$

For $S/N \approx 20 - 30$, typical measurement accuracies are expected to be (Rodriguez et al. 2014; Wade et al. 2014):

 $M_{chirp} \sim 0.01 - 0.02\%$, $\bar{\Lambda} \sim 20 - 25\%$

 $M_1 + M_2 \sim 1 - 2\%, \qquad M_2/M_1 \sim 10 - 15\%$ $M_1 + M_2 \sim 1 - 2\%, \qquad M_2/M_1 \sim 10 - 15\%$ $M_1 + M_2 \sim 1 - 2\%, \qquad M_2/M_1 \sim 10 - 15\%$ $M_1 + M_2 \sim 1 - 2\%, \qquad M_2/M_1 \sim 10 - 15\%$ $M_1 + M_2 \sim 1 - 2\%, \qquad M_2/M_1 \sim 10 - 15\%$ $M_1 + M_2 \sim 1 - 2\%, \qquad M_2/M_1 \sim 10 - 15\%$ $M_1 + M_2 \sim 1 - 2\%, \qquad M_2/M_1 \sim 10 - 15\%$ $M_1 + M_2 \sim 1 - 2\%, \qquad M_2/M_1 \sim 10 - 15\%$

 Ω

Tidal Deformatibility - $\overline{\Lambda}$ - M_{chirp}

Tidal Deformatibility - Λ¯

Tidal Deformatibility - Λ¯

Simultaneous Mass/Radius Measurements

► Measurements of flux $F_{\infty} = \left(R_{\infty}/D\right)^2 \sigma\, T_{\rm eff}^4$ and color temperature $\, T_c \propto \lambda_{\rm max}^{-1}$ yield an apparent angular size (pseudo-BB):

 $R_\infty/D = (R/D)/\sqrt{1-2GM/Rc^2}$

 \triangleright Observational uncertainties include distance D, interstellar absorption N_H , atmospheric composition Best chances are:

 Ω

医骨盆 医骨盆

- \triangleright Isolated neutron stars with parallax (atmosphere ??)
- \triangleright Quiescent low-mass X-ray binaries (QLMXBs) in globular clusters (reliable distances, low B H-atmosperes)
- \triangleright Bursting sources (XRBs) with peak fluxes close to Eddington limit (gravity balances radiation pressure)

$$
F_{\rm Edd} = \frac{cGM}{\kappa D^2} \sqrt{1 - 2GM/Rc^2}
$$

PRE Burst Models

Observational measurements:

PRE $M - R$ Estimates

QLMXB $M - R$ Estimates

Combined R fits

Assumed $P(M)$ is that measured from pulsar timing $(\bar{M} = 1.4 M_{\odot})$.

a mills. J. M. Lattimer **Constraining the Dense Matter Equation of State from Observation**

→ 伊 ▶ → 唐 ▶

一 4 (語)

 $2Q$

Folding Observations with Piecewise Polytropes

J. M. Lattimer **Constraining the Dense Matter Equation of State from Observation**

Bayesian Analyses

Role of Systematic Uncertainties

Systematic uncertainties plague radius measurements.

- \triangleright Non-uniform temperature distributions
- \blacktriangleright Interstellar absorption
- \triangleright Atmospheric composition: In quiescent sources, He or C atmospheres can produce about 50% larger radii.
- ► Non-spherical geometries: In bursting sources, improper to use spherically-symmetric Eddington flux formula.
- \triangleright Disc shadowing: In burst sources, leads to underprediction of $A = f_c^{-4} (R_\infty/D)^2$, overprediction of $\alpha \propto 1/\sqrt{\mathcal{A}}$, and underprediction of $R_{\infty} \propto$ µı $\overline{\alpha}$.

 $4.50 \times 4.70 \times 4.70 \times$

へのへ

Additional Proposed Radius and Mass Constraints Neutron star Interior Composition ExploreR

- \triangleright Pulse profiles Hot or cold regions on rotating neutron stars alter pulse shapes: NICER and LOFT will enable timing and spectroscopy of thermal and non-thermal emissions. Light curve modeling $\rightarrow M/R$; phase-resolved spectroscopy $\rightarrow R$.
- \triangleright Moment of inertia Spin-orbit coupling of ultra- relativistic binary pulsars (e.g., PSR $0737+3039$) vary *i* and contribute to $\dot{\omega}$: $I \propto \dot{M} R^2$.
- \triangleright Supernova neutrinos Millions of neutrinos detected from a Galactic supernova will measure $BE = m_B N - M$, $\lt E_\nu > \tau_\nu$.
- \triangleright QPOs from accreting sources ISCO and crustal oscillations

J. M. Lattimer **Constraining the Dense Matter Equation of State from Observ**

Science Measurements

Reveal stellar structure through lightcurve modeling, long-term timing, and bulsation searches

Lightcurve modeling constrains the compactness (M/R) and viewing geometry of a non-accreting millisecond pulsar through the depth of modulation and harmonic content of emission from rotating hot-spots, thanks to gravitational light-bending...

Science Overview - 5

J. M. Lattimer **Constraining the Dense Matter Equation of State from Observ**

... while phase-resolved spectroscopy promises a direct constraint of radius R.

Conclusions

- \blacktriangleright Neutron matter calculations and nuclear experiments are consistent with each other and set reasonably tight constraints on symmetry energy behavior near the nuclear saturation density.
- \triangleright These constraints, together with assumptions that neutron stars have hadronic crusts and are causal, predict neutron star radii $R_{1,4}$ in the range 12.0 ± 1.0 km.
- \triangleright Astronomical observations of photospheric radius expansion X-ray bursts and quiescent sources in globular clusters suggest $R_{1.4} \sim 10.5 \pm 1$ km, unless maximum mass and EOS priors are implemented.
- \triangleright Should observations require smaller or larger neutron star radii, a strong phase transition in extremely neutron-rich matter just above the nuclear saturation density is suggested. Or should GR be modifie[d?](#page-43-0)