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Effective Action Birefringence
Propagation through Birefringent Media

Effective Action

For a magnetic field the effective
action is the free energy of the
system (actually minus the free

energy).
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The QED Lagrangian

h dC —/C b b
Lor = g2 | [Bz th<48k>c°t<48k> CT]

where
(b—ia)> = (B — iE)> = |B|?> — |E|> — 2/E- B

[2(b— ia)?] = F* Fuy + i€uapF" F*P =1 + iJ
and
1 1a%— b2

CT:C 3B (a° — b%)

Heisenberg-Euler, Weisskopf, Schwinger
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What do the poles mean?

» The poles along the real axis

lie at
¢ B wB
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What do the poles mean?

» The poles along the real axis

lie at
B  ws
CB—k m? = TWB =N

» Take n=1. After a proper
time of 7 = nm/wg, an
electron performs half a
revolution.
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What do the poles mean?

» The poles along the real axis

lie at
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» Take n=1. After a proper
time of 7 = nm/wg, an
electron performs half a
revolution.
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> In the same proper time, a
positron does the same.
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Field and Photons

To understand the interaction of light with the magnetized
vacuum, we imagine expanding the action for a uniform field plus a
small photon field,

E:E0+6E)B:BO+6B)FuV:(F0)HV+f'LW.

We have two possibilities.

1. ke 1: we pretend that the photon field is also uniform and
expand the effective Lagrangian density.
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Field and Photons

To understand the interaction of light with the magnetized
vacuum, we imagine expanding the action for a uniform field plus a
small photon field,

E:E0+6E)B:BO+6B)FuV:(F0)HV+f'LW.

We have two possibilities.

1. ke 1: we pretend that the photon field is also uniform and
expand the effective Lagrangian density.

2. kxeZ 1: we have to expand the action itself.
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How It Works
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How It Works
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Index of Refraction

An =4 x 107%T2B?2

What could be a signature
of this birefringence?
> A time delay: At ~
1073R/c ~ 10ns?

il vl vl vl vl vl
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Magnetic Field [Gauss|
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Index of Refraction

An =4 x 107%T2B2

What could be a signature £
of this birefringence?

> A time delay: At ~
103R/c ~ 10ns?

» Magnetic lensing?
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Shaviv et al. 99
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Index of Refraction

An =4 x 107%T2B2

What could be a signature
of this birefringence?

10-%
Ty
Lol

> A time delay: At ~
103R/c ~ 10ns?

» Magnetic lensing?

Shaviv et al. 99

» These all seemed a k
bit too subtle. B

il vl vl vl vl vl
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Magnetic Field [Gauss]
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Index of Refraction

An =4 x 107%T2B2

What could be a signature
of this birefringence?

10-%

> A time delay: At ~
103R/c ~ 10ns?

» Magnetic lensing?

Shaviv et al. 99

> These all seemed a =F E
bit too subtle. B3 E

» We were literally T
Stal’lng at the answer. Magnetic Field [Gauss]
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Liquid Crystal Displays
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Liquid Crystal Displays

Wikipedia
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Propagation through a twisting magnetic field

Kubo and Nagata (1983) present a concise way to characterize the
evolution of the polarization of light through a medium; they
simply write an equation to track the four Stokes parameters of

the polarization light.
0s &
2_0O
3] X §

where ‘Q‘ = Ak. The vector s = (51, 52,53)/So or (Q, U, V)/I.
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Stokes Parameters and the Poincaré Sphere

An important analytic solution. What if 2K _ f Q7

1. Move into frame that corotates with €.

2. In this frame we have

gj (@ T) x's = Qg xs

3. s orbits Qg if
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Sources
XIPE

Neutron Stars
© Vacuum-Plasma Resonance

Polarization-Limiting Radius

The radius at which the polarization stops following € is called the
polarization-limiting radius. Beyond here the modes are coupled.
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Polarization-Limiting Radius

The radius at which the polarization stops following € is called the

polarization-limiting radius. Beyond here the modes are coupled.

It is safe to assume that this occurs in the weak-field limit where

— gg B ’ E 20:1Q | — cr
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Polarization-Limiting Radius

The radius at which the polarization stops following € is called the
polarization-limiting radius. Beyond here the modes are coupled.
It is safe to assume that this occurs in the weak-field limit where

2 [ B \? A

-2 € sin26;|Q| =
4m 15 \ BqeDp w

Therefore, the polarization-limiting radius is

1/5 2/5
(L2Y (L gng
45 ¢ BQED

~ 1.2 x 107 (”) (555 0) ® (sin )2/% cm,
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Why does this matter?

rpl/R:0

Heyl, Shaviv, Lloyd 03
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Sources
Vacuum-Plasma Resonance

XIPE

Neutron Stars
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Neutron Stars
© Vacuum-Plasma Resonance

Why does this matter?

ro/R = 12 (XRP)

Heyl, Shaviv, Lloyd 03
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Neutron Stars
© Vacuum-Plasma Resonance

Why does this matter?

Quasi- Tangential Region wang, Lai 09
rp1/R =12 (XRP)

Heyl, Shaviv, Lloyd 03
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Neutron Stars

y does this matter?

Quasi- Tangential Region wang, Lai 09

ro/R = 12 (XRP)

Heyl, Shaviv, Lloyd 03

Jeremy Heyl

Sources
XIPE
Vacuum-Plasma Resonance

rp1/ R = 76 (Magnetar)
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Neutron Stars
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Places to Look

Radius  Magnetic Field p3p  rp at 4 keV
Magnetar | 100 0% 103 3.0x 108
XRP 10° 1012 103% 1.9 x 107
ms XRP 106 10° 1027 1.2 x 100
AM Her 10° 108 103 1.9 x 10°

Jeremy Heyl QED, Neutron Stars, X-ray Polarimetry



Sources
XIPE
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This is not subtle.

Let's recap.

> Neutron star atmospheres emit polarized light.
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This is not subtle.

Let's recap.
> Neutron star atmospheres emit polarized light.

» The emission varies across the surface.

Jeremy Heyl QED, Neutron Stars, X-ray Polarimetry



Sources
XIPE

Neutron Stars
© Vacuum-Plasma Resonance

This is not subtle.

Let's recap.
> Neutron star atmospheres emit polarized light.
» The emission varies across the surface.

» The rotating magnetic field twists the polarization.
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Neutron Stars

Realistic Hydrogen Atmosphere
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Heyl, Shaviv, Lloyd 05
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Neutron Stars

Drift plane



XIPE

Sources
XIPE

Neutron Stars
Vacuum-Plasma Resonance

GPD window
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Magnetar Thermal Emission (4U 0142+61)
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Caiazzo & Heyl 2016; 100ks with XIPE
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Vacuum-Plasma Resonance

Magnetar Thermal Emission (SGR 1806-20)

Neutron Stars
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350ks with XIPE; Taverna & Turolla 2016
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Magnetar RICS Emission

XIPE simulation
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AXP 1RXS J170849.0400910; 250ks with XIPE; Taverna et al.
2014
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Vacuum-Plasma Resonance

X-mode O-mode O-mode X-—mode

Deep in the atmosphere of the 2 A
! [ ]
neutron star the plasma CD <> <w>
dominates, while outside the r— vacuum .
vacuum dominates. C D - C D .
1 3 i O !
E < Eaa =2.52(ftan0)*° H 1/° kev = Protonphcre e
where ) :
X—mode ,
*, Photosphere ™ "
H, cm \ \
814l R ;!
Ho, Lai 03 X-mode O-mode X-mode O-mode
E=1keV E=5keV
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Neutron Stars

Vacuum-Plasma Resonance

<F>/<F>

Lai, Ho 03
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Neutron Stars

Accreting X-ray Pulsar (Her X-1)
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Caiazzo & Heyl 2016; 100ks with XIPE; Meszaros & Nagel 1985
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Vacuum-Plasma Resonance

Deep in the atmosphere of the neutron star the O-mode X-mode
plasma dominates, while outside the vacuum f i
dominates. :

— Photosphere

For large strengths of the magnetic field, the
vacuum resonance may lie between the
photospheres

Vacuum
Resonance

b OO0
A Y
4
r
A
]
"

-
L4

B> B ~6.6x 1037, V8E V4s-1/4q i
: Photosphere
where S =1 — e E/KT, .‘.

This can have a strong effect on the appearance of Xemode Omnde
spectral features and the high-energy slope. Ho, Laios B27x10°G
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Neutron Stars

Vacuum-Plasma Resonance
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Places to Look

Radius  Magnetic Field p3p  rp at 4 keV
Magnetar | 100 0% 103 3.0x 108
XRP 10° 1012 103% 1.9 x 107
ms XRP 106 10° 1027 1.2 x 100
AM Her 10° 108 103 1.9 x 10°
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Future directions

» Observations of x-ray polarization from magnetars will verify
QED.

» Observations of x-ray polarization from x-ray pulsars could
constrain the radius of the neutron star.

» Soft x-ray polarization from x-ray pulsars could measure the
surface gravity of the star.
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