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Type I:    Zero resistance, complete expulsion of magnetic fields: Meissner effect
   Destroyed by: critical current, critical temperature T

c 
, 

   critical magnetic field H
c
.

Type II:    Zero resistance, Meissner effect only below first critical field H
c1

   Magnetic flux enters above H
c1

 in form of flux tubes

   Normal conducting state reached via T
c
 or second critical field H

c2

Fluxtube:  Above H
c1

 magnetic fields enters SC in tubes, core of flux tube is 

   normal conducting, 
   field only enters in n units of fundamental flux quantum

Ginzburg-Landau parameter     : Material parameter determining type of SC 

Superconductor Recap
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Motivation

Protons and neutrons in compact stars form a Cooper pair condensate 
→ interacting multi fluid system of a superconductor (SC) and a superfluid (SF)

“Common wisdom”: Protons form type II SC (simple model calculations:              )

But: some observations support type I (long period precession)

In general: type I→II transition as function of density expected

? What does this transition look like ?

? How is this simple picture modified by the presence of the superfluid ?

? How does the phase diagram of the system look ?    

K. Glampedakis, N. Andersson, L. Samuelsson, MNRAS, 410, 802-829, arXiv:1001.4046
K. Buckley, M. Metlitski, A. Zhitnitsky, PRC 69, 055803
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Model

Ginzburg-Landau Theory from Microscopic Model

Effective field-theoretical model: two coupled, complex, gauged 
scalar fields with self interaction and interaction between the fields. 

G: derivative/entrainment coupling (Andreev-Bashkin effect)  
h: non-entrainment coupling

 tree-level potential =  Ginzburg-Landau free energy + entrainment term 

Ungauged: Haber, Schmitt, Stetina, Phys.Rev. D93 (2016) no.2, 025011
Non-relativisitc: Alford, Good, Phys.Rev. B78 (2008) 024510
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Assumptions: q
2
=0→(SC+SF), 

G=0, h<0, T=0, exterior B-Field 
     

Profile Functions n=1
Solve EL-EOM numerically (relaxation method) 
with radially symmetric  ansatz for flux tubes

Results:
● No superfluid vortices induced
● Superfluid density 

enhanced/diminished in fluxtube 
depending on sgn(h)

● Multi flux quantum configurations 
can be computed
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Assumptions: q
2
=0→(SC+SF),  

G<0, h<0, T=0, exterior B-Field 
     

Profile Functions n=11

Results:
● Superfluid density 

enhanced/diminished in fluxtube 
depending on sgn(h)

● “Bump” of the neutron condensate 
at the beginning of the descent due 
to gradient term
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Critical Magnetic Fields I

Goal: calculate critical magnetic fields 

H
c 
:  compare free energy of Meissner phase

 with free energy of normal phase  

H
c2 

: linearize equations of motion 

(= assume 2nd order phase transition), compute 
maximal magnetic field which allows solutions
Note independence of G  

H
c1 

: compare Gibbs free energy of a single flux tube 

with winding number n with the Meissner phase
demands full numerical calculation of the flux tube profiles 

finite T sketch
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Critical Magnetic Fields II

Normal SC without interaction:
consistent phase structure

Analytical result: SC phase 
is preferred directly below  H

c2

if phase transition is 2nd  order 

Uncoupled Superconductor
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Critical Magnetic Fields II

Normal SC without interaction:
consistent phase structure

Analytical result: SC phase 
is preferred directly below  H

c2

if phase transition is 2nd  order 

Uncoupled Superconductor

Coupled System

SC coupled to SF:
phase structure more complicated

Exact phase structure depends on 
interaction between flux tubes 
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Flux Tube Interaction I

Tinkham, Introduction to SC,
 Dover Press

BEC vortex lattice
by MIT

Two main contributions:

1) Repulsive part due to Lorentz force: magnetic field of one
    vortex reaches its neighbor

2) Attractive part: flux tubes want to overlap to gain
    condensation energy 

K. Buckley, M. Metlitski, A. Zhitnitsky, PRC 69, 055803

Assumptions: Nearest neighbor approximation
Large distance between tubes 
→ linearization of EOM
Hexagonal lattice 
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Flux Tube Interaction II

Integral can be solved analytically using asymptotic solutions 
in form of modified Bessel functions

 

with the flux tube area density           and       

Possible effect: attractive term allows for flux tubes below H
c1

Analog: Baryon onset    Energy of single flux tube             baryon mass
          Attractive flux tube interaction           binding energy

→ dynamically compute lattice spacing by minimization of free energy
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Summary & Outlook

● Relate proton Cooper pair self-coupling to actual density profile of  
compact stars

● Fit other parameters to observational values

● Investigate transition at finite temperature by starting from Lagrangian 
with entrainment (results not shown here)

● Behavior of a superconductor is altered by interaction with superfluid

● Effective parameter kappa due to interaction with SF

● Topology of phase diagrams complicated, flux tube interactions crucial

● Attractive interaction might lead to earlier 1st order onset of flux tube 
phase

Summary

Outlook
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