Probing the Equation of State

with

Neutrinos from Core-collapse Supernovae (?)

Tobias Fischer University of Wrocław, Poland "Dense Phases of Matter"

INT Workshop, Seattle WA, July 2016

7 Nobel Prize winners:

- 1. Theodor Mommsen (1817-1903) 1902 (literature)
- Phillip Lénàrd (1862-1947)
 1905 (physics)
- Eduard Buchner (1860-1917) 1907 (chemistry)
- 4. Paul Ehrlich (1854-1915) 1908 (medicine)
- 5. Gerhart Hauptmann (1862-1946) 1912 (literature)
- 6. Fritz Haber (1868-1934) 1918 (chemistry)
- 7. Max Born (1882-1970) 1954 (physics)

Probing the Equation of State

with

Neutrinos from Core-collapse Supernovae (?)

Contents:

- Motivation
- Modeling core collapse supernovae
- Supernova phenomenology
- Equation of state dependence of the neutrino signal
- Summary

Constraints (?)

A neutron stars is born in a core-collapse supernova explosion as hot & lepton-rich protoneutron star (PNS)

PNSs develop (**deleptonize & cool**) towards neutron stars via the emission of neutrinos of all flavors for about 10–30 s

Some insights from SN1987A:

 $E_{expl} \sim 10^{51} \mbox{ erg}$, $E_{\nu} \sim 3 \ x \ 10^{53} \mbox{ erg}$

All current supernova models (that include "accurate" neutrino transport !!!) are in agreement with SN1987A

Neutrino detection – current and future

Supernova equation of state

Conditions:

 $T \simeq 10^{-2} - 50 \text{ MeV}$ $\rho \simeq 0 - 2 \times n_0$ $Y_e \simeq 0.01 - 0.6$ (charge fraction/density)

Extends beyond a "simple" relation between pressure and energy

Nuclear clustering; ²H, ³H, ³He, ⁴He

Mott-transition to homogeneous phase

Nuclear medium modifies nucleon properties/nuclear masses (binding energy shifts)

TF. et al.,(2011) ApJS 194, 39

Modeling core-collapse supernovae

General picture

Core-collapse supernova converts iron-core of massive star into protoneutron star

Binding energy gain available in form of neutrinos of all flavors

Strong gravity of PNS requires general relativity

Misner & Sharp (1964) PhyRev.136, 571 Lindquist (1966) AnnPhys.37, 487

Neutrino transport . .

Neutrinos are light-like geodesics in curved spacetime; massless ultra-relativistic particles.

$$F_{\nu}(t, \vec{x}, \vec{v}) \longrightarrow F_{\nu}(t, a, \mu = \cos \theta, E) = \frac{f_{\nu}(t, a, \mu, E)}{\rho}$$

 $dN_{\nu} = F_{\nu}(t, a, \mu, E) E^2 dE d\mu da$

$$\begin{aligned} \frac{\partial F}{\alpha \partial t}(\mu, E) &= -\frac{\mu}{\alpha} \frac{\partial}{\partial a} \left(4\pi r^2 \alpha \rho F\right) \\ &- \Gamma\left(\frac{1}{r} - \frac{1}{\alpha} \frac{\partial \alpha}{\partial r}\right) \frac{\partial}{\partial \mu} \left[\left(1 - \mu^2\right) F\right] \\ &- \left(\frac{\partial \ln \rho}{\alpha \partial t} + \frac{3u}{r}\right) \frac{\partial}{\partial \mu} \left[\mu \left(1 - \mu^2\right) F\right] \\ &+ \mu \Gamma \frac{1}{\alpha} \frac{\partial \alpha}{\partial r} \frac{1}{E^2} \frac{\partial}{\partial E} \left(E^3 F\right) \\ &- \left[\mu^2 \left(\frac{\partial \ln \rho}{\alpha \partial t} + \frac{3u}{r}\right) - \frac{u}{r}\right] \frac{1}{E^2} \frac{\partial}{\partial E} \left(E^3 F\right) \\ &+ \left.\frac{\partial F}{\alpha \partial t}\right|_{coll} (\mu, E) \end{aligned}$$

Liebendörfer et al., (2004) ApJS 150, 263

propagation of the neutrinos along geodesics with changing local angle $\boldsymbol{\mu}$

Doppler shift and the angular aberration between adjacent comoving observers for $\mu \neq 0$

red/blueshift spectra

Collision integral

Mezzacappa & Bruenn (1993) ApJ 405, 669 Mezzacappa & Bruenn (1993) ApJ 410, 740

$$\frac{\partial F}{\alpha \partial t}(\mu, E) \bigg|_{\text{collision}} = j(E) \left(\frac{1}{\rho} - F(\mu, E)\right) - \frac{1}{\lambda(E)} F(\mu, E)$$

emissivity

opacity/absorptivity

 $\begin{array}{l} e^- + p \leftrightarrows n + \nu_e \\ e^- + \langle A, Z \rangle \leftrightarrows \langle A, Z - 1 \rangle + \nu_e \\ \end{array}$ Juodagalvis et al. (2010), NPA 848, 454 $e^+ + n \leftrightarrows p + \bar{\nu}_e$

Collision integral

Mezzacappa & Bruenn (1993) ApJ 405, 669 Mezzacappa & Bruenn (1993) ApJ 410, 740

$$\begin{split} \frac{\partial F}{\alpha \partial t}(\mu, E) \Big|_{\text{collision}} &= j(E) \left(\frac{1}{\rho} - F(\mu, E)\right) - \frac{1}{\lambda(E)} F(\mu, E) \\ &+ \left. \frac{1}{c} \frac{E^2}{(h \, c)^3} \int d\mu' R_{\nu N}(\mu', \mu, E) F(\mu', E) - \frac{1}{c} \frac{E^2 F(\mu, E)}{(h \, c)^3} \int d\mu' R_{\nu N}(\mu', \mu, E) \right. \\ &+ \left. \frac{1}{c} \frac{E^2}{(h \, c)^3} \left(\frac{1}{\rho} - F(\mu, E)\right) \int d\mu' \, dE' \, E'^2 \, R_{\nu e^{\pm}}^{\text{IN}}(\mu, \mu', E, E') \, F(\mu', E') \right. \\ &- \left. \frac{1}{c} \frac{E^2}{(h \, c)^3} F(\mu, E) \int d\mu' \, dE' \, E'^2 \, R_{\nu e^{\pm}}^{\text{OUT}}(\mu, \mu', E, E') \, \left(\frac{1}{\rho} - F(\mu', E')\right) \right. \end{split}$$

pair reactions

Charged current

 $e^- + p \leftrightarrows n + \nu_e$ $e^- + \langle A, Z \rangle \leftrightarrows \langle A, Z - 1 \rangle + \nu_e$ Juodagalvis et al. (2010), NPA 848, 454

 $e^+ + n \leftrightarrows p + \bar{\nu}_e$

scattering
$$\begin{cases} \nu + N \rightleftharpoons \nu + N \quad (N = n, p) \\ \nu + \langle A, Z \rangle \rightleftharpoons \nu + \langle A, Z \rangle \end{cases}$$

 $\nu + e^{\pm} \rightleftharpoons \nu + e^{\pm}$

 $e^- + e^+ \rightleftharpoons \nu + \bar{\nu}$ $N + N \rightleftharpoons N + N + \nu + \bar{\nu} \ (N = n, p,)$ Hannestadt & Raffelt, (1998), ApJ 507, 339

$$\nu_e + \bar{\nu}_e \rightleftharpoons \nu_{\mu/\tau} + \bar{\nu}_{\mu/\tau}$$

 $\langle A, Z \rangle^* \rightleftharpoons \langle A, Z \rangle + \nu + \bar{\nu}$

Fuller & Meyer (1991) ApJ 376, 701 TF. et al. (2013), PRC 88, 065804

Neutrino opacity and EoS

Here: $S_V = S_A \equiv S(q_0, q)$ (density and spin response functions)

Lowest order medium modification of the weak rate; depends on the EoS (symmetry energy):

 μ_e

$$q_0 = E_\nu - E_e \ , \qquad q = \mathbf{p}_\nu - \mathbf{p}_e$$

$$S(q_0, q) = 4\pi \int \frac{d^3 p_n}{(2\pi\hbar c)^3} \delta(q_0 + E_n - E_p) f_n(E_n) (1 - f_p(E_p))$$

 $1/\lambda(E_{\nu_e}) = \frac{G_F^2 V_{ud}^2}{\pi \hbar c} (g_V^2 + 3g_A^2) \int \frac{d^3 p_e}{(2\pi \hbar c)^3} (1 - F_e(E_e)) S(q_0, q)$

$$E_n = \frac{\mathbf{p}_n^2}{2\,m_n^*} + m_n^* + \boldsymbol{U_n}$$

$$U_n - U_p \propto S^F(T, \rho)$$

$$E_{p} = \frac{\mathbf{p}_{p}^{2}}{2 m_{p}^{*}} + m_{p}^{*} + U_{p}$$

Roberts et al., (2012) PRC 86, 065803 Horowitz et al., (2012) PRC 86, 065806 Martinez-Pinedo & TF et al., (2012) PRL109, 251104

Core-collapse supernova phenomenology

Stellar core collapse

 $(Y_e = n_p/n_B)$ $(Y_e < 0.5 : neutron excess) \longrightarrow M_{core} > M_{Ch} \simeq 1.44 \left(\frac{Y_e}{0.5}\right)^2 M_{\odot}$ $(Y_e > 0.5 : neutron difficient)$

Implosion of the stellar core due to pressure loss; triggered from ecaptures on protons bound in nuclei

$$e^{-} + {}^{56}\text{Mn} \longrightarrow {}^{56}\text{Fe} + \nu_{e} \\ e^{-} + {}^{56}\text{Fe} \longrightarrow {}^{56}\text{Co} + \nu_{e} \\ e^{-} + {}^{56}\text{Co} \longrightarrow {}^{56}\text{Ni} + \nu_{e} \\ e^{-} + {}^{56}\text{Ni} + \nu_{e} \\ e^{-} + {}^{56}\text{Co} \longrightarrow {}^{56}\text{Ni} + \nu_{e} \\ e^{-} + {}^{56}\text{Co} \longrightarrow {}^{56}\text{Ni} + \nu_{e} \\ e^{-} + {}^{56}\text{Co} \longrightarrow {}^{56}\text{Ni} + \nu_{e} \\ e^{-} + {}^{56}\text{Ni} + \nu_{e} \\ e^{-$$

$$e^- + \langle A, Z \rangle \longrightarrow \langle A, Z - 1 \rangle + \nu_e$$

Collapsing stellar core neutronizes; electron fraction drops; collapse proceeds adiabatically/ supersonically

Stellar core collapse

 $(Y_e = n_p/n_B)$ $(Y_e < 0.5 : neutron excess) \longrightarrow M_{core} > M_{Ch} \simeq 1.44 \left(\frac{Y_e}{0.5}\right)^2 M_{\odot}$ $(Y_e > 0.5 : neutron difficient)$

Implosion of the stellar core due to pressure loss; triggered from ecaptures on protons bound in nuclei

$$e^{-} + {}^{56}\text{Mn} \longrightarrow {}^{56}\text{Fe} + \nu_{e} \\ e^{-} + {}^{56}\text{Fe} \longrightarrow {}^{56}\text{Co} + \nu_{e} \\ e^{-} + {}^{56}\text{Co} \longrightarrow {}^{56}\text{Ni} + \nu_{e} \\ e^{-} + {}^{56}\text{Ni} + \nu_{e} \\ e^{-} + {}^{56}\text{Co} \longrightarrow {}^{56}\text{Ni} + \nu_{e} \\ e^{-} + {}^{56}\text{Co} \longrightarrow {}^{56}\text{Ni} + \nu_{e} \\ e^{-} + {}^{56}\text{Co} \longrightarrow {}^{56}\text{Ni} + \nu_{e} \\ e^{-} + {}^{56}\text{Ni} + \nu_{e} \\ e^{-$$

$$e^- + \langle A, Z \rangle \longrightarrow \langle A, Z - 1 \rangle + \nu_e$$

Collapsing stellar core neutronizes; electron fraction drops; collapse proceeds adiabatically/ supersonically

Neutrino signal – infall phase

nuclear de-excitations $\langle A, Z \rangle^* \longrightarrow \langle A, Z \rangle + \nu + \overline{\nu}$

Fuller & Meyer (1991), ApJ 376, 701 TF et al.,(2013) PRC 88, 065804

Supernova shock propagation across the sphere of last inelastic scattering (v-sphere)

v_e-deleptonization burst is generic feature

charged current reactions

 $e^{-} + p \quad \leftrightarrows \quad n + \nu_{e}$ $e^{+} + n \quad \leftrightarrows \quad p + \bar{\nu}_{e}$

Supernova evolution in a nutshell

Collapse halts at saturation density where the core bounces back with the **formation of shock wave**

Rapid shock acceleration to radii of about 100–200 km

Still gravitationally unstable outer layers of the stellar core; stellar collapse continues

Shock stalling due to energy losses – no prompt explosions

Later evolution determined from energy-balance due to:

- (a) ram pressure from mass accretion; infalling material ahead of shock
- (b) energy liberation (transport) deposition behind accretion shock

Neutrino signal – post-bounce

charged current reactions $e^- + p \iff n + \nu_e$ $e^+ + n \iff p + \overline{\nu}_e$

 $\begin{array}{rcl} \text{pair processes} \\ e^- + e^+ & \leftrightarrows & \nu + \bar{\nu} \\ N + N & \leftrightarrows & N + N + \nu + \bar{\nu} \\ \nu_e + \bar{\nu}_e & \leftrightarrows & \nu_{\mu/\tau} + \bar{\nu}_{\mu/\tau} \end{array}$

elastic scattering $\nu + N \iff \nu' + N$

 $\begin{array}{rl} \text{inelastic scattering} \\ \nu + e^{\pm} &\leftrightarrows \nu' + e^{\pm} \end{array}$

Neutrino-energy hierarchy reflects strength of coupling to matter

Triggering the explosion onset

General concept: Energy liberation from central protoneutron star (PNS) to standing shock

Continuous energy deposition that drives shock to increasingly larger radii

(timescale: ~100 milliseconds)

Ejection of the stellar mantle; leaves *bare* PNS behind

Yam & Leonard (2009) Nature 458 A massive hypergiant star as the progenitor of the supernova SN 2005gl

"... was a single star and that it indeed vanished following the explosion of SN 2005gl ... On the basis of its luminosity, such a star is likely to be an extreme member of the group of luminous blue variable stars (LBVs), which are thought to be very massive (>50 M_{solar}) short-lived stars."

Triggering the explosion onset

General concept: Energy liberation from central protoneutron star (PNS) to standing shock

Continuous energy deposition that drives shock to increasingly larger radii

(timescale: ~100 milliseconds)

Ejection of the stellar mantle; leaves *bare* PNS behind

Yam & Leonard (2009) Nature 458 A massive hypergiant star as the progenitor of the supernova SN 2005gl

"... was a single star and that it indeed vanished following the explosion of SN 2005gl ... On the basis of its luminosity, such a star is likely to be an extreme member of the group of luminous blue variable stars (LBVs), which are thought to be very massive (>50 M_{solar}) short-lived stars."

Neutrino-driven supernova success stories

Not "complete" story yet - supernova problem not fully solved !

Magnetically-driven supernova explosions

Burrows et al., (2007) ApJ 669, 585

Winteler et al., (2013) ApJ 750, L22

Rapid rotation and amplification of magnetic field (Le Banc & Wilson (1970) ApJ 161, 542)

Energetic bi-polar explosions

May explain existence of magnetars

Caveat: requires very high core spin and/or initial magnetic field of stellar core

Perhaps few rare events

Associated with production of *r*-process elements:

PNS deleptonization

Beyond supernova explosion onset – once the stellar mantle is ejected . . . The supernova story continues for more than 10 seconds! Mildly independent from details of the supernova explosion mechanism Can be modeled in spherical symmetry

low-mass outflow: "v-driven wind" (mass ejection from PNS surface)

> neutrino heating at PNS surface

PNS deleptonization (neutrino diffusion)

Pons et al., (1999) ApJ 513, 780

PNS deleptonization

PNS deleptonization

Neutrino signal

Current models predict small spectral difference;

$$Y_{e} \simeq \left(1 + \frac{\varepsilon_{\bar{\nu}_{e}} - 2Q + 1.2Q^{2}/\varepsilon_{\bar{\nu}_{e}}}{\varepsilon_{\nu_{e}} - 2Q + 1.2Q^{2}/\varepsilon_{\nu_{e}}}\right)^{-1}$$
(similar neutrino luminosities)
$$\left\langle \varepsilon_{\bar{\nu}_{e}} \right\rangle - \left\langle \varepsilon_{\nu_{e}} \right\rangle \left\{ \begin{array}{l} \gtrsim 5 \text{ MeV} & (Y_{e} < 0.5) \\ \text{neutron rich} \end{array} \right.$$

$$\left\langle \varepsilon_{\bar{\nu}_{e}} \right\rangle - \left\langle \varepsilon_{\nu_{e}} \right\rangle \left\{ \begin{array}{l} \gtrsim 5 \text{ MeV} & (Y_{e} > 0.5) \\ \text{neutron rich} \end{array} \right.$$

$$\left(\left\langle \varepsilon_{\nu} \right\rangle = \left\langle E_{\nu}^{2} \right\rangle / \left\langle E_{\nu} \right\rangle \right)$$

Light neutron-capture elements 38<Z<45:

Martinez-Pinedo & TF et al.,

(integrated nucleosynthesis)

Equation of state dependence of the neutrino signal

Geometric approach; modifying the available volume:

$$V_i = V \phi_i$$

$$\phi_i = 1 - \sum_j v_j n_j$$

Excluded volume parameter:

$$v \equiv v_n = v_p$$

$$\phi(\rho; \mathbf{v}) = \exp\left\{-\frac{\mathbf{v}|\mathbf{v}|}{2}\left(\rho - \rho_0\right)^2\right\}$$

(Gauss-functional)

 $\begin{array}{l} {\rm DD2-RMF \ parameters:}\\ K=243 \ {\rm MeV}\\ S=31.67 \ {\rm MeV}\\ L=55.04 \ {\rm MeV} \end{array}$

TF (2016) EPJA 52, 54

(Evolution of central density and temperature)

Geometric approach; modifying the available volume:

$$V_i = V \phi_i$$

$$\phi_i = 1 - \sum_j v_j n_j$$

Excluded volume parameter:

$$\mathbf{v} \equiv \mathbf{v}_n = \mathbf{v}_p$$

$$\phi(\rho; \mathbf{v}) = \exp\left\{-\frac{\mathbf{v}|\mathbf{v}|}{2}\left(\rho - \rho_0\right)^2\right\}$$

(Gauss-functional)

TF (2016) EPJA 52, 54

Supernova neutrino signal is insensitive to supra-saturation density EOS

Geometric approach; modifying the available volume:

$$V_i = V \phi_i$$

$$\phi_i = 1 - \sum_j v_j n_j$$

Excluded volume parameter:

$$v \equiv v_n = v_p$$

$$\phi(\rho; \mathbf{v}) = \exp\left\{-\frac{\mathbf{v}|\mathbf{v}|}{2} \left(\rho - \rho_0\right)^2\right\}$$

(Gauss-functional)

Affects only supersaturation density EoS; all other nuclear matter properties remain unchanged

TF (2016) EPJA 52, 54

Supernova neutrino signal is insensitive to supra-saturation density EOS

Geometric approach; modifying the available volume:

$$V_i = V \phi_i$$

$$\phi_i = 1 - \sum_j v_j n_j$$

Excluded volume parameter:

$$v \equiv v_n = v_p$$

$$\phi(\rho; \mathbf{v}) = \exp\left\{-\frac{\mathbf{v}|\mathbf{v}|}{2}\left(\rho - \rho_0\right)^2\right\}$$

(Gauss-functional)

Affects only supersaturation density EoS; all other nuclear matter properties remain unchanged

Quark-hadron phase transition

Sagert & TF et al.,(2009) PRL 102, 081101 TF et al., (2011) ApJS 194, 28

Quark matter EoS: bag model with fixed bag pressure

Transition from some nuclear model (TM1)

Hadron-quark transition region: extended phase of instability; large latent heat

Quark-hadron phase transition

Sagert & TF et al. (2009), PRL 102, 081101

Quark-hadron phase transition

Sagert & TF et al. (2009), PRL 102, 081101

Neutrino signal from core-collapse supernovae mildly insensitive to supra-saturation density EoS

Great progress in modeling, in particular in view of multidimensional nature

Neutrino signal from core-collapse supernovae mildly insensitive to supra-saturation density EoS

Great progress in modeling, in particular in view of multidimensional nature

Massive star explosions (canonical) cannot explain galactic enrichment of **heavy** neutron-capture elements; 38<Z<45

Puzzle at low metallicity (?) – chemical evolution models:

Yuan et al., (2016) MNRAS 456, 3253

star observations (HD 122563)

Neutrino signal from core-collapse supernovae mildly insensitive to supra-saturation density EoS

Great progress in modeling, in particular in view of multidimensional nature

Massive star explosions (canonical) cannot explain galactic enrichment of **heavy** neutron-capture elements; 38<Z<45

Puzzle at low metallicity (?) – chemical evolution models:

Role of light nuclear clusters (?) Requires consideration of associated weak processes consistent with EoS

 $\nu_e^{2} \mathrm{H} \rightleftharpoons p \, p \, e^{-}$ $\bar{\nu}_e \,^2 \mathrm{H} \rightleftharpoons n \, n \, e^+$ $\nu_e n n \rightleftharpoons {}^2 \mathrm{H} e^ \bar{\nu}_e p p \rightleftharpoons {}^2\mathrm{H} e^+$ $\nu_e {}^3\mathrm{H} \rightleftharpoons n \, p \, p \, e^ \bar{\nu}_e^{3} \mathrm{H} \rightleftharpoons n n n e^+$ $\nu_e {}^{3}\mathrm{H} \rightleftharpoons {}^{3}\mathrm{He} e^{-}$ $\bar{\nu}_e {}^3\mathrm{He} \rightleftharpoons {}^3\mathrm{He} e^+$ $\nu^2 \mathbf{H} \rightleftharpoons p \, n \, \nu$ $\nu^{2} \mathrm{H} \rightleftharpoons^{2} \mathrm{H} \nu$ $\nu {}^{3}\mathrm{H} \rightleftharpoons {}^{3}\mathrm{H} \nu$ ν^{3} He \rightleftharpoons^{3} He ν

Neutrino signal from core-collapse supernovae mildly insensitive to supra-saturation density EoS

Great progress in modeling, in particular in view of multidimensional nature

Massive star explosions (canonical) cannot explain galactic enrichment of heavy neutron-capture elements; 38<Z<45

Puzzle at low metallicity (?) – chemical evolution models:

Role of light nuclear clusters (?) Requires consideration of associated weak processes consistent with EoS

Any chance for quark matter (???) Develop more sophisticated (microscopic) quark matter EoS; chiral physics, finite temperatures and isospin asymmetry

$$M_{\rm max} \simeq 2 \, {\rm M}_{\odot}$$

Klähn & TF (2015) ApJ 810, 8

Neutrino signal from core-collapse supernovae mildly insensitive to supra-saturation density EoS

Great progress in modeling, in particular in view of mult dimensional nature

Massive star explosions (canonical) cannot explain generation enrichment of heavy neutron-capture elements; 38<Z<45

Puzzle at low metallicity (?) - chemical ev models:

Role of light nuclear clusters (?) Require s consideration of associated weak processes consident whe EoS

Any chance for quar (???) Develop more sophisticated (microscopic) quark matter EoS; chiral physics, finite temperatures and isospin asymmetry collaboration with:

- D. Blaschke M. Hempel T. Klähn M. Liebendörfer K. Langanke A. Lohs
- G. Martínez-Pinedo
- G. Röpke
- F.-K. Thielemann
- Y. Suwa
- S. Typel
- M. R. Wu

Neutrino detection

Neutrino cross section in a water target detector

(G.G.Raffelt)

The end of a massive star ($\gtrsim 9 M_{\odot}$)

Implosion of the stellar core due to pressure loss; triggered from e⁻ captures on protons bound in nuclei

$$e^{-} + {}^{56}\text{Mn} \longrightarrow {}^{56}\text{Fe} + \nu_{e}$$

$$e^{-} + {}^{56}\text{Fe} \longrightarrow {}^{56}\text{Co} + \nu_{e}$$

$$e^{-} + {}^{56}\text{Co} \longrightarrow {}^{56}\text{Ni} + \nu_{e}$$

$e^- + \langle A, Z \rangle \longrightarrow \langle A, Z - 1 \rangle + \nu_e$

Collapsing stellar core neutronizes; electron fraction drops

$$Y_e = n_p/n_{\rm B}$$

.

 $Y_e > 0.5$: neutron rich $Y_e > 0.5$: proton rich

 $M_{Core} > M_{CH}$

Stellar core collapse

Stellar core collapse

Core bounce and shock formation

Post bounce mass accretion

0.15

 $\overline{\nu}_{e}$

 ν_e

vBag approach to quark matter

Neutrino signal in multi-dim'l simulations

Presence of millisecond variations of the neutrino signal

Induced from convection and associated shock oscillations

Persist even in detection on Earth

May allow distinction of strong bipolar explosions

Production of heavy-element

Some relevant current equation of state constraints

Lattimer & Lim (2013) ApJ 771, 14

Antoniadis et al.,(2013) Science 340, 448