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- baryon octet: p, n, Λ, Σ+, Σ0, Σ-, Ξ0, Ξ-

- up, down, strange quark

- nuclear physics constraints:

● vacuum masses of baryons and mesons

● pion and kaon decay constants

● saturation density (ρ0=0.15 fm-3)

● binding energy at saturation (B=-16.00 MeV)

● nucleon effective mass at saturation (M*N=0.67 MN)

● compressibility at saturation (K=297.32 MeV)

● symmetry energy at saturation (Esym=32.50 MeV)

● hyperon potentials at saturation (UΛ=-28 MeV, UΣ=5.35 MeV, UΞ=-18.36 MeV)

 Ingredients of Description:
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Non-Linear Realization SU(3) Sigma Model:

- constructed from symmetry relations → allow it to be chirally
invariant → masses from interaction with medium

- σ signals chiral symmetry restoration

- pseudo-scalar mesons as parameters of chiral transformation

- describes hadrons interacting
via meson exchange
(, , , , , )

- MFT approximation

Dexheimer et al. Astrophys.J. 2008
Negreiros et al. Phys. Rev. C 2010
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- new degrees of freedom: quarks: u, d, s

 Deconfinement:
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- hadrons + quarks

- effective masses

- 1st order phase
transitions or crossovers

- order parameters , 

- potential for 
(deconfinement)

- liquid-gas phase transition

HADRONIC PHASE
WITH BROKEN

CHIRAL SYMMETRY

QUARK PHASE
WITH RESTORED

CHIRAL SYMMETRY

 Deconfinement in Model:
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data
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data

Dexheimer et al. Phys. Rev. C 2010
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universe
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neutron star     
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 General Picture:
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 Water Phase Diagram:
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                                 physical
                                     region

ρB=λρB
Q+(1−λ)ρB

H

Hempel et al. Phys. Rev. C 2013

- absence / presence of mixture of phases: surface tension ???

- “mixed” quantities like

                                                                  physical
   region

 Neutron Star Matter: Local and Global
Charge Neutrality:
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                                 physical
                                     region

     FSUgold
   RMF model

- more than one globally conserved charge within 2 macroscopic phases
within a Coulomb-less model: baryon #, electric charge

- local concentration of a charge varies during phase transition

- same chemical potential (assoc. to charge) in both phases (μq)

- but non-congruent features vanish around critical point

- different from symmetric matter liquid-gas

 Non-congruent Phase Transitions:
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  Clausius-Clapeyron equation

- sqII > sh
I , ρBq

II > ρBh
I

  so dP/dT < 0 for deconfinement!

- sL
II < sG

I , ρBL
II > ρBG

I

  so dP/dT > 0 for L-G!

 More Comparison with Liquid-Gas:
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physical
   region

- different behavior at T=0 for hadronic matter and nuclei:
Fermi-Dirac statistics

- all features vanish around critical point for deconfinement
phase transitions

 More Comparison with Liquid-Gas:
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- heavy ion collisions (S=0)

- more than one conserved
charge (baryon #, isospin)
but a congruent phase
transition! (μq=0)

- dP/dT < 0

 Symmetric Matter:

azeotropic
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- HI with YQ=0.3

- more than one conserved
charge (baryon #, charge
fraction) non-congruent
phase transition!

- dP/dT < 0?

 Asymmetric Matter:

forced
congruent
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- in mixture of phases                          , since
is the only chemical potential which is
the same in both phases (fc case)

- important around phase transition

- HI forced congruent inside mixed region

- not relevant for
charge neutral case

 Modified Chemical Potential:
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 Test 1: Hydrostatic Equilibrium

- hyperon suppression

- hybrid massive stars

- no stable star with pure quark matter

- mixed phase of up to 2 km in star
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Perturbative QCD:

- figure from: Fraga, Kurkela and Vuorinen, Astrophys. J. 2014

- 3-flavor QGP at zero temperature including β-equilibrium and charge
neutrality

- band reflects
uncertainties

- Bag model
failure
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Test 2: Perturbative limit comparison

- for T=0 things look good!

- larger temperature results coming soon ...
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- axisymmetric poloidal magnetic field

- anisotropic energy-
momentum tensor
due to:

● pure B contribution

● B in EOS (AMM)

● magnetization

- B in EOS
determined
self-consistently for
different magnetic
dipole moments μ

Franzon et al. Mon. Not. Roy. Astron. Soc. 2016

r
p
/r

eq
 ~ 0.5

Bonazzola et al. Astron. Astrophys. 1993

central enthalpy (c 2)

 For fun: Maxwell-Einstein Equations
(Lorene)
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- different compositions for different magnetic dipole moments μ 
(magnetic field distributions) at fixed baryon mass

- magnetic field decay accompanied by deconfinement?

 Population
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Conclusions and Outlook

- More investigation of high density part of phase diagram is required!
  Signature for 1st order phase transition?

- Description of compact stars requires finite temperature description

- We need a realistic EOS that covers large portion of phase diagram
and provides population for simulations: only a unified EOS (usually
used for L-G transitions) description of phases can provide critical
points and crossovers

- congruent/not-congruent deconfinement phase transitions still being
understood

- magnetic fields modify the structure and population of stars

- we still need to include neutrino trapping at finite temperature

- we still need to include magnetic field effects at finite temperature

- we still need to include quark pairing effects
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