Deconfinement Phase Transition in Hot and Dense Matter

Veronica Dexheimer,

J. Roark, B. Franzon, M. Hempel, I. Iosilevskiy, R. Negreiros and S. Schramm

* Ingredients of Description:

- baryon octet: p, n, Λ , Σ^+ , Σ° , Σ^- , Ξ° , Ξ^-
- up, down, strange quark
- nuclear physics constraints:
 - vacuum masses of baryons and mesons
 - pion and kaon decay constants
 - saturation density ($\rho_0=0.15 \text{ fm}^{-3}$)
 - binding energy at saturation (B=-16.00 MeV)
 - nucleon effective mass at saturation ($M_{N}^{*}=0.67 M_{N}$)
 - compressibility at saturation (K=297.32 MeV)
 - symmetry energy at saturation (E_{sym} =32.50 MeV)
 - hyperon potentials at saturation (U_{Λ} =-28 MeV, U_{Σ} =5.35 MeV, U_{Ξ} =-18.36 MeV)

* Non-Linear Realization SU(3) Sigma Model:

- constructed from symmetry relations \rightarrow allow it to be chirally invariant \rightarrow masses from interaction with medium

- σ signals chiral symmetry restoration
- pseudo-scalar mesons as parameters of chiral transformation

* Deconfinement:

increase of density ρ_B

- new degrees of freedom: quarks: u, d, s

* Deconfinement in Model:

- hadrons + quarks
- effective masses
- 1st order phase transitions or crossovers
- order parameters σ , Φ
- potential for Φ
 (deconfinement)
- liquid-gas phase transition

$$m_{b}^{*} = g_{b\sigma}\sigma + g_{b\delta}\tau_{3}\delta + g_{b\zeta}\zeta + \delta m_{b} + g_{b\Phi}\Phi^{2}$$
$$m_{q}^{*} = g_{q\sigma}\sigma + g_{q\delta}\tau_{3}\delta + g_{q\zeta}\zeta + \delta m_{q} + g_{q\Phi}(1 - \Phi)$$

$$U = (a_0 T^4 + a_1 \mu^4 + a_2 T^2 \mu^2)\phi^2 + a_3 T_0^4 \ln(1 - 6\phi^2 + 8\phi^3 - 3\phi^4)$$
⁵

* General Picture:

Dexheimer et al. Phys. Rev. C 2010

* Water Phase Diagram:

- * Neutron Star Matter: Local and Global Charge Neutrality:
 - absence / presence of mixture of phases: surface tension ???
 - "mixed" quantities like $\rho_B = \lambda \rho_B^Q + (1 \lambda) \rho_B^H$

* Non-congruent Phase Transitions:

- more than one globally conserved charge within 2 macroscopic phases within a Coulomb-less model: baryon #, electric charge
- local concentration of a charge varies during phase transition
- same chemical potential (assoc. to charge) in both phases (μ_q)
- but non-congruent features vanish around critical point
- different from symmetric matter liquid-gas

* More Comparison with Liquid-Gas:

Clausius-Clapeyron equation

$$\frac{dP}{dT} = \frac{s^I - s^{II}}{1/\rho_B^I - 1/\rho_B^{II}}$$

- $s_q^{II} > s_h^{I}$, $\rho_{Bq}^{II} > \rho_{Bh}^{I}$

so dP/dT < o for deconfinement!

 $- s_{L}^{II} < s_{G}^{I}, \rho_{BL}^{II} > \rho_{BG}^{I}$ so dP/dT > 0 for L-G!

- * More Comparison with Liquid-Gas:
 - different behavior at T=0 for hadronic matter and nuclei: Fermi-Dirac statistics
 - all features vanish around critical point for deconfinement phase transitions

- * Symmetric Matter:
 - heavy ion collisions (S=0)
 - more than one conserved charge (baryon #, isospin) but a congruent phase transition! (µ_q=0)

- dP/dT < o

200

150

100

50

0

10⁻¹

2

5

 $\rho_{\rm B}$ [fm⁻³]

T [MeV]

- * Asymmetric Matter:
 - HI with $Y_0 = 0.3$
 - more than one conserved charge (baryon #, charge fraction) non-congruent phase transition!

- dP/dT < o?

200

150

100

50

0

0

HIAS

HIAS

200

HIAS_fc

400

600

forced

congruent

800 1000 1200 1400

T [MeV]

- * Modified Chemical Potential:
 - in mixture of phases $\tilde{\mu} = Y_Q \mu_Q + \mu_B$, since $\tilde{\mu}^I$ is the only chemical potential which is the same in both phases (fc case)

$$= \frac{\partial F^{I}}{\partial B^{I}} \bigg|_{T,V^{I},S^{I},Y^{I}_{Q}}$$
$$= \mu^{I}_{B} + Y^{I}_{Q}\mu^{I}_{Q} ,$$

- important around phase transition
- HI forced congruent inside mixed region
- not relevant for charge neutral case

- * Test 1: Hydrostatic Equilibrium
 - hyperon suppression
 - hybrid massive stars
 - no stable star with pure quark matter
 - mixed phase of up to 2 km in star

- * Perturbative QCD:
 - figure from: Fraga, Kurkela and Vuorinen, Astrophys. J. 2014
 - 3-flavor QGP at zero temperature including β -equilibrium and charge neutrality

 $\mu_{\rm B}$ [GeV]

- band reflects uncertainties - Bag model failure 0.8 1 0.0 B/B 0.4 Free quarks Bag model, $B = (150 \text{MeV})^4$ 0.2 pQCD 0 2 5 3 0 1 4

6

* Test 2: Perturbative limit comparison

- for T=0 things look good!
- larger temperature results coming soon ...

* For fun: Maxwell-Einstein Equations (Lorene)

* Population

- different compositions for different magnetic dipole moments μ (magnetic field distributions) at fixed baryon mass
- magnetic field decay accompanied by deconfinement?

- Conclusions and Outlook
 - More investigation of high density part of phase diagram is required! Signature for 1st order phase transition?
 - Description of compact stars requires finite temperature description

- We need a realistic EOS that covers large portion of phase diagram and provides population for simulations: only a unified EOS (usually used for L-G transitions) description of phases can provide critical points and crossovers

- congruent/not-congruent deconfinement phase transitions still being understood

- magnetic fields modify the structure and population of stars
- we still need to include neutrino trapping at finite temperature
- we still need to include magnetic field effects at finite temperature
- we still need to include quark pairing effects