Isoscalar and Isovector Densities and Symmetry Energy

Pawel Danielewicz,¹ Pardeep Singh^{1,2} and Jenny Lee³

¹Natl Superconducting Cyclotron Lab, Michigan State U, ²Deenbandhu Chhotu Ram U Science & Techn, Murthal, India and ³U of Hong Kong

INT-16-2b Program Workshop Laboratory and Astronomical Observations of Dense Matter

July 18-22, 2016, University of Washington, Seattle

A D N A B N A B N A

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only: $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + ...$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + \dots$

In nuclear practice, analyticity requires shell-effect averaging! Charge invariance: invariance of nuclear interactions under rotations in *n-p* space

イロト イヨト イヨト イ

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only: $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + \dots$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + ...$

In nuclear practice, analyticity requires shell-effect averaging! Charge invariance: invariance of nuclear interactions under rotations in *n-p* space

イロト イヨト イヨト イ

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only: $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + \dots$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + ...$

In nuclear practice, analyticity requires shell-effect averaging!

Charge invariance: invariance of nuclear interactions under rotations in *n-p* space

イロト イヨト イヨト イ

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only: $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + \dots$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + ...$

In nuclear practice, analyticity requires shell-effect averaging! Charge invariance: invariance of nuclear interactions under rotations in *n*-*p* space

(日)

- Charge symmetry: $n \leftrightarrow p$ invariance
- Charge invariance: symmetry under rotations in n-p space
- Isospin doublets
- $p:(\tau,\tau_z) = (\frac{1}{2},\frac{1}{2})$ $p:(\tau,\tau_z) = (1,\frac{1}{2})$
- Net isospin

Isobars: Nuclei with the same A

- Charge symmetry: $n \leftrightarrow p$ invariance
- Charge invariance: symmetry under *rotations* in *n-p* space
- Isospin doublets
- $p:(\tau,\tau_z) = (\frac{1}{2},\frac{1}{2})$ $n:(\tau,\tau_z) = (\frac{1}{2},-\frac{1}{2})$

Net isospin

Isobars: Nuclei with the same A

Danielewicz, Singh, Lee

Charge Symmetry & Charge Invariance

- Charge symmetry: $n \leftrightarrow p$ invariance
- Charge invariance: symmetry under rotations in n-p space

Isospin doublets

 $p:(\tau,\tau_z) = (\frac{1}{2},\frac{1}{2})$ $n:(\tau,\tau_z) = (\frac{1}{2},-\frac{1}{2})$

Net isospin

$$\vec{T} = \sum_{i=1}^{A} \vec{\tau}_i$$

Nuclear states: $(T, T_z), T \ge |T_z| = \frac{1}{2}|N - Z|$

Energy in Uniform Matter

Conclusions

Importance of Slope

$$egin{split} rac{E}{A} &= rac{E_0}{A}(
ho) + S(
ho) \left(rac{
ho_n -
ho_
ho}{
ho}
ight)^2 \ S &\simeq a_a^V + rac{L}{3}rac{
ho -
ho_0}{
ho_0} \end{split}$$

In neutron matter: $\rho_{\rho} \approx 0 \& \rho_{n} \approx \rho.$ Then, $\frac{E}{A}(\rho) \approx \frac{E_{0}}{A}(\rho) + S(\rho)$ Pressure: $P = \rho^{2} \frac{d}{d\rho} \frac{E}{A} \simeq \rho^{2} \frac{dS}{d\rho} \simeq \frac{L}{3\rho_{0}} \rho^{2}$

Danielewicz, Singh, Lee

< ≣ >

Conclusions

Importance of Slope

$$egin{split} rac{E}{A} &= rac{E_0}{A}(
ho) + S(
ho) \left(rac{
ho_n -
ho_p}{
ho}
ight)^2 \ S &\simeq a_a^V + rac{L}{3}rac{
ho -
ho_0}{
ho_0} \end{split}$$

In neutron matter: $\rho_p \approx 0 \& \rho_n \approx \rho.$ Then, $\frac{E}{A}(\rho) \approx \frac{E_0}{A}(\rho) + S(\rho)$ Pressure:

$$\mathbf{P} = \rho^2 \frac{\mathrm{d}}{\mathrm{d}\rho} \frac{E}{A} \simeq \rho^2 \frac{\mathrm{d}S}{\mathrm{d}\rho} \simeq \frac{L}{3\rho_0} \rho^2$$

 $43 \lesssim L \lesssim 60 \, \mathrm{MeV}$??

Danielewicz, Singh, Lee

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global...Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Isoscalar formfactor for isovector density:

$$alpha_a(r) = rac{2a_a^V}{\mu_a} \left[
ho_n(r) -
ho_p(r)
ight]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effects, ρ 's as dynamic vbles: Hohenberg-Kohn function

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$

Isoscalar formfactor for isovector density:

$$\rho_a(r) = \frac{2a_a^V}{\mu_a} \left[\rho_n(r) - \rho_p(r) \right]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effects, ρ 's as dynamic vbles: Hohenberg-Kohn function

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Isoscalar formfactor for isovector density:

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on $\eta!$

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effects, ρ 's as dynamic vbles: Hohenberg-Kohn function

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Isoscalar formfactor for isovector density:

$$\rho_a(r) = rac{2a_a^V}{\mu_a} \left[
ho_n(r) -
ho_p(r)
ight]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on $\eta!$

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effects)

No shell-effects, ρ 's as dynamic vbles: Hohenberg-Kohn function

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Isoscalar formfactor for isovector density:

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on $\eta!$

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effects) No shell-effects, ρ 's as dynamic vbles: Hohenberg-Kohn function

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net density ρ usually parameterized w/Fermi function $\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 A^{1/3}$

Isovector density ρ_a ?? Related to $S(\rho)$!

In uniform matter

 $\mu_{a} = \frac{\partial E}{\partial (N-Z)} = \frac{\partial [S(\rho) \rho_{np}^{2}/\rho]}{\partial \rho_{np}} = \frac{2 S(\rho)}{\rho} \rho_{np}$

$$\Rightarrow \quad \rho_a = \frac{2a_a^V}{\mu_a} \, \rho_{np} = \frac{a_a^V \, \rho}{S(\rho)}$$

 \Rightarrow Hartree-Fock study of surface

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net density ρ usually parameterized w/Fermi function $\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 A^{1/3}$

Isovector density ρ_a ??

Related to $S(\rho)$!

In uniform matter

 $\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{\partial [S(\rho) \rho_{np}^{2} / \rho]}{\partial \rho_{np}} = \frac{2 S(\rho)}{\rho} \rho_{np}$

$$\Rightarrow
ho_a = rac{2a_a^V}{\mu_a}
ho_{np} = rac{a_a^V
ho}{S(
ho)}$$

 \Rightarrow Hartree-Fock study of surface

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net density ρ usually parameterized w/Fermi function $\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 A^{1/3}$

Isovector density ρ_a ?? In uniform matter

 $\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{\partial [S(\rho) \rho_{np}^{2} / \rho]}{\partial \rho_{np}} = \frac{2 S(\rho)}{\rho} \rho_{np}$

Related to $S(\rho)!$

$$\Rightarrow \quad \rho_a = \frac{2a_a^V}{\mu_a} \, \rho_{np} = \frac{a_a^V \, \rho}{S(\rho)}$$

 \Rightarrow Hartree-Fock study of surface

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net density ρ usually parameterized w/Fermi function $\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 A^{1/3}$

Isovector density ρ_a ?? Related to $S(\rho)$! In uniform matter

 $\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{\partial [S(\rho) \rho_{np}^{2} / \rho]}{\partial \rho_{np}} = \frac{2 S(\rho)}{\rho} \rho_{np}$

$$\Rightarrow \quad \rho_a = \frac{2a_a^V}{\mu_a} \rho_{np} = \frac{a_a^V \rho}{S(\rho)}$$

 \implies Hartree-Fock study of surface

Half-Infinite Matter in Skyrme-Hartree-Fock To one side infinite uniform matter & vacuum to the other

matter interior/exterior: $\phi(z) \propto \sin(k_z z + \delta(\mathbf{k}))$

 $\phi(z) \propto e^{-\kappa(\pmb{k})z}$

Discretization in k-space. Set of 1D HF eqs solved using Numerov's method until self-consistency:

 $-\frac{\mathrm{d}}{\mathrm{d}z}\frac{\hbar^2}{2m^*(z)}\frac{\mathrm{d}}{\mathrm{d}z}\phi(z) + \left(\frac{\hbar^2 k_{\perp}^2}{2m^*(z)} + U(z)\right)\phi(z) = \epsilon(\mathbf{k})\phi(z)$

PD&Lee, NPA818(09)36. Before: Farine et al, NPA338(80)86

Asymmetry Dependence of Net Density

Danielewicz, Singh, Lee

$$\rho_a = rac{2a_a^V}{\mu_a}\left(
ho_n -
ho_p
ight)$$

Half- ∞ matter results for different Skyrme interactions and asymmetries

PD&Lee NP818(09)36

Isovector Skin

Danielewicz, Singh, Lee

Invariant Densities

Data Analysis

Results f/different Skyrme ints in half- ∞ matter.

Isoscalar ($\rho = \rho_n + \rho_p$; blue) & isovector ($\rho_n - \rho_p$; green) densities displaced relative to each other.

As $S(\rho)$ changes, so does displacement.

Danielewicz, Singh, Lee

Results f/different Skyrme ints in half- ∞ matter.

Isoscalar ($\rho = \rho_n + \rho_p$; blue) & isovector ($\rho_n - \rho_p$; green) densities displaced relative to each other.

As $S(\rho)$ changes, so does displacement.

Danielewicz, Singh, Lee

Strategies for Independent Densities

Jefferson Lab Direct: $\sim p$ Interference: $\sim n$

PD elastic: $\sim p + n$ charge exchange: $\sim n - p$

Danielewicz, Singh, Lee

Why Isovector Rather than Neutron Skins Isovector skin: in no-curvature, no-shell-effect, no-Coulomb limit, the same for every nucleus!

Not suppressed by low (N - Z)/A!

Nucleon (Lane) optical potential in isospin space:

$$U = U_0 + \frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_4

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector skin ΔR from comparison of elastic and quasielastic

Why Isovector Rather than Neutron Skins Isovector skin: in no-curvature, no-shell-effect, no-Coulomb limit, the same for every nucleus! Not suppressed by low (N - Z)/A!

Nucleon (Lane) optical potential in isospin space:

$$U = U_0 + \frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_4

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector skin ΔR from comparison of elastic and quasielastic

Isovector skin: in no-curvature, no-shell-effect, no-Coulomb limit, the same for every nucleus! Not suppressed by low (N - Z)/A!

Nucleon (Lane) optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau - I_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_1

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector skin ΔR from comparison of elastic and quasielastic

Isovector skin: in no-curvature, no-shell-effect, no-Coulomb limit, the same for every nucleus! Not suppressed by low (N - Z)/A!

Nucleon (Lane) optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_1 Geometry usually assumed the same for U_0 and U_1 e.g. Koning & Delaroche NPA713(03)231 ?Isovector skin ΔR from comparison of elastic and quasiela (p.n)-to-IAS scattering?

Isovector skin: in no-curvature, no-shell-effect, no-Coulomb limit, the same for every nucleus! Not suppressed by low (N - Z)/A!

Nucleon (Lane) optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_1

Geometry usually assumed the same for U_0 and U_1 e.g. Koning & Delaroche NPA713(03)231 ?Isovector skin ΔR from comparison of elastic and quasielas (p,n)-to-IAS scattering?

Isovector skin: in no-curvature, no-shell-effect, no-Coulomb limit, the same for every nucleus! Not suppressed by low (N - Z)/A!

Nucleon (Lane) optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_1

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector skin ΔR from comparison of elastic and quasielastic (p,n)-to-IAS scattering?

Isovector skin: in no-curvature, no-shell-effect, no-Coulomb limit, the same for every nucleus! Not suppressed by low (N - Z)/A!

Nucleon (Lane) optical potential in isospin space:

$$U=U_0+\frac{4\tau T}{A} U_1$$

isoscalar potential $U_0 \propto \rho$, isovector potential $U_1 \propto (\rho_n - \rho_p)$ In elastic scattering $U = U_0 \pm \frac{N-Z}{A} U_1$

In quasielastic charge-exchange (p,n) to IAS: $U = \frac{4\tau_- T_+}{A} U_1$ Elastic scattering dominated by U_0 Quasielastic governed by U_1

Geometry usually assumed the same for U_0 and U_1

e.g. Koning & Delaroche NPA713(03)231

?Isovector skin ΔR from comparison of elastic and quasielastic (p,n)-to-IAS scattering?

Expectations on Isovector Skin?

Much Larger Than Neutron! Surface radius $R \simeq \sqrt{\frac{5}{3}} \langle r^2 \rangle^{1/2}$ rms neutron skin $\langle r^2 \rangle_{\rho_n}^{1/2} - \langle r^2 \rangle_{\rho_p}^{1/2}$ $\simeq 2 \frac{N-Z}{A} \left[\langle r^2 \rangle_{\rho_n-\rho_p}^{1/2} - \langle r^2 \rangle_{\rho_n+\rho_p}^{1/2} \right]$ rms isovector skin

Estimated $\Delta R \sim 3\left(\langle r^2 \rangle_{\rho_n}^{1/2} - \langle r^2 \rangle_{\rho_p}^{1/2}\right)$ for ⁴⁸Ca/²⁰⁸Pb! Even before consideration of Coulomb effects that further enhances difference!

Direct Reaction Primer

DWBA:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\propto \Big|\int\mathrm{d}r\,\Psi_{f}^{*}\,U_{1}\,\Psi_{i}\Big|^{2}$$

- Oscillations: 2-side interference/source size
- Fall-off: softness of source
- Filling of minimae: imaginary/real contributions, spin-orbit

Danielewicz, Singh, Lee

Potentials Fit to Elastic in Quasielastic

E.g. Koning-Delaroche NPA713(03)231 same radii for neutrons/protons, isoscalar/isovector, focus on p elastic

Effect of Changing Isovector Radius

Effect of Changing Isoscalar Radius

Impact of U-Radii on (p,n) Cross Section

DWBA

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \propto \Big| \int \mathrm{d}r \, \Psi_p^*(r) \, U_1(r) \, \Psi_n(i) \Big|^2$$

Isoscalar radius responsible for holes in wavefunctions $\boldsymbol{\Psi}$

Isovector radius responsible for region where (p,n) conversion can occur

Modified Koning-Delaroche Fits: ^{48}Ca In Koning-Delaroche: $R_{0,1} = R + \Delta R_{0,1}$ $a_{0,1} = a + \Delta a_{0,1}$

Danielewicz, Singh, Lee

Modified Koning-Delaroche Fits: 90 ZrIn Koning-Delaroche: $R_{0,1} = R + \Delta R_{0,1}$ $a_{0,1} = a + \Delta a_{0,1}$

Modified Koning-Delaroche Fits: 120 SnIn Koning-Delaroche: $R_{0,1} = R + \Delta R_{0,1}$ $a_{0,1} = a + \Delta a_{0,1}$

Modified Koning-Delaroche Fits: 208 PbIn Koning-Delaroche: $R_{0,1} = R + \Delta R_{0,1}$ $a_{0,1} = a + \Delta a_{0,1}$

Difference in Surface Diffuseness

Isovector Skin

Danielewicz, Singh, Lee

Constraints on Symmetry-Energy Parameters

Constraints on $S(\rho)$

Conclusions

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large A, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces large isovector skins $\Delta R \sim 0.9 \text{ fm!}$

• Symmetry energy is stiff! L = (65-90) MeV, $a_a^V = (33-36)$ MeV PD&Lee NPA818(09)36 NPA922(14)1: PD. Singh *et al*

Conclusions

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large *A*, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces large isovector skins $\Delta R \sim 0.9 \text{ fm!}$

• Symmetry energy is stiff! L = (65 - 90) MeV, $a_a^V = (33 - 36) \text{ MeV}$ PD&Lee NPA818(09)36 NPA922(14)1; PD, Singh *et al* US PHY-1403906 + Indo-US Grant

Conclusions

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large *A*, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces large isovector skins $\Delta R \sim 0.9 \, \text{fm!}$
- Symmetry energy is stiff! L = (65 90) MeV, $a_a^V = (33 36)$ MeV
- US PHY-1403906 + Indo-US Grant

Conclusions

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large *A*, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces large isovector skins $\Delta R \sim 0.9 \, \text{fm!}$
- Symmetry energy is stiff! L = (65 90) MeV, $a_a^V = (33 36) \text{ MeV}$ PD&Lee NPA818(09)36 NPA922(14)1; PD, Singh *et al* US PHY-1403906 + Indo-US Grant

Conclusions

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large *A*, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces large isovector skins $\Delta R \sim 0.9 \, \text{fm!}$
- Symmetry energy is stiff! $L = (65-90) \text{ MeV}, a_a^V = (33-36) \text{ MeV}$

PD&Lee NPA818(09)36 NPA922(14)1; PD, Singh *et al* US PHY-1403906 + Indo-US Grant

イロト イポト イヨト

Conclusions

- Symmetry-energy polarizes nuclear densities, pushing isovector density out to region of low isoscalar density
- For large *A*, displacement of isovector relative to isoscalar surface is expected to be roughly independent of nucleus and depend on slope of symmetry energy
- Surface displacement can be studied in comparative analysis of data on elastic scattering and quasielastic charge-exchange reactions
- Such an analysis produces large isovector skins $\Delta R \sim 0.9 \, \text{fm!}$
- Symmetry energy is stiff! L = (65-90) MeV, $a_a^V = (33-36) \text{ MeV}$ PD&Lee NPA818(09)36 NPA922(14)1; PD, Singh *et al*
- US PHY-1403906 + Indo-US Grant

