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•   QCD EOS (T~0 at high densities) and neutron stars
•   Dense fermionic matter and the sign problem
•   Degrees of Freedom at different densties
•   Exploiting Boundary conditions for small particle number
•   Selected results for N=3, 4, 6, 8, 10, 14
•   Comparison to free quarks
•   Outlook



from USQCD.org

Impressive lattice QCD at μ = 0, and exploratory studies at μ > 0
Little work at T ~ 0 for large μ 



Neutron Star Mass Radius Relations

Selection of Mass /Radius relations before 2-solar mass neutron star observations. 



Low to Moderate Densities:  
Nucleons (neutrons) primary degrees of freedom
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Figure 7: Equation-of-state of intermediate density neutron matter using both
NN interactions and 3NF as input. Shown are results for di↵erent chiral EFT
potentials, di↵erent orders in the chiral expansion, and di↵erent quantum many-
body methods. (a) The standard APR results, along with Coupled Cluster and
Auxiliary-Field Quantum Monte Carlo results (b) Many-body perturbation the-
ory, Self-Consistent Green’s Function, and pp ladder approximation results. De-
tails on the interactions employed are given in the main text.

provides a direct comparison between di↵erent frameworks for the nuclear Hamil-
tonian. Although the maximum mass of neutron stars is dominated by the EOS
at very high densities, their radius is determined by the pressure in the region of
about 1 to 2 ⇢

0

, and then measurements of radii of neutron stars can be used to
constrain the EOS.

We show in Fig. 7 results for the equation of state of neutron matter at some-
what smaller densities, following from calculations that use both nucleon-nucleon
and three-nucleon interactions as input. Specifically, we show we show MBPT re-
sults using EM and EGM N2LO interactions as input (the lower end of this band
is shown using a dashed line), (58) MBPT results using N3LO EM potentials,
(58) results following from a particle-particle ladder approximation using N2LO
EM potentials, (61) as well as pp ladder results using an N2LO EM potential,
(61) self-consistent Green’s functions (SCGF) results using N2LO

opt

, (60) as well
as SCGF results using EM N3LO as input, (60) Coupled-Cluster with doubles
and including some triples e↵ects, CCD(T), results using the N2LO

opt

interaction,
(62) Auxiliary-Field Quantum Monte Carlo (AFQMC) results using an N3LO EM
potential, (65) as well as the frequently cited Akmal-Pandharipande-Ravenhall
results using AV18 plus UIX (74).

The most obvious feature of Fig. 7 in comparison to Fig. 4 is that three-nucleon
interactions in neutron matter are repulsive, i.e. the energy goes up: this is in
contradistinction with what holds in light and medium-mass nuclei. Another
general aspect of this figure relates to the transition from N2LO to N3LO: in

Reasonable agreement with different NN and 3N interactions
Uncertainty still has significant impact on mass-radius relation 

Gandolfi, Gezerlis, Carlson; Ann. Rev. Nucl. Part. Sci. 65, 303 (2015)
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in the limit of infinite cuto↵, they contribute for finite
cuto↵s. In Fig. 3 we show results for the neutron mat-
ter energy per particle as a function of the density calcu-
lated with the AFDMC method described in Refs. [3, 34].
We show the energies for R

0

= 1.0 fm for the NN and
full 3N interactions. We use VD2

and the three di↵erent
VE structures: VE⌧ (blue band), VE (red band), and
VEP (green band). The error bands are determined as in
the light nuclei case. The VEP interaction fits A = 4, 5
with a vanishing cD; hence, this choice of VE leads to
an equation of state identical to the equation of state
with NN+ VC as in Ref. [24] (the projector P is zero for
pure neutron systems), and qualitatively similar to pre-
vious results using chiral interactions at N2LO [35] and
next-to-next-to-next-to-leading order [36].

As discussed, the contributions of VD and VE are only
regulator e↵ects for neutrons. However, they are sizable
and result in a larger error band. At saturation den-
sity n

0

⇠ 0.16 fm�3, the di↵erence of the central value
of the energy per neutron after inclusion of the 3N con-
tacts VE or VE⌧ is ⇠ 2 MeV, leading to a total error
band with a range of ⇠ 6.5 MeV when considering di↵er-
ent VE structures. This relatively large uncertainty can
be qualitatively explained when considering the following
e↵ects. Because the expectation value h

P
i<j ⌧ i ·⌧ ji has

a sign opposite to that of the expectation value h i in
4He, cE will also have opposite signs in the two cases to

FIG. 2. Ground-state energies and point proton radii for A =
3, 4 nuclei calculated at NLO and N2LO (with VD2 and VE⌧ )
compared with experiment. Blue (red) symbols correspond
to R0 = 1.0 fm (R0 = 1.2 fm). The errors are obtained as
described in the text and also include the GFMC statistical
uncertainties.
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FIG. 3. The energy per particle in neutron matter as a
function of density for the NN and full 3N interactions at
N2LO with R0 = 1.0 fm. We use VD2 and di↵erent 3N contact
structures: The blue band corresponds to VE⌧ , the red band
to VE , and the green band to VEP . The green band coincides
with the NN+ 2⇡-exchange-only result because both VD and
VE vanish in this case. The bands are calculated as described
in the text.

fit the binding energy. However, in neutron matter both
operators are the same, spreading the uncertainty band.
A similar argument was made in Ref. [37].

With the regulators used here, the Fierz-
rearrangement invariance valid at infinite cuto↵ is
only approximate at finite cuto↵, and hence the di↵erent
choices of VD and VE can lead to di↵erent results.
The di↵erent local structures can lead to finite relative
P -wave contributions. These can be eliminated by
choosing VEP , which has a projection onto even-parity
waves (predominantly S waves). The usual nonlocal
regulator in momentum space does not couple S and P
waves.

In conclusion, we find for the first time that chiral in-
teractions can simultaneously fit light nuclei and low-
energy P -wave n-↵ scattering and provide reasonable es-
timates for the neutron matter equation of state. Other
commonly used phenomenological 3N models do not pro-
vide this capability. These chiral forces should be tested
in light p-shell nuclei, medium-mass nuclei, and isospin-
symmetric nuclear matter to gauge their ability to de-
scribe global properties of nuclear systems.

We also find that the ambiguities associated with
contact-operator choices can be significant when mov-
ing from light nuclei to neutron matter and possibly to
medium-mass nuclei, where the T = 3

2

triples play a

Neutron Matter EOS w/ chiral 2N and 3N interactions at N2LO
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FIG. 1. (a) Couplings cE vs cD obtained by fitting the 4He binding energy for di↵erent 3N-operator forms. Triangles are
obtained by using VD1 and VE⌧ , while the other symbols are obtained for VD2 and three di↵erent VE-operator structures. The
blue and green lines (lower and upper) correspond to R0 = 1.0 fm, while the red lines (central) correspond to R0 = 1.2 fm. The
GFMC statistical errors are smaller than the symbols. The stars correspond to the values of cD and cE which simultaneously
fit the n-↵ P -wave phase shifts (see Table I and the right panel). No fit to both observables can be obtained for the case with
R0 = 1.2 fm and VD1. (b) P -wave n-↵ elastic scattering phase shifts compared with an R-matrix analysis of experimental data.
Colors and symbols correspond to the left panel. We also include phase shifts calculated at NLO which clearly indicate the
necessity of 3N interactions to fit the P -wave splitting.

TABLE I. Fit values for the couplings cD and cE for di↵erent
choices of 3N forces and cuto↵s.

V3N R0 (fm) cE cD

N2LO (D1, E⌧)
1.0 �0.63 0.0

1.2

N2LO (D2, E⌧)
1.0 �0.63 0.0

1.2 0.09 3.5

N2LO (D2, E ) 1.0 0.62 0.5

N2LO (D2, EP) 1.0 0.59 0.0

results in n-↵ P -wave scattering show a substantial sen-
sitivity: VD1

appears to have a smaller e↵ect than VD2

.

In Fig. 2, we show ground-state energies and point pro-
ton radii for A = 3, 4 nuclei at NLO and N2LO using VD2

and VE⌧ for R
0

= 1.0 fm and R
0

= 1.2 fm, in compar-
ison with experiment. The ground-state energies of the
A = 3 systems compare well with experimental values.
The ground-state energy of 4He is used in fitting cD and
cE , and so it is forced to match the experimental value to
within ⇡ 0.03 MeV. The point proton radii also compare
well with values extracted from experiment. The theo-
retical uncertainty at each order is estimated through the
expected size of higher-order contributions; see Ref. [32]
for details. We include results from LO, NLO, and N2LO

in the analysis using the Fermi momentum and the pion
mass as the small scales for neutron matter (discussed
below) and nuclei, respectively. The error bars presented
here are comparable to those shown in Ref. [33], although
it is worth emphasizing that our calculations represent a
complete estimate of the uncertainty at N2LO since we
include 3N interactions. Other choices for 3N structures
give similar results.

It is noteworthy that NN and 3N interactions derived
from chiral EFT up to N2LO have su�cient freedom such
that n-↵ scattering phase shifts in Fig. 1(b) and proper-
ties of light nuclei in Fig. 2 can be simultaneously de-
scribed. The failures of the Urbana IX model in under-
binding nuclei and underpredicting the spin-orbit split-
ting in neutron-rich systems, including the n-↵, system
were among the factors motivating the addition of the
three-pion exchange diagrams in the Illinois 3N mod-
els [7]. Our results show that chiral 3N forces at N2LO,
including the shorter-range parts in the pion exchanges,
allow the simultaneous fit. These interactions should be
tested further in light p-shell nuclei.

Finally, we study the full chiral N2LO forces, includ-
ing all 3N contributions, in neutron matter to extend the
results from Ref. [24]. More specifically, we examine the
e↵ects of di↵erent VD and VE structures on the equation
of state of neutron matter. Although these terms vanish

• TNI fit to A=4 binding, n-alpha scattering
• Significant uncertainties from regulators, 

     Fierz rearrangements, …
• Would like to reduce these uncertainties

Lynn, et al., PRL 2016



Neutron Star Mass/Radius 
w/ AV18 NN and UIX, Ill, and other TNI
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Figure 8: The equation of state of neutron matter obtained by using various
models of three-neutron force as described in the text. For each model we impose
that the energy at saturation is 17.7(1) MeV (blue band), or 16.0(1) MeV (green
band). The results are compared with the equations of state obtained with the
AV80 and AV80+UIX Hamiltonians. In the legend we indicate the corresponding
symmetry energy at saturation. Figure taken from (93).
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Figure 9: The value of L as a function of E
sym

obtained from various EOS. The
green and blue points with error bars correspond to the various EOS indicated
by the two colored areas of Fig. 8, and red and black points show the results
obtained using a two-body force alone and combined with the UIX model. The
square symbols correspond to results obtained by independently changing the
cuto↵ parameters entering in VR and in the three-pion rings of the three-neutron
force. Figure taken from (93).
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 from: Gandolfi, Carlson, Reddy,
arXiv:1101.1921; PRC 2013

Low energy nuclear experiments primarily sensitive to ρ ≲ ρ0/2
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of the various EOS.

By using the EOS obtained from di↵erent nuclear Hamiltonian, we can study
the e↵ect to the neutron star structure. The results of the M-R diagram of
neutron stars obtained from the EOS calculated in the previous section are shown
in Fig. 10. Since the radii of neutron stars are almost determined by the EOS
slightly above ⇢

0

(98), future measurements will provide strong constraints to the
nuclear Hamiltonian. In particular, radii are directly connected to the pressure
of neutron matter at ⇢

0

, and then there is a natural correlation between E
sym

and L and radii. In the figure the two bands correspond to the EOS described
in the previous section (the corresponding values of the symmetry energy are
also indicated in the figure). The red and black curves correspond to the EOS
calculated with the AV80 two-body interaction alone, and combined with the UIX
three-neutron potential. The relation between E

sym

and the radius is evident,
as the increasing of E

sym

predicts a neutron star with a larger radius. In the
figure, the density of the neutron matter inside the star is indicated with the
orange lines. As anticipated, even at large masses the radius of the neutron star
is mainly governed by the equation of state of neutron matter between 1 and 2
⇢
0

(98).
As is clear from the figure, the AV80 Hamiltonian alone does not support the

recent observed neutron star with a mass of 1.97(4)M� (9) and 2.01(4)M� (10).
the addition of a three-body force to AV80 can provide su�cient repulsion to be
consistent with all of the constraints. The results also suggest that the most mod-
ern neutron matter EOS imply a maximum neutron star radius not larger than
13.5 km, unless a drastic repulsion sets in just above the saturation density (75).
This rules out EOS with large values of L, typical of Walecka-type mean-field
models without higher-order meson couplings which can decrease L. We note
that our analysis suggests it is unlikely that neutron stars have radii lower than

How to further reduce uncertainty at 1-4 times saturation density?
Where is the phase transition ? 

Mass/Radius relationships for different symmetry energies



Fermion Sign Problem

Exponential decay in signal to noise for quantum fermi systems
Ubiquitous:   electrons, cold atoms, helium, cold atoms, NP, LQCD

Decay proportional to Bose minus Fermi Energy 
    QCD :    A  ( MN - (3/2) M ) 
    Nucleons:   A x Fermi Energy

No general solution - exponentially difficult for large A

Try small A - make direct comparisons 
                to lattice at moderate to high densities
                not necessary to go through S-matrix

Advantages:  small boxes give large gaps, high excitation energies
                   can probe different N, boundary conditions, quantum numbers,…

Can we calibrate nuclear interactions?
Can we extrapolate to matter?
Can we begin to identify the phase transition?
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Figure 5: Energies for neutrons trapped in a harmonic oscillator with ! = 10
MeV for di↵erent interactions and methods compared to Monte Carlo calculations
for cold atoms at unitarity (open symbols) and two local density approximations
(solid and dashed lines). In the right panel results for the AV8’ + UIX interaction
are compared to several pre-existing density functionals.

modest. For larger N, though, the central density in a harmonic trap can be
quite large and the three-nucleon interaction makes a considerable di↵erence.
Results are also shown for no-core shell model (NCSM) calculations using chiral
interactions and the JISP16 NN interaction. The chiral interactions are very
similar to the AV8’ results without a three-nucleon interaction; the energies for
all interactions and methods agree within a few percent.

These calculations show significant shell closures, in contrast to the cold atom
results. These shell closures arise because of the e↵ective range in the neutron-
neutron interaction, and the concominant smaller size of the superfluid pairing
gap. In cold atoms only superfluid pairs propagate across the whole system, while
for neutrons the shell closures indicate the single-particle picture still survives to
some degree. The shell closures are not as strong as in nuclei, however. Pair-
ing gaps are also evident from the odd-even staggering, spin-orbit, and gradient
corrections have been examined in many of these studies (84,85).

In the right-hand panel, results for the AV8’+UIX interaction are compared
with a variety of previously existing density functionals. These funtionals do not
fully describe the neutron drop results, in general their energy is too low and
spin-orbit and pairing are not completely correct. Modest modifications to the
isovector (full neutron) gradients, pairing and spin orbit give density functional
results in the full black line, labeled SLY4-adj. These do a good job of repro-
ducing results in both 5 and 10 MeV frequency traps except for the smallest
systems considered. More recently it has been shown that new density function-
als, i.e. UNEDF0 (87) and UNEDF1 (88), can be created that simultaneously
fit nuclei with accuracy comparable or better than the existing functionals, and
also reproduce the neutron drop results.

In figure 6 we show results in a Wood-Saxon well. These more nearly mimic

Small quantum systems can identify important degrees of freedom

Neutrons

Cold Atoms

Gandolfi, Gezerlis, Carlson; Ann. Rev. Nucl. Part. Sci. 65, 303 (2015)



Small Bits of Neutron Matter (or neutron star matter) 

QMC:   Variational, GFMC, and AFDMC

Trial Wave function (s-wave BCS form) :  

� = A
Y

[�(rij)("i#j � "j"i)]

 =
Y

i<j

[
X

k

F k(rij)O
k(ij)] �

Specific choice of quantum numbers:
       P=0, symmetric under all rotations
       not the lowest energy state in all cases
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All results preliminary



Small system results

Do not necessarily need to connect to S-matrix,
        just compare energies for specific BC, N, quantum numbers
small systems: single-particle spectra very important

Results depend upon:
    degrees of freedom (degeneracies)
    relativistic vs. non-relativistic dispersion
    closed shells

Valuable to have results for :
          particle number
          boundary conditions
          quantum numbers
          small charges
          strangeness
          …
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should revisit questions of sound speed with AV18 + TNI
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Degrees of freedom can have a huge impact: 
 

comparison of neutrons to free quarks
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very small systems: N = 2, 3 

N=3 
lowest k

also see paper by Luu 
and Korber on A=3 bound states
PRC 2016
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Figure 6: Individually selected three-body fits for a fit range from NL 2 [3, 7] which

corresponds to L = aNL with a = 1.97 fm. Extracted infinite volume energies, amplitudes

and average �2 can be extracted from figure 7. The error bars and error bands correspond

to 1-�. Data points and bands are slightly shifted in NL direction for visualization

purposes.

Selected energy fits from our calculated distributions are displayed in figure 6 and the cor-

responding amplitudes coming from all our fits as well as their predictions can be found in

figure 7.

In contrast to the two-body case, the extrapolated infinite volume energy as well as their

average �2
avg of individual fits depend on the twists, as can be seen by comparing the top

and bottom panels of fig. 7. This is to be expected since we have used in our fits a FV
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� = A["1#2 [exp i[k · r3] "3]
rho E (MeV)  
0.08 31.45(10)
0.16 41.2(2)
0.24 51.2(6)
0.32 66.0(6)
0.48 112.4(2.0)

N=2

Kloss, Lynn, Tews, et. al, 2016

Connections to NN scattering
8
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FIG. 6. (Color online) AFDMC results for the energy of two
neutrons in the ground state in finite volume with the NLO
and N2LO chiral EFT interactions with cuto↵ R

0

= 1.0 fm
compared with the Lüscher formula for di↵erent box sizes L.
The results at NLO (N2LO) are given as the red circles/solid
line (blue diamonds/dashed line). The dark gray band shows
a fit (as described in the text) to the AFDMC results for the
N2LO chiral potential. The energies are given in terms of
the dimensionless quantity q2 = EML2/(4⇡2). Points in the
region |p| > m⇡/2 indicated by the gray band are not included
in the fit, see Sec. II.

contributions. This matches the deviations of AFDMC
results from the Lüscher predictions in Figs. 2 and 7,
which are largest for L = 5, 40, 50 fm.

C. Chiral EFT interactions

In this section, we present results for the di↵erent local
chiral EFT potentials from Ref. [21]. To avoid large sta-
tistical uncertainties, QMC simulations require interac-
tions where all momentum dependencies up to quadratic
terms can be separated. This requirement is met by lo-
cal potentials [18]. However, chiral EFT interactions are
usually formulated in momentum space and are typically
nonlocal. Local chiral NN potentials have been developed
recently up to next-to-next-to-leading order (N2LO) in
the chiral power counting and applied in calculations of
neutron matter, light nuclei, and neutron-alpha scatter-
ing using continuum QMC methods [20–24].

In Fig. 5 we show results of AFDMC simulations which
were performed using the chiral leading-order (LO) po-
tential for R

0

= 1.0 fm and R
0

= 1.2 fm, correspond-
ing to cuto↵s of 500 MeV and 400 MeV in momentum
space, respectively. The corresponding scattering lengths
and e↵ective ranges were obtained by calculating phase
shifts in the infinite volume. Similar to the previous cases
we compare Lüscher results using the scattering param-
eters to AFDMC results for di↵erent box sizes. Figure 6
shows results for the chiral NLO and N2LO potentials for
R

0

= 1.0 fm. In all cases the overall agreement for box
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AFDMC, LO R0=1.0 fm

Lüscher, a=−18.9 fm, re=2.01 fm

Lüscher fit, a=-18.5(4) fm

1st excited state

FIG. 7. (Color online) AFDMC results for the energy of two
neutrons in the first excited state in finite volume with the LO
chiral EFT interaction with cuto↵ R

0

= 1.0 fm (red circles)
compared with the Lüscher formula (solid line) for di↵erent
box sizes L. The error bars on the AFDMC results include
both statistical uncertainties and a systematic uncertainty of
1 % discussed in the text in Sec. IVB. The dark gray band
shows a combined fit (as described in the text) to the ground-
and first-excited-state AFDMC results for the LO chiral po-
tential. The energies are given in terms of the dimensionless
quantity q2 = EML2/(4⇡2). Points in the region |p| > m⇡/2
indicated by the gray band are not included in the fit, see
Sec. II.

sizes L > 10 fm is excellent, while the AFDMC results for
ground-state energies at L = 5 fm deviate significantly
from the Lüscher prediction. Deviations at small L for
the excited-state energies for the chiral LO potential at
R

0

= 1.0 fm, shown in Fig. 7, are less pronounced as the
e↵ect is opposed by systematic over-prediction caused by
the spherical node, see Sec. IVB. As discussed in Sec. II
the analytic continuation of the Lüscher formula is lim-
ited to the threshold of pionless EFT |p| < m⇡/2. Fig-
ures 5, 6 and 7 show the corresponding maximal value
for q2. The absolute values of the AFDMC energies for
L = 5 fm (ground states) and L = 5, 10 fm (excited state)
for the di↵erent chiral potentials exceed the threshold of
pionless EFT and hence the disagreement is expected.
This reflects the necessity of the inclusion of pions in the
e↵ective theory for the correct description of processes
where momenta are of the order of the pion mass.
In Fig. 6 we show a fit to the AFDMC ground-state

data for the chiral N2LO interaction using the first two
parameters of the e↵ective-range expansion. We exclude
the data point at L = 5 fm from the fit as agreement with
the Lüscher formula is not expected in this region. The
corresponding extracted parameters are a = �18.8(3) fm
and r

e

= 2.54(6) fm, in good agreement with the infinite-
volume values. For the chiral LO interaction, we have
also performed a fit to the combined data of ground and
excited state excluding again the data points at L = 5 fm
for the ground and L = 5, 10 fm for the excited state; the
result is shown in Fig. 7. The exclusion of L = 10 fm ex-

1st excited state and Luscher formula
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N= 4 very sensitive 
to nn phase shifts

at moderate/high energies
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N=4,   ρ =0.16
L = 2.93 fm

k = ( 2π /L ) = 2.14 fm-1

ECM = 190 MeV

N=4: low and high density 
studies of possible low-energy resonances in dilute systems



Other states for N = 4:

� = A["1#2 [sin[k
x

· r34] + i sin[k
y

· r34]] "3"4]

� = A
Y

[�(rij)("i#j � "j"i)]

original (BCS) state:

new (p-wave) state:

rho E_s (MeV)  E_p (MeV)

0.08 71.0(.5) 65.0(.5)

0.16 117(2) 92.0(1.2)

very large energy differences; still exploring other states



Small bits of cold dense matter 

• Important to constrain nuclear EOS from 1-4 ρ0

• Small systems can provide a wealth of information
• more tractable: sign problem, large gaps
• can constrain EOS (2N, 3N, … interactions)
• start to identify region of phase transition  
 by examining impact of different degrees of freedom

• exploit boundary conditions, N, density
• direct comparison of nuclear models and LQCD

• Many other aspects to explore:
• explicit pions
• evolution with pion (quark) mass
• strangeness in dense matter
• protons in neutron matter
• different boundary conditions
• models of high-density QCD
• response functions, weak transitions, …


