

Empirical equation of state and X-rays observations of neutron stars

Nicolas Baillot d'Etivaux - IPN Lyon

in collaboration with : Jérôme Margueron - IPN Lyon Natalie Webb - IRAP Sébastien Guillot - Pontificia Universidad Católica de Chile

Sac

Link between EoS and M-R relation :

T.O.V equations (Tolmann-Oppenheimer-Volkov) :

$$\frac{dm(r)}{dr} = 4\pi r^2 \epsilon(r),\tag{1}$$

$$\frac{dP(r)}{dr} = -\frac{G\epsilon(r)m(r)}{r^2} \left(1 + \frac{P(r)}{\epsilon(r)c^2}\right) \left(1 + \frac{4\pi P(r)r^3}{m(r)c^2}\right) \times \left(1 - \frac{r_{sh}}{r}\frac{m(r)}{M}\right)^{-1}.$$
 (2)

Equation of state : $P(\epsilon) \leftrightarrow$ mass-radius relation.

Anna Watts et al, 2014

Constraining nuclear equation of state from thermal radiation of neutron stars :

- Developpement of pulsar X-ray astronomy \rightarrow strong limits on the equation of state at high density (Özel et al 2010 , Steiner et al 2010).
- Tool : Thermal radiation from the surface of neutron stars.
- Devellopement of atmosphere models (Heinke et al 2006).
- Applying Bayesian analysis for several qLMXBs (Guillot et al 2013, Lattimer & Steiner 2014, Heinke et al 2014, Özel et al 2015, Bogdanov 2016).

Various kinds of EoS :

- Purely nucleonic \rightarrow no phase transition, **smooth EoS** with n, y_e, T .
- Phase transition :
 - hadronic matter : onset of hyperons, pion condensate ...
 - pure quark stars?
 - hybrid stars?

Motivation for choosing pure nucleonic matter :

- smooth EoS
- extrapolation of nuclear physics knowledge (and uncertainties) towards high densities and low Y_p .
- Define M-R boundaries for smooth EoS.

The EoS model based on empirical parameters :

Definition of the empirical parameters :

$$\epsilon(n,\delta) = \epsilon_{IS} + \delta^2 \epsilon_{IV} \tag{3}$$

イロト イヨト イヨト

$$\epsilon_{IS} = E_{sat} + \frac{1}{2}K_{sat}x^2 + \frac{1}{3!}Q_{sat}x^3 + \frac{1}{4!}Z_{sat}x^4 + o(x^5)$$
(4)

$$\epsilon_{IV} = E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^2 + \frac{1}{3!}Q_{sym}x^3 + \frac{1}{4!}Z_{sym}x^4 + o(x^5)$$
 (5)

Taylor expansion around n_0 for the energy density :

$$\epsilon(n,\delta) = t(n,\delta) + \sum_{\alpha \ge 0}^{N} v_{\alpha}(\delta) \frac{x(n)^{\alpha}}{\alpha!} u_{\alpha}^{N}(x), \quad \delta = \frac{(n_{n} - n_{p})}{n}, \quad x = \frac{(n - n_{0})}{3n_{0}}$$

$$v_{\alpha}(\delta) = v_{\alpha,IS} + v_{\alpha,IV}\delta^2$$

(Margueron, Casali, Gulminelli, in preparation)

Ability of the EoS to mimic known EoS : example of SLy5

(Margueron, Casali, Gulminelli, in preparation)

Ability of the EoS to mimic known EoS : example of SLy5

(Margueron, Casali, Gulminelli, in preparation)

Our present knowledge of the empirical parameters :

Empirical parameters for various effective approaches :

		fixed			Explore in small interval		Explore in large interval				
		Esat	Esym	n _{sat}	Lsym	Ksat	Ksym	Q_{sat}	Q_{sym}	Zsat	Zsym
Model		MeV	MeV	fm ⁻³	MeV	MeV	MeV	MeV	MeV	MeV	MeV
(N_{α})	der. order	0	0	1	1	2	2	3	3	4	4
Skyrme	Average	-15.88	30.25	0.1595	47.8	234.2	-129.8	-357.0	377.9	1500.0	-2218.9
(16)	σ	0.15	1.70	0.0011	16.8	10.2	66.0	22.4	110.3	169.3	617.6
Skyrme	Average	-15.87	30.82	0.1596	49.6	237.3	-131.7	-349.0	370.0	1447.6	-2175.1
(35)	σ	0.18	1.54	0.0039	21.6	26.6	89.1	88.5	187.9	510.4	1069.4
RMF	Average	-16.24	35.11	0.1494	90.2	268.0	-4.6	-1.9	271.1	5058.3	-3671.8
(11)	σ	0.06	2.63	0.0025	29.6	33.5	87.7	392.5	357.1	2294.1	1582.3
RHF	Average	-15.97	33.97	0.1540	90.0	248.1	128.2	389.2	523.3	5269.1	-9955.5
(4)	σ	0.08	1.37	0.0035	11.1	11.6	51.1	350.4	236.8	838.4	4155.7
Total	Average	-16.03	33.30	0.1543	76.6	251.1	-2.7	12.7	388.1	3925.0	-5267.5
(50)	σ_{tot}	0.20	2.65	0.0054	29.2	28.6	131.7	431.1	289.4	2269.7	4281.9
	Min	-16.35	26.83	0.1450	9.9	201.0	-393.9	-748.0	-86.2	-903.0	-16916.2
	Max	-15.31	38.71	0.1746	122.7	355.4	213.2	949.8	846.3	9997.3	-4.9

(Margueron, Casali, Gulminelli, in preparation)

Dependence of M-R on the empirical parameters :

+ constrains : $0 < v_s^2 < c^2$ and $\epsilon_{IV}(n) > 0$ for $n < 4n_{sat}$

(Margueron, Casali, Gulminelli, in preparation)

Dependence of M-R on the empirical parameters :

(Margueron, Casali, Gulminelli, in preparation)

Dependence of M-R on the empirical parameters :

(Margueron, Casali, Gulminelli, in preparation)

Polynomial expression of the radius :

$$R(M, L_{sym}, K_{sym}) = \sum_{i=0}^{N} a_i(L_{sym}, K_{sym})M^i$$
(6)

where :

$$a_i(L_{sym}, K_{sym}) = \sum_{k=0}^2 a_{ik} L_{sym}^k K_{sym}^{2-k}$$
(7)

 $N{=}0$ \rightarrow Guillot et al. 2013

a M-R simulator, function of L_{sym} and K_{sym} :

15 juillet 2016 13 / 20

э

Observations of thermal emission from NS :

black body : (cf. talk by Andrew Steiner)

 $F\propto T^4(R_\infty/D)^2$

(Rutledge et al. 1999)

- 6 low mass X-ray transcients : almost pure thermal components, low magnetic fields, constant flux, atmosphere composition is purely H, in globular clusters (well constrained distances).
- a single EoS \rightarrow simultaneous analysis.

Sources	Obs.	distance	nH	atm.	pile-up	Teff
		(kpc)	$(10^{22} cm^{-2})$		α	(K)
M13	Chandra	7.1 ± 0.4	[0; 1]	Н	[0; 1]	[5; 6.5]
M28	Chandra	5.5 ± 0.3	[0; 1]	Н	[0; 1]	[5; 6.5]
M30	Chandra	9 ± 0.4	[0; 1]	Н	[0; 1]	[5; 6.5]
NGC6304	Chandra	$\textbf{6.22} \pm \textbf{0.26}$	[0; 1]	Н	[0; 1]	[5; 6.5]
NGC6397	Chandra	2.39 ± 0.13	[0; 1]	Н	[0; 1]	[5; 6.5]
ω Cen	Chandra	$\textbf{4.59} \pm \textbf{0.08}$	[0; 1]	Н	[0; 1]	[5; 6.5]

Spectrum model used :

- "pile-up" (Davis 2001, Bogdanov 2016), "phabs" absorbtion and "nsatmos" for the atmosphere (Heinke et al. 2006).
- E < 2 keV : only thermal component and no power-law

Parameters which are allowed to vary :

- pile-up alpha
- hydrogen collumn density on the line of site (nH)
- distance to the stars (dkpc)
- the surface effective temperature (Teff)
- the mass of the stars.
- the nuclear parameters K_{sym} and L_{sym} :

 $EoS(K_{sym}, L_{sym}, Mass) \rightarrow Radius$

Reproducing the data :

MCMC stretch move algorithm with 200 walkers (Mackey et al. 2013)

reduced chi2 vs mcmc steps

Preliminary results (M13 parameters) :

Conclusion :

- Present knowledge of nuclear physics + smooth EoS \rightarrow $R \simeq 11.5 14$ km and $M < 2.5 M_{\odot}$
- Main source of uncertainties : *L_{sym}* and *K_{sym}*.
- if better knowledge on L_{sym} and K_{sym} : reduce uncertainty $\simeq 1~{\rm km}$
- measurement of R out of these boundaries → non-smooth EoS (induced by phase transition)

- Finalizing this study.
- Extension of present EoS to include quark matter.
- Further analysis of occurence of a phase transition from X-ray data (Bayes factor).
- Waiting for *Lsym* constrains from PREX.
- Confronting our results with NICER or NS mergers data.

Thank you for attention !

< D >