Quark matter in compact stars: the Constant Sound Speed parameterization

Prof. Mark Alford Washington University in St. Louis

Alford, Han, Prakash, arXiv:1302.4732 Alford, Burgio, Han, Taranto, Zappalà, arXiv:1501.07902 Ranea-Sandoval, Han, Orsaria, Contrera, Weber, Alford, arXiv:1512.09183

Schematic QCD phase diagram

M. Alford, K. Rajagopal, T. Schäfer, A. Schmitt, arXiv:0709.4635 (RMP review) A. Schmitt, arXiv:1001.3294 (Springer Lecture Notes)

Signatures of quark matter in compact stars

 $\mathsf{Observable}\quad\leftarrow\quad\mathsf{Microphysical\ properties}\quad\quad\leftarrow\mathsf{Phases\ of\ dense\ matter}$

Constraining QM EoS by observing $M(R)$

There is lots of literature about specific models of quark matter, e.g.

- ▶ MIT Bag Model; (Alford, Braby, Paris, Reddy, nucl-th/0411016)
- ▶ NJL models; (Paoli, Menezes, arXiv:1009.2906; Bonanno, Sedrakian, arXiv:1108.0559)
- ▶ PNJL models (Blaschke et. al, arXiv:1302.6275; Orsaria et. al.; arXiv:1212.4213)
- **hadron-quark NL** σ model (Negreiros et. al., $arXiv:1006.0380$)
- \triangleright 2-loop perturbation theory (Kurkela et. al., $arXiv:1006.4062$)
- ▶ MIT bag, NJL, CDM, FCM, DSM (Burgio et. al., arXiv:1301.4060)

We need a model-independent parameterization of the quark matter EoS:

- \triangleright framework for relating different models to each other
- \triangleright observational constraints can be expressed in universal terms

CSS: a fairly generic QM EoS

Model-independent parameterization with

- Sharp 1st-order transition
- Constant [density-indp] $\varepsilon(p) = \varepsilon_{\text{trans}} + \Delta \varepsilon + c_{\text{QM}}^{-2}(p p_{\text{trans}})$ Speed of Sound (CSS)

Hybrid star $M(R)$

Hybrid star branch in $M(R)$ relation has 4 typical forms

CSS "Phase diagram" of hybrid star $M(R)$

(Seidov, 1971; Schaeffer, Zdunik, Haensel, 1983; Lindblom, gr-qc/9802072) Disconnected branch exists in regions D and B.

Sensitivity to NM EoS and $c_{\mathbb C}^2$ $\rm QM$

• NM EoS (HLPS=soft, NL3=hard) does not make much difference.

 \bullet Higher c^2_{QM} favors disconnected branch.

Constraints on QM EoS from M_{max}

• Increasing $\Delta \varepsilon$ reduces $M_{\rm max}$

• Increasing p_{trans} at first reduces then increases M_{max}

 $2 M_{\odot}$ observation allows two scenarios:

- high p_{trans} : very small connected branch
- low p_{trans} : modest $\Delta \varepsilon$, no disconnected branch.

Low p_{trans} and high p_{trans} windows

DBHF (stiff) NM, $c_{QM}^2 = 1/3$, $\Delta \varepsilon / \varepsilon_{trans} = 0.4$

Constraints on QM EoS from M_{max}

Radius of heaviest star $R_{\text{max}M}$

Heaviest star is typically the smallest, so lower limit on R_{max} is the minimum radius of compact stars.

High p_{trans} : very short connected hybrid branch, radius like that of heaviest hadronic star.

Low p_{trans} : need to zoom in.

Constraints on QM EoS from R_{maxM}

Focus on low p_{trans} and $c_{\text{QM}}^2 = 1/3$

- R_{maxM} contours closely follow mass contours
- $M_{\rm max} > 1.95 M_{\odot}$ requires $R > 11.25$ km
- dashed line is $M_{\text{max}} = 2.1 M_{\odot}$, requires $R > 12.1$ km
- \triangleright Observation of a smaller star \Rightarrow high transition pressure or $\sqrt{c_{\rm QM}^2}>1/3$

Constraints on QM EoS from $R_{1.4\,\mathrm{M}_{\odot}}$

Low transition pressure and $R_{1.4 M_{\odot}}$

- \triangleright $R_{1.4 M_{\odot}}$ contours roughly follow mass contours
- ► $M_{\rm max} > 1.95 M_{\odot}$ requires $R_{1.4 \rm M_{\odot}} > 12 \rm km$ ($n_{\rm trans} \approx n_0$), rising with n_{trans} .
- \blacktriangleright dashed line is $M_{\text{max}} = 2.1 M_{\odot}$, requires $R_{1.4 M_{\odot}} > 12.7$ km
- ► Observation of a smaller $1.4\,\rm M_\odot$ star \Rightarrow $c^2_{\rm QM}>1/3.$
- If p_{trans} is high then no hybrid stars have mass 1.4 M_o

compare Lattimer $arXiv:1305.3510: R > 11$ km.

NJL models in CSS space

Summary of CSS

- \triangleright CSS (Constant Speed of Sound) is a generic parameterization of the EoS close to a sharp first-order transition to quark matter.
- \triangleright Any specific model of quark matter with such a transition corresponds to particular values of the CSS parameters $(\rho_{\mathrm{trans}}/\varepsilon_{\mathrm{trans}}, \quad \Delta\varepsilon / \varepsilon_{\mathrm{trans}}, \quad c_{\mathrm{QM}}^2).$ Its predictions for hybrid star branches then follow from the generic CSS phase diagram.
- ► Every observation, e.g. observing a $2M_{\odot}$ neutron star, \Rightarrow constraint on CSS parameters .

E.g., for soft NM we need $c^2_{\mathrm{QM}} \gtrsim 1/3$ (But note that $c^2_{\rm QM}=1/3-\mathcal{O}(\alpha_{\sf s})$ in pert QCD).

- \triangleright More measurements of M and R would strengthen the constraints.
- ► Models of quark matter tend to have $c^2_{\rm QM}$ $\sim 1/3$ and high transition pressure \Rightarrow very short hybrid branch.

Could we identify hybrid stars via $M(R)$?

We could identify a phase transition to a high-density phase

(A) Nuclear branch ends with $dM/dR \neq 0$ occurs if $\Delta\varepsilon/\varepsilon_{\rm trans}$ is large enough

(B,D) Disconnected branch can occur with $M_{\rm max} \gtrsim 2 M_{\odot}$ if nuclear and quark matter are both stiff $(c^2_{\rm QM} \sim 1)$

Could we identify hybrid stars via $M(R)$?

We could identify a phase transition to a high-density phase

(A) Nuclear branch ends with $dM/dR \neq 0$ occurs if $\Delta\varepsilon/\varepsilon_{\rm trans}$ is large enough

(B,D) Disconnected branch can occur with $M_{\rm max} \gtrsim 2 M_{\odot}$ if nuclear and quark matter are both stiff $(c^2_{\rm QM} \sim 1)$

We need:

- better measurements of M and R
- \triangleright knowledge of nuclear matter EoS

We could benefit from:

 \triangleright theoretical constraints on parameters of QM EoS $(\rho_{\mathrm{trans}}/\varepsilon_{\mathrm{trans}},\ \Delta\varepsilon/\varepsilon_{\mathrm{trans}},\ \epsilon_{\mathrm{QM}}^2)$

DD2-EV(nuclear) $+$ NJL with 8 quark interactions (Blaschke et al., arXiv:1411.2856)

 $SU(3)$ quark-meson model (quarks $+$ Yukawa interaction via scalar and vector mesons) (Schaffner-Bielich et al, arXiv:1510.00180)

Chiral Mean Field model (quarks wuth Yukawa coupling to isoscalar and isovector mesons) (e.g. Schramm, Dexheimer, Negreiros, arXiv:1508.04699)

Field Correlator Method (Simonov and Trusov, hep-ph/0703228)

Local NJL model with vector repulsive interaction (Orsaria, Rodrigues, Weber, Contrera, arXiv:1308.1657)

Non-local NJL model with vector repulsive interaction (Orsaria, Rodrigues, Weber, Contrera, arXiv:1308.1657)

