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Schematic QCD phase diagram
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Signatures of quark matter in compact stars

Observable ← Microphysical properties
(and neutron star structure)

← Phases of dense matter

Property Nuclear phase Quark phase

mass, radius eqn of state ε(p)
known
up to ∼ nsat

unknown;
many models

spindown
(spin freq, age)

bulk viscosity
shear viscosity

Depends on
phase:

n p e
n p e, µ
n p e,Λ, Σ−

n superfluid
p supercond
π condensate
K condensate

Depends on
phase:

unpaired
CFL
CFL-K 0

2SC
CSL
LOFF
1SC
. . .

cooling
(temp, age)

heat capacity
neutrino emissivity
thermal cond.

glitches
(superfluid,
crystal)

shear modulus
vortex pinning

energy



Constraining QM EoS by observing M(R)

There is lots of literature about specific models of quark matter, e.g.

I MIT Bag Model; (Alford, Braby, Paris, Reddy, nucl-th/0411016)

I NJL models; (Paoli, Menezes, arXiv:1009.2906; Bonanno, Sedrakian,

arXiv:1108.0559)

I PNJL models (Blaschke et. al, arXiv:1302.6275; Orsaria et. al.;

arXiv:1212.4213)

I hadron-quark NLσ model (Negreiros et. al., arXiv:1006.0380)

I 2-loop perturbation theory (Kurkela et. al., arXiv:1006.4062)

I MIT bag, NJL, CDM, FCM, DSM (Burgio et. al., arXiv:1301.4060)

We need a model-independent parameterization of the quark matter
EoS:

I framework for relating different models to each other
I observational constraints can be expressed in universal terms



CSS: a fairly generic QM EoS

Model-independent parameterization with
• Sharp 1st-order transition
• Constant [density-indp]

Speed of Sound (CSS)
ε(p) = εtrans + ∆ε+ c−2
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Hybrid star M(R)

Hybrid star branch in M(R) relation has 4 typical forms

∆ε < ∆εcrit
small energy density jump at
phase transition

“Connected”

R

M

“Both”
M

R

∆ε > ∆εcrit
large energy density jump at
phase transition

“Absent”

R

M

“Disconnected”
M

R



CSS “Phase diagram” of hybrid star M(R)

Soft NM + CSS(c2QM =1)
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connected branch disappears
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(Seidov, 1971; Schaeffer, Zdunik, Haensel, 1983; Lindblom, gr-qc/9802072)

Disconnected branch exists in regions D and B.



Sensitivity to NM EoS and c2
QM

c2QM =1/3
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• NM EoS (HLPS=soft, NL3=hard) does not make much difference.

• Higher c2QM favors disconnected branch.



Constraints on QM EoS from Mmax

• Increasing ∆ε reduces
Mmax

• Increasing ptrans at
first reduces then
increases Mmax

2M� observation allows
two scenarios:
• high ptrans: very small
connected branch
• low ptrans: modest ∆ε,
no disconnected branch.



Low ptrans and high ptrans windows



Constraints on QM EoS from Mmax



Radius of heaviest star RmaxM

Heaviest star is typically
the smallest, so lower
limit on RmaxM is the
minimum radius of
compact stars.

High ptrans: very short
connected hybrid branch,
radius like that of
heaviest hadronic star.

Low ptrans: need to
zoom in.



Constraints on QM EoS from RmaxM



Focus on low ptrans and c2
QM = 1/3

I RmaxM contours closely follow mass contours
I Mmax > 1.95M� requires R > 11.25 km
I dashed line is Mmax = 2.1M�, requires R > 12.1 km
I Observation of a smaller star ⇒ high transition pressure or

c2QM > 1/3



Constraints on QM EoS from R1.4M�



Low transition pressure and R1.4M�

I R1.4M� contours roughly follow mass contours
I Mmax > 1.95M� requires R1.4M� > 12 km (ntrans ≈ n0), rising

with ntrans.
I dashed line is Mmax = 2.1M�, requires R1.4M� > 12.7 km
I Observation of a smaller 1.4M� star ⇒ c2QM > 1/3.
I If ptrans is high then no hybrid stars have mass 1.4M�

compare Lattimer arXiv:1305.3510: R > 11 km.



NJL models in CSS space



Summary of CSS

I CSS (Constant Speed of Sound) is a generic parameterization of the
EoS close to a sharp first-order transition to quark matter.

I Any specific model of quark matter with such a transition
corresponds to particular values of the CSS parameters
(ptrans/εtrans, ∆ε/εtrans, c2QM).
Its predictions for hybrid star branches then follow from the generic
CSS phase diagram.

I Every observation, e.g. observing a 2M� neutron star, ⇒
constraint on CSS parameters .

E.g., for soft NM we need c2QM & 1/3
(But note that c2QM = 1/3−O(αs) in pert QCD).

I More measurements of M and R would strengthen the constraints.

I Models of quark matter tend to have c2QM ∼ 1/3 and high
transition pressure ⇒ very short hybrid branch.



Could we identify hybrid stars via M(R)?
We could identify a phase transition to a high-density phase

(A) Nuclear branch ends with dM/dR 6= 0
occurs if ∆ε/εtrans is large enough

R

M

(B,D) Disconnected branch
can occur with Mmax&2M� if nuclear and
quark matter are both stiff (c2QM ∼ 1)

M

R

M

R

We need:
I better measurements of M and R
I knowledge of nuclear matter EoS

We could benefit from:
I theoretical constraints on parameters of QM EoS

(ptrans/εtrans, ∆ε/εtrans, c
2
QM)
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Density-independent c2
QM ?

DD2-EV(nuclear) + NJL with 8 quark interactions
(Blaschke et al., arXiv:1411.2856)
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Density-independent c2
QM ?

SU(3) quark-meson model (quarks + Yukawa interaction via scalar and
vector mesons) (Schaffner-Bielich et al, arXiv:1510.00180)
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Density-independent c2
QM ?

Chiral Mean Field model (quarks wuth Yukawa coupling to isoscalar and
isovector mesons) (e.g. Schramm, Dexheimer, Negreiros, arXiv:1508.04699)
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Density-independent c2
QM ?

Field Correlator Method
(Simonov and Trusov, hep-ph/0703228)
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Density-independent c2
QM ?

Local NJL model with vector repulsive interaction
(Orsaria, Rodrigues, Weber, Contrera, arXiv:1308.1657)

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

( a )

 

 

Cs
2

P  [ M e V  f m - 3 ]

           S e t  I V
 G V = 0 . 0
 G V = 0 . 1 5  G S   
 G V = 0 . 3 0  G S
 N L 3  p h .  t r a n s .
G M 1  p h .  t r a n s .

( b )

          S e t  V
 G V = 0 . 0
 G V = 0 . 1 5  G S   
 G V = 0 . 3 0  G S
 N L 3  p h .  t r a n s .
G M 1  p h .  t r a n s .

 

 

P  [ M e V  f m - 3 ]



Density-independent c2
QM ?

Non-local NJL model with vector repulsive interaction
(Orsaria, Rodrigues, Weber, Contrera, arXiv:1308.1657)
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