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Nuclear forces from chiral effective field theory

2N forces 3N forces 4N forcesWe can use EFT to build 
nuclear forces!

• Systematically improvable

• Connects different sets of 
strong-interaction phenomena:

πN, NN, NNN

[Weinberg; van Kolck; Epelbaum et al.; Entem & Machleidt; …]

Two Body  
Current

Three Body  
Force



Nuclear forces from chiral effective field theory

✓ = Set of Parameters (LECs)

⇤ = Regularization Specification

[Weinberg; van Kolck; Epelbaum et al.; Entem & Machleidt; …]
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Nuclear forces from chiral effective field theory
[Weinberg; van Kolck; Epelbaum et al.; Entem & Machleidt; …]

2N forces 3N forces 4N forces

P (✓;⇤,Data) / exp

2

64�
1

2

X

i

⇣
y(data)i � y(EFT)

i (✓,⇤)
⌘2

�2
i

3

75

y(EFT)
i,2B/3B(✓,⇤) = m(✓,⇤) + uEFT

Open Problems
How to choose regularization? 

How to correctly order power counting? 
What data should we fit?



Two Main Classes of Ab Initio Many-Body Methods

Quasi Exact Reference State
Quantum Monte Carlo

Direct Basis Expansion

Exact many-body correlations

Scale factorially in number 
of particles

Approximate many-body 
correlations

Scale polynomially in 
number of particles

(Indirect Basis Expansion)

Coupled Clusters Expansion 

In-medium SRG
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Direct Basis Expansion

For only a few (< 12) 
particles, one can construct 
the many-body Hamiltonian 

as a large matrix

Many-body correlations are 
included exactly!
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Quantifying Errors in Finite Oscillator Basis
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• Universal for short range Hamiltonians 
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a infinite well
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Quantifying Errors in Finite Oscillator Basis

ui(r) =
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This is only one part of the Basis Truncation Error!!!
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Reference State Methods (Coupled Clusters)
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Sub Conclusions
PEFT(✓;⇤)

P (urad
EFT|✓;⇤)

P (R|✓, wm.b., vBasis, uEFT;⇤, b,N)

P (E|✓, wm.b., vBasis, uEFT;⇤, b,N)

Uncertainty enters in 
many places modern ab 

initio calculations

Underlying interactions model
Basis systematics

Missing many-body correlations

The relative sizes of each 
contribution can be observable 

dependent

P (vradBasis|✓; b,N)

P (wrad
m.b.|✓; b,N)
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Problems in Many-body Systems

Effective Field Theory fit to 
A=2, 3, 4 body systems.
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Large extrapolations do 
not go hand in hand 

with predictive power!

Binder, Langhammer, Calci, Roth, Phys. Lett. B. 736 (2014) 119-123 



Catastrophic Errors?

3

!

!

!

!

!

!

!

!
!
!
!
!
!
! !

"

"

"

"
"

#

#

#

#
#

$

$

$

$
$

%

%

%

%
%

-500

-450

-400

-350

-300

-250

.

E
[M

eV
]

ACa

(a) NN+3N-induced

△/" MR-IM-SRG(2)

!/" CCSD
△
/
"

CR-CC(2,3)

λSRG=1.88/2.24 fm−1

E3max = 14

&

&

&

&

&

&

&

&

&

&
& & & & &

"

"

"

"
"

#

#

#

#
#

$

$

$

$
$

%

%

%

%
%

34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

A

-500

-450

-400

-350

-300

-250

.

E
[M

eV
]

(b) NN+3N-full

❍/● MR-IM-SRG(2)

!/" CCSD
△
/
"

CR-CC(2,3)

λSRG=1.88/2.24 fm−1

E3max = 14

FIG. 1. (Color online) Ground-state energies of the Ca iso-
topes for the NN+3N-induced (a) and NN+3N full (b) Hamil-
tonians, with λSRG = 1.88 fm−1 (open symbols) to 2.24 fm−1

(solid symbols). The bands for the MR-IM-SRG(2) results
indicate the variation of the results with the resolution scale
λSRG. Experimental data (black bars) are taken from [26, 50].

S2n shown in Fig. 2. Such differential quantities filter out
global energy shifts due to missing induced many-body
forces, as well as many-body and basis truncations. For
instance, the absolute variation of the S2n with λSRG

in the NN+3N-induced case is much weaker than the
variation of the ground-state energies in Fig. 1(a).
The S2n for the NN+3N-induced Hamiltonian in

Fig. 2(a) show a pronounced shell closure at 40Ca, with
S2n dropping by more than 20 MeV. The 48Ca shell clo-
sure is weak in comparison, albeit close to experimental
data, and there are even weaker hints of shell closures
in 52,54Ca (the reference states exhibit pairing in both
cases). The S2n increase notably from 42Ca to 48Ca, and
weakly from 50Ca to 52Ca. This is an indication that
interaction components which are being accessed as neu-
trons are added to the pf -shell are too attractive, which
is consistent with the observed overbinding. However,
shell structure effects clearly also play a role, because
the overbinding becomes less severe around 48Ca before
increasing again with the neutron number N , while the
S2n are always decreasing between shell closures beyond
52Ca.
The NN+3N-induced Hamiltonian produces a distinct

drip-line signal in Figs. 1(a) and 2(a): 62Ca is consis-
tently unbound by 5 − 6 MeV with respect to 60Ca for
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FIG. 2. (Color online) Two-neutron separation energies of
the Ca isotopes for the NN+3N-induced (a) and NN+3N-
full Hamiltonian with Λ3N = 350, 400 MeV/c (b), for a range
λSRG = 1.88 fm−1 (open symbols) to 2.24 fm−1 (solid sym-
bols). Panel (c) compares MR-IM-SRG(2) and second-order
GGF [6–8] results with the same input Hamiltonian, but
slightly different SRG evolution [54]. Experimental values
(black bars) are taken from [26, 50].

our range of λSRG. The change in S2n is much larger
than the uncertainties due to many-body and basis trun-
cations, or missing induced forces (see below). The inclu-
sion of continuum effects in Ref. [19] reduced the energy
of low-lying unbound states only by about 2 MeV, which
is insufficient to bind isotopes with N > 40 with respect
to 60Ca. Without the inclusion of initial 3N forces, the
drip line is therefore expected at N = 40.

In Fig. 2(b), we show S2n for NN+3N-full Hamilto-
nians with Λ3N = 350, 400 MeV/c. The N = 20 shell
closure is weakened by the 3N forces, although the cal-
culated S2n are still larger than experimental data. As
before, we observe an increase of the separation energies
for 42−48Ca and 50−52Ca, but we note that the overbind-
ing consistently increases with N in this case (Fig. 1(b)).
Interestingly, the S2n trends in these nuclei are flatter for
Λ3N = 350MeV/c than for 400MeV/c, which suggests a
change in the shell structure of these nuclei. Overall, the
S2n are consistent under this variation of the 3N cutoff.
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S2n shown in Fig. 2. Such differential quantities filter out
global energy shifts due to missing induced many-body
forces, as well as many-body and basis truncations. For
instance, the absolute variation of the S2n with λSRG

in the NN+3N-induced case is much weaker than the
variation of the ground-state energies in Fig. 1(a).
The S2n for the NN+3N-induced Hamiltonian in

Fig. 2(a) show a pronounced shell closure at 40Ca, with
S2n dropping by more than 20 MeV. The 48Ca shell clo-
sure is weak in comparison, albeit close to experimental
data, and there are even weaker hints of shell closures
in 52,54Ca (the reference states exhibit pairing in both
cases). The S2n increase notably from 42Ca to 48Ca, and
weakly from 50Ca to 52Ca. This is an indication that
interaction components which are being accessed as neu-
trons are added to the pf -shell are too attractive, which
is consistent with the observed overbinding. However,
shell structure effects clearly also play a role, because
the overbinding becomes less severe around 48Ca before
increasing again with the neutron number N , while the
S2n are always decreasing between shell closures beyond
52Ca.
The NN+3N-induced Hamiltonian produces a distinct

drip-line signal in Figs. 1(a) and 2(a): 62Ca is consis-
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the Ca isotopes for the NN+3N-induced (a) and NN+3N-
full Hamiltonian with Λ3N = 350, 400 MeV/c (b), for a range
λSRG = 1.88 fm−1 (open symbols) to 2.24 fm−1 (solid sym-
bols). Panel (c) compares MR-IM-SRG(2) and second-order
GGF [6–8] results with the same input Hamiltonian, but
slightly different SRG evolution [54]. Experimental values
(black bars) are taken from [26, 50].

our range of λSRG. The change in S2n is much larger
than the uncertainties due to many-body and basis trun-
cations, or missing induced forces (see below). The inclu-
sion of continuum effects in Ref. [19] reduced the energy
of low-lying unbound states only by about 2 MeV, which
is insufficient to bind isotopes with N > 40 with respect
to 60Ca. Without the inclusion of initial 3N forces, the
drip line is therefore expected at N = 40.

In Fig. 2(b), we show S2n for NN+3N-full Hamilto-
nians with Λ3N = 350, 400 MeV/c. The N = 20 shell
closure is weakened by the 3N forces, although the cal-
culated S2n are still larger than experimental data. As
before, we observe an increase of the separation energies
for 42−48Ca and 50−52Ca, but we note that the overbind-
ing consistently increases with N in this case (Fig. 1(b)).
Interestingly, the S2n trends in these nuclei are flatter for
Λ3N = 350MeV/c than for 400MeV/c, which suggests a
change in the shell structure of these nuclei. Overall, the
S2n are consistent under this variation of the 3N cutoff.

EFT potentials have a 
catastrophic systematic 
error as the size of the 

nucleus increases 

H. Hergert et. al., Phys. Rev. C 90, 041302(R) (2014)

Differential Quantities 
seem unaffected by 

this systematic error!

S2N (N,Z) = E(N � 2, Z)

� E(N,Z)



How to Address This Issue?

Fit effective field theory to 
light nuclei and very low 
energy scattering data.

Ekström, Jansen, KAW, et. al.,  PRC(R) 91, 051301(2015) 



How to Address This Issue?

Fit effective field theory to 
light nuclei and very low 
energy scattering data.

Ekström, Jansen, KAW, et. al.,  PRC(R) 91, 051301(2015) 



How to Address This Issue?

Fit effective field theory to 
light nuclei and very low 
energy scattering data.

Ekström, Jansen, KAW, et. al.,  PRC(R) 91, 051301(2015) 

1.0 1.1 1.2 1.3 1.4 1.5 1.6

kf  (fm
−1 )

−15

−10

E
/
A

 (
0

e
V

)

11L2
opt  1.L.

11L2
opt  L.

11L2
sst

K
153
156
173



How to Address This Issue?

Fit effective field theory to 
light nuclei and very low 
energy scattering data.

Ekström, Jansen, KAW, et. al.,  PRC(R) 91, 051301(2015) 



How to Address This Issue?
Exploit correlations between 

predictions! 

3.20 3.28 3.36 3.44 3.52

Rp (fmD

1.50

1.75

2.00

2.25

2.50

2.75

3.00

α
D
(f
m
3
D

Differential quantities seem 
unaffected by this systematic error! 

Fit effective field theory to 
light nuclei and very low 
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Exploiting Correlations Between Observables
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Observables are correlated in heavy systems
(e.g. droplet model)

↵DJ =
⇡e2A

54
R2

✓
1 +

5

3

L

J
✏A

◆
X. Roca-Maza, et. al., PRC 88, 024316 (2013)

5

0 20 40 60 80 100 120 140
L (MeV)

5

6

7

8

9

10

10
−2
α D

J 
  (

M
eV

 fm
3 ) r=0.96

FSU
NL3
DD-ME
Skyrme
SV
SAMi
TF

FIG. 2. (Color online) Dipole polarizability in 208Pb times
the symmetry energy at saturation as a function of the slope
parameter L. The same EDFs [10–17] of Fig. 1 are used. The
linear fit gives 10−2αDJ = (4.80 ± 0.04) + (0.033 ± 0.001)L
with a correlation coefficient r = 0.96 and the two shaded
regions represent the 99.9% and 70% confidence bands.

of αD, we find that Eqs. (8) and (11) are accurate within
a 10% and 12% on average, respectively.
We conclude this section noting that the analysis pre-

sented here may be systematically extended to other
heavy nuclei if αD is experimentally known. This could
help tighten the constraint between J and L.

B. The dipole polarizability and the parity
violating asymmetry in 208Pb

The parity violating asymmetry in the elastic scatter-
ing of high-energy polarized electrons from 208Pb has
been recently measured at low momentum transfer at
the Jefferson Laboratory by the Lead Radius Experiment
(PREX) collaboration [2]. The parity violating asymme-
try is defined as the relative difference between the differ-
ential cross sections of ultra-relativistic elastically scat-
tered electrons with positive and negative helicity [34]:

APV =
(dσ+

dΩ
−

dσ−

dΩ

)

/

(dσ+

dΩ
+

dσ−

dΩ

)

. (16)

This landmark experiment by the PREX collaboration
constitutes the first purely electro-weak measurement
of the neutron skin thickness of a heavy nucleus [2].
In a plane-wave Born approximation the parity violat-
ing asymmetry is directly proportional to the weak-
charge form factor of the nucleus—itself closely related
to the neutron form factor. In exact calculations where
Coulomb distortions are taken into account a highly lin-
ear relation has been found between APV and ∆rnp
in 208Pb within the realm of nuclear EDFs (see Fig. 2
of Ref. [32]). The measured value of the parity vio-
lating asymmetry at an average momentum transfer of
⟨Q2⟩=0.0088± 0.0001 GeV2 reported by the PREX col-
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FIG. 3. (Color online) Parity violating asymmetry in 208Pb
at the PREX kinematics as a function of dipole polarizabil-
ity times the symmetry energy at saturation predicted by the
same EDFs used in the previous figures [10–17]. The hori-
zontal and vertical bands correspond to the region allowed by
experimental data: αDJ = (6.23 ± 0.44) × 102 MeV fm3 and
APV = 0.656 ± (0.060)stat. ± (0.014)syst. ppm. The linear fit
gives APV = 0.842 ± 0.001 − (186 ± 10) × 10−6αDJ with a
correlation coefficient r = 0.94 and the two shaded oblique
regions represent the 99.9% and 70% confidence bands.

laboration is given by

APV = 0.656± (0.060)stat. ± (0.014)syst. ppm . (17)

The experimental uncertainty of 9% (dominated by the
statistical error) is about three times as large as orig-
inally anticipated. By invoking some mild theoretical
assumptions, the measurement of APV was used to ex-
tract the following value of the neutron skin thickness in
208Pb [2, 35]:

∆rnp = 0.302±(0.175)exp.±(0.026)theo.±(0.005)strange fm .
(18)

The last contribution to the uncertainty is associated
with the experimental uncertainty in the determination
of the electric strange quark form factor. The result is
consistent with previous estimates—although the central
value is larger than the one extracted from the predic-
tions of a large set of EDFs as well as from previous
measurements of∆rnp in 208Pb using hadronic probes [4].
We note, however, that one of the main virtues of an
electro-weak extraction of ∆rnp is that it is free from
most strong-interaction uncertainties. As mentioned, the
main source of the experimental uncertainty in PREX
arose from the limited statistics, and a new run PREX-
II aiming at the original 3% accuracy in the determina-
tion of APV has been scheduled at the Jefferson Labo-
ratory [36]. Moreover, parity violating scattering exper-
iments in 208Pb with an even higher accuracy may be
possible in the near future at the new MESA facility in
Mainz [37].
Given the strong correlation displayed by both αDJ

and APV with the neutron skin thickness of 208Pb, it

What about lighter 
systems?



Exploiting Correlations Between Observables

↵DJ ⇡ (aR2 + b) ⇡ (a↵DR+ b↵D)(aJR+ bJ) + ...
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only a few parameters. 

Many-body observables 
must be correlated.

Observables are correlated in heavy systems
(e.g. droplet model)



Neutron Radius and Skin of 48Ca

Ab initio gives a a significantly thinner skin than DFT. 
Ab initio and DFT give consistent prediction for αD.
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Hagen et al., Nature Physics 12, 186–190 (2016) 10.1038/nphys3529
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Implications for Neutron Stars
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Observables are correlated in nuclear systems

Explicit form of these 
correlations is unknown!

EFT in lighter systems has 
only a few parameters. 

Many-body observables 
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But The Errors Are Correlated

Pthy(O,X|m)

A single model (potential) 
gives us limited information 
about the joint probability 

distribution of two many-body 
observables



But The Errors Are Correlated

Pthy(O,X) =

Z
dmP (m)Pthy(O,X|m)

A single model (potential) 
gives us limited information 
about the joint probability 

distribution of two many-body 
observables

We can marginalize (integrate) 
over a family of models to 

better define our joint 
probability distribution.



But The Errors Are Correlated

P (O) =

Z
dXP

thy

(O|X)P
expt

(X)

We can marginalize (integrate) experimental data to 
further constrain our distribution.
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Can we do this?

Can we compute:

Pthy(O,X|m) = N ({Om, Xm} ,⌃Om,Xm) More or less

Pthy(O,X) =

Z
dmP (m)Pthy(O,X|m)

P (O) =

Z
dXP

thy

(O|X)P
expt

(X)



Can we do this?

Can we compute:
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Can we do this?

Can we compute:

More or less

Almost?Pthy(O,X) =
1
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nX
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Pthy(O,X|m)
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Dipole Polarizability and Weak Form Factor



With Small Random Correlation Coefficient



With Large Random Correlation Coefficient



Dipole Polarizability and Weak Form Factor



Summary

Correlations between observables can 
be exploited to fix these issues

Chiral Effective Field Theory provides a tool for 
generating microscopic potentials.

Large systematic errors in many-
body calculation tend to spoil this 
tool (EFT/model-independence)

Need to be able to fully propagate uncertainties from  
few-body input to many-body calculations 

(derivatives w.r.t model parameters)

Need to exploit these correlations in as 
model independent manner as possible



Thank You


