A poor man's attempt at fancy fitting of noisy lattice QCD data with exponentially degrading signal-to-noise ratios

Bayesian Methods in Nuclear Physics INT June/July 2016

André Walker-Loud

Fitting Noisy Lattice QCD Correlation Functions

- Lattice QCD and Lattice QCD "data"
	- O why "poor man's"?
- Variational Projection
- **O** Input Parameter Free multi-exponential fits **O**GPOF
- **O** Matrix Prony

These are all methods I learned working with Kostas Orginos @ W&M/JLab, 2008-2010

Lattice QCD

QCD is The fundamental theory of the strong interactions $q_{b,\beta,f'}(x)$ Quark of *color* b, *spin* β, *flavor* f flavors = $\[\text{up}(u), \text{strange}(s), \text{top}(t)\]$ down (d), charm (c), bottom (b) $\mathcal{L}_{QCD} = \bar{q}_{a,\alpha,f}(x)\left[D_\mu\gamma_\mu + m\right]$ b,β,f' $\frac{b}{a},\beta,f^{\prime} \ q_{b,\beta,f^{\prime}}(x)-\frac{1}{4}$ 4 $G_{\mu\nu}G_{\mu\nu}$

> $colors = red$, green, blue quarks transform under the fundamental representation of SU(3) color (unitary 3x3)

 $spin = 4$ spin states, 2 particle, 2 antiparticle

Lattice QCDQCD is The fundamental theory of the strong interactions $\frac{b}{a},\beta,f^{\prime} \ q_{b,\beta,f^{\prime}}(x)-\frac{1}{4}$ b,β,f' $\mathcal{L}_{QCD} = \bar{q}_{a,\alpha,f}(x)\left[D_\mu\gamma_\mu + m\right]$ $G_{\mu\nu}G_{\mu\nu}$ 4 $[D_\mu]_a^b q_b(x) = \delta_{a,b} \partial_\mu q_b(x) + ig[A_\mu]_a^b q_b(x)$ *gluons* adjoint rep. of SU(3) color - 8 gluons 1 $G_{\mu\nu}G_{\mu\nu}$ 4 $\delta \infty$ δ g and g^2

Lattice QC

QCD is The fundamental theory of the strong interactions

$$
\mathcal{L}_{QCD} = \bar{q}_{a,\alpha,f}(x) \left[D_{\mu} \gamma_{\mu} + m \right]_{a,\alpha,f}^{b,\beta,f'} q_{b,\beta,f'}(x) - \frac{1}{4} G_{\mu\nu} G_{\mu\nu}
$$

quarks $q_{b,\beta,f'}(x)$ degrees of freedom of QCD are gluons $[A_\mu]^b_a$ *a*

degrees of freedom of nature are protons, neutrons, …

u u d proton u d neutron d $M_p = 938.272046 \text{ MeV}$ $M_n = 939.565379 \text{ MeV}$ $M_n - M_p = 1.29333217(42)$ MeV $M_e = 0.511$ MeV

Lattice QC

QCD is The fundamental theory of the strong interactions $\mathcal{L}_{QCD} = \bar{q}_{a,\alpha,f}(x)\left[D_\mu\gamma_\mu + m\right]$ b,β,f' $\frac{b}{a},\beta,f^{\prime} \ q_{b,\beta,f^{\prime}}(x)-\frac{1}{4}$ 4 $G_{\mu\nu}G_{\mu\nu}$

QCD is a remarkably simple theory to write down. At low energies (will define) QCD is a theory of only 3 or 4 parameters: m_u mass of the up quark (dimensionfull) md (ms) mass of the strange quark (dimensionfull) g mass of the down quark (dimensionfull) *gauge* coupling between quarks and gluons (dimension-less)

Once these parameters are fixed - everything else is a prediction! - proton mass, He binding energy, neutron star equation of state (maximum neutron star mass), …

Lattice QCD

Lattice QCD

Asymptotic Freedom Feynman Path Integrals Wilson Lattice Field Theory Monte Carlo methods

allows numerical solution with exact theory as $a \to 0$ (no uncertainty quantification) Feynman Path Integrals $Z =$ Z $DA_{\mu}D\psi D\overline{\psi}e^{iS_{QCD}}$ $S_{QCD} =$ $d^4x \mathcal{L}_{QCD}$ $\langle \Omega | \hat{O}(y) \hat{O}^{\dagger}(x) | \Omega \rangle =$ 1 *Z* Z $DA_\mu D\psi D\overline{\psi}e^{iS_QCD}\mathcal{O}(y)\mathcal{O}^\dagger(x)$

The path-integral gives us a relation between matrix elements of operators and a high dimensional integral over field configurations.

- We know how to do the integral on the right (in principle at least). The beginning of lattice QFT is to discretize the universe so that we can compute the path-integral representation directly with a computer.
- $32 \times 32 \times 32 \times 64 = 2^{21}$ Suppose we chop the universe into size
- our path integral goes over all field configurations on all sites, $n^{2^{21}}$ terms!

Feynman Path Integrals How can we actually perform this integral? \bullet If we Wick-rotate to Euclidean time, $t \rightarrow it_{E}$, then we have $Z =$ Z $DA_{\mu}D\psi D\overline{\psi}e^{iS_{QCD}}$ $S_{QCD} =$ $d^4x \mathcal{L}_{QCD}$ $\langle \Omega | \hat{O}(y) \hat{O}^{\dagger}(x) | \Omega \rangle =$ 1 *Z* Z $DA_\mu D\psi D\overline{\psi}e^{iS_QCD}\mathcal{O}(y)\mathcal{O}^\dagger(x)$ $\langle \Omega | \hat{\mathcal{O}}(y_E) \hat{\mathcal{O}}^{\dagger}(x_E) | \Omega \rangle =$ 1 Z $DA_{\mu}D\psi D\overline{\psi}e^{-S_{QCD}^{E}}\mathcal{O}(y_{E})\mathcal{O}^{\dagger}(x_{E})$

For zero quark chemical-potential (zero baryon chemical potential) $e^{-S_Q^E}$ $QCD \in \mathbb{R}$

Z

We can use this factor as a probability measure to importance sample the integral with Monte-Carlo methods for those field configurations that minimize S^{E}_{QCD}

Feynman Path Integrals $\langle \Omega | \hat{\mathcal{O}}(y_E) \hat{\mathcal{O}}^{\dagger}(x_E) | \Omega \rangle =$ 1 *Z* Z $DA_{\mu}D\psi D\overline{\psi}e^{-S_{QCD}^{E}}\mathcal{O}(y_{E})\mathcal{O}^{\dagger}(x_{E})$

 \bullet We can make N_{cfg} different samples of the field configurations and then our correlation functions are approximated with finite statistics *N*

 $\langle \Omega | \hat{\mathcal{O}}(y_E) \hat{\mathcal{O}}^\dagger(x_E) | \Omega \rangle = \lim_{N \to \infty}$ $N_{cfg} \rightarrow \infty$ 1 N_{cfg} \sum *cf g i*=1 $\langle \Omega | \hat{\mathcal{O}}(y_E) [A_\mu^i, \psi_i, \overline{\psi}_i] \hat{\mathcal{O}}^\dagger(x_E) [A_\mu^i, \psi_i, \overline{\psi}_i] | \Omega \rangle$

 $[A_\mu^i,\psi_i,\overline{\psi}_i]$ = the ith value of the fields on "configuration" i

- We really need to compute the mean not the median (as dictated by the rules of Quantum Field-Theory)
- At finite statistics (finite Ncfg) we will have an approximation to the correlation functions with some computable statistical uncertainty that can be systematically improved (with more computing time)

Feynman Path Integrals $\langle \Omega | \hat{\mathcal{O}}(y_E) \hat{\mathcal{O}}^{\dagger}(x_E) | \Omega \rangle =$ 1 *Z* Z $DA_{\mu}D\psi D\overline{\psi}e^{-S_{QCD}^{E}}\mathcal{O}(y_{E})\mathcal{O}^{\dagger}(x_{E})$

What do we expect our Euclidean spacetime correlation functions to look like? Let us take $x_E=0$ (without loss of generality translation invariance lets us do this) and $\vec{y}_E = 0$ for simplicity

 $C(t) = \langle \Omega | \hat{\mathcal{O}}(t, \vec{0}) \hat{\mathcal{O}}^{\dagger}(0, \vec{0}) | \Omega \rangle$

Insert a complete set of states (completeness) (completeness)

Lattice QCD results are given by a sum of noisy exponentials - a challenging numerical analysis problem

n $\int_0^1 1 = \sum |n\rangle \langle n|$ $C(t) = \sum$ *n* $\langle \Omega | \hat{\mathcal{O}}(t) | n \rangle \langle n | \hat{\mathcal{O}}^{\dagger}(0) | \Omega \rangle$ $=$ \sum *n* $\langle \Omega | e^{\hat{H}t} \hat{\mathcal{O}}(0) e^{-\hat{H}t} |n \rangle \langle n | \hat{\mathcal{O}}^{\dagger}(0) | \Omega \rangle$ $=$ \sum *n* $Z_n Z_n^\dagger e^{-E_n t}$ $Z_n = \langle \Omega | \hat{\mathcal{O}}(0) | n \rangle$ Quark contractions: Making protons, pions, …

 $[D_W+M]\,S(x,y;U)=\frac{1}{\pi^2}$ $\frac{1}{a^4}\delta_{xy}$

Pion correlation function

Quark propagator

To solve for the quark propagator, S, we must invert a large sparse matrix

 $[D_W+M]^{-1}$

Then - we Wick-contract the quarks together to make states of interest: e.g. the pion

 $C(t) = \langle \Omega | \hat{\mathcal{O}}(t, \vec{0}) \hat{\mathcal{O}}^{\dagger}(0, \vec{0}) | \Omega \rangle$ *O* $\hat{\mathcal{O}}^\dagger(y) = \bar{d}(y)\gamma_5 u(y)$ *O* $\hat{\mathcal{O}}$ $f(x)=\bar{u}(x)\gamma_5d(x)$

 $\overline{\langle}$ $\overline{u}(x)\gamma_5 d(x) d(y)\gamma_5 u(y)$ \setminus $F = -\text{tr} \{ \gamma_5 S_{dd}(x, y; U) \gamma_5 S_{uu}(y, x; U) \}$

Quark contractions: Making protons, pions, …

$$
[D_W + M] S(x, y; U) = \frac{1}{a^4} \delta_{xy}
$$

A proton has 2 u-quarks and 1 d-quark. The contractions are slightly more complex - we need to keep track of which u-quark from x goes to which u-quark at $y - 2$ contractions (Nu! * Nd!)

Proton correlation function

2 protons (proton-proton scattering) has $4!$ $*$ 2! = 48 contractions He3 (ppn) has $5!$ $*$ 4! = 2880 contractions He4 (ppnn) has $6! * 6! = 518400$ contractions! …

-

Symmetries can be used to largely reduce this growth Yamazaki, Kuramashi, Ukawa - Phys.Rev. D81 (2010) But this Wick-contraction cost can be dominant for multi-nucleon lattice QCD calculations

Quark contractions: Making protons, pions, …

$$
[D_W + M] S(x, y; U) = \frac{1}{a^4} \delta_{xy}
$$

A proton has 2 u-quarks and 1 d-quark. The contractions are slightly more complex - we need to keep track of which u-quark from x goes to which u-quark at $y - 2$ contractions (Nu! * Nd!)

Proton correlation function

2 protons (proton-proton scattering) has $4!$ $*$ 2! = 48 contractions He3 (ppn) has $5!$ $*$ 4! = 2880 contractions He4 (ppnn) has $6! * 6! = 518400$ contractions! …

-

The cancellations (- signs) in these contractions give rise to a signalto-noise problem

Signal-to-Noise

Calculations involving nucleons suffer a severe signal-to-noise problem

 $Signal = Ze^{-m_Nt}$ h $1 + \delta Z_n e^{-(E_n - m_N)t}$ $\overline{1}$

Signal Noise

$$
\sim \sqrt{N_{sample}} \ e^{-(m_N - \frac{3}{2}m_\pi)t}
$$

Signal Noise $\sim \sqrt{N_{sample}} e^{-A(m_N - \frac{3}{2}m_\pi)t}$ Signal for a proton correlation function

Signal-to-noise for a proton correlation function $m_N \simeq 939$ MeV $m_{\pi} \simeq 135$ MeV Signal-to-noise for A nucleons

Solving this problem requires solutions at early Euclidean-time before the Noise becomes large - but this requires sophisticated "wave-functions" for the proton, which compounds the Wickcontraction cost mentioned above

Lattice QCD: Recap

Lattice QCD is a stochastic approximation to the path-integral formulation of QCD in imaginary (Euclidean) time LQCD applications to NP require Peta- to Exa-scale computing - want to get the most out of our cycles **O** Numerical Results exactly modeled as a sum of noisy exponentials with exponentially degrading signal-to-noise ratios

$$
C_N(t) = \sum_n \tilde{Z}_n Z_n^{\dagger} e^{-E_n t} \qquad \Delta E_A \simeq 10 \text{ MeV}
$$

\n
$$
\lim_{t \to \infty} C_{AN}(t) = \tilde{Z}_0 Z_0^{\dagger} e^{-(Am_N + \Delta E_A)t} \qquad A = 1, 2, 3, 4, ...
$$

- **O** gaps to excited states can also be in the 10-100 MeV range to resolve both energy levels, need $t \sim 1/(E_1 - E_0)$ which is precisely where the noise is growing unwieldy
- current calculations typically use just 1 or 2 Markov chains due to computational costs - though this may change soon

Lattice QCD: Recap

$$
\begin{aligned} \n\text{O Why} \text{``poor man's''?}\\ \nC(t) &= \sum_{n} \tilde{Z}_n Z_n^{\dagger} e^{-E_n t} \\ \n\to C_{ij}(t) &= \sum_{n} \tilde{Z}_{i,n} Z_{j,n}^{\dagger} e^{-E_n t} \n\end{aligned}
$$

a "rich man" would create a large basis of operators that all couple to the same states - so that a diagonalization of this basis can be performed via a generalized eigenvalue problem leaving one with linear combinations of operators that couple predominantly to single states, n.

This idea works extremely well for mesons (quark—anti-quark states) but is prohibitively costly for 2 or more nucleons

Lattice QCD: Recap

O Standard Tool: Effective Mass

$$
C(t) = \sum_{n} \tilde{Z}_n Z_n^{\dagger} e^{-E_n t}
$$

$$
m_{eff}(t,\tau) \equiv \frac{1}{\tau} \ln \left(\frac{C(t)}{C(t+\tau)} \right)
$$

$$
\lim_{t \to \infty} m_{eff}(t, \tau) = E_0
$$

Very simple idea:

if a fit function has mixed linear/non-linear dependence on the fit parameters, one does not need to perform a numerical minimization on all the parameters - one can first perform a linear least squares on the linear parameters, solving as a function of the non-linear ones

 \Box

Very simple idea: first perform linear-least squares in lattice QFT, correlation functions fit with

$$
\chi^2 = \sum_{t,t'} \left[y(t) - f(\lambda, t) \right] C_{t,t'}^{-1} \left[y(t') - f(\lambda, t') \right]
$$

$$
f(\lambda, t) = \sum_{n} Z_n \lambda_n^t \qquad \lambda_n = e^{-E_n} \qquad \lambda = \{Z_n, \lambda_n\}
$$

$$
\frac{\partial \chi^2}{\partial Z_n} = 0 \qquad \text{(repeated indices summed over)}
$$

$$
= \left[-\lambda_n^t C_{t, t'}^{-1} (y(t') - Z_m \lambda_m^{t'}) - (y(t) - Z_m \lambda_m^t) C_{t, t'}^{-1} \lambda_n^{t'} \right]
$$

Very simple idea: first perform linear-least squares

symmetry in $t \leftrightarrow t'$

$$
\frac{\partial \chi^2}{\partial Z_n} = 0
$$
\n
$$
= \left[-\lambda_n^t C_{t,t'}^{-1} (y(t') - Z_m \lambda_m^{t'}) - (y(t) - Z_m \lambda_m^t) C_{t,t'}^{-1} \lambda_n^{t'} \right]
$$
\n
$$
Z_m \lambda_m^t C_{t,t'}^{-1} \lambda_n^{t'} = y(t) C_{t,t'}^{-1} \lambda_n^{t'}
$$
\n
$$
Z_m \Lambda_{m,n} = y(t) C_{t,t'}^{-1} \lambda_n^{t'} \qquad \Lambda_{m,n} = \lambda_m^t C_{t,t'}^{-1} \lambda_n^{t'}
$$

 $\partial\chi^2$

 ∂Z_n

 $= 0$

Very simple idea: first perform linear-least squares

 $Z_m = \Lambda_{m,n}^{-1} y(t) C_{t,t'}^{-1} \lambda_n^{t'}$

we have solved for the overlap factors as functions of the eigenvalues

plug these solutions back into χ^2 and perform numerical minimization on just the non-linear parameters (En)

Very simple idea: first perform linear-least squares

$$
\chi^2 = \sum_{t,t'} \left[y(t) - f(\lambda, t) \right] C_{t,t'}^{-1} \left[y(t') - f(\lambda, t') \right]
$$

$$
f(\lambda, t) = \sum_n Z_n \lambda_n^t \qquad \lambda_n = e^{-E_n}
$$

$$
Z_m = \Lambda_{m,n}^{-1} y(t) C_{t,t'}^{-1} \lambda_n^{t'} \qquad \Lambda_{m,n} = \lambda_m^t C_{t,t'}^{-1} \lambda_n^{t'}
$$

When counting the degrees of freedom in the fit DON'T forget to count the overlap factors you have also determined! readily extend this to matrix of correlation functions

Variational Projection

The Solub & Pereyra Inverse Problems 19 (2003) arXiv:0907.0529

can also apply the same idea to chiral extrapolation formulae which usually have mixed linear/non-linear dependence on LECs

Fit to Octet and Decuplet baryon mass results with SU(3) Baryon Chiral Perturbation Theory

"The fit of a sum of exponentials to noisy data" (Note: typos in paper)

Given the outputs of a non-degenerate n-dimensional linear system

$$
y_t = c^T x_t \t c_i \neq 0, i = 1, ..., n
$$

\n
$$
x_{t+1} = Tx_t \t x_0^T = (1, ..., 1)
$$

\n
$$
y_t = c^T T^t x_0
$$

\n
$$
(x_t, c) \in \mathbb{R}^n
$$

construct the p x q Hankel Matrix with $p,q > n$ $H =$ $\overline{1}$ $\overline{}$ *y*⁰ \cdots *y*^{*q*-1} y_{p-1} *··· y*_{q+p-2} \setminus $H_{ij} = y_{i+j-1}$ $H = \begin{bmatrix} \vdots & \ddots & \vdots \\ y_{i+j-1} & \cdots & y_{i+j} \end{bmatrix}$

The Hankel Matrix can be factorized

$$
H = \begin{pmatrix} y_0 & \cdots & y_{q-1} \\ \vdots & \ddots & \vdots \\ y_{p-1} & \cdots & y_{q+p-2} \end{pmatrix} \qquad y_t = c^T T^t x_0
$$

$$
H = FG = \begin{pmatrix} c^T \\ c^T T \\ \vdots \\ c^T T^{p-1} \end{pmatrix} (x_0 \ T x_0 \ \cdots \ T^{q-1} x_0)
$$

 $F: \mathbb{R}^n \to \mathbb{R}^p$ $G: \mathbb{R}^q \to \mathbb{R}^n$ $(H \text{ is } p \times q \text{ matrix})$ The factorization matrices can be inverted *H* = *F G* $\mathbb{1}^n = \tilde{F}^{-1}H\tilde{G}^{-1}$ $\{\tilde{F}^{-1}, \tilde{G}^{-1}\}$ = pseudo-inverse $\{F, G\}$

The shifted Hankel Matrix can be factorized

$$
H_{ij} = y_{i+j-1}
$$

$$
H_{ij}^+ = y_{i+j}
$$

$$
y_t = c^T T^t x_0
$$

$$
H^+ = FTG
$$

We can construct a matrix similar to *T*

$$
T_s = \tilde{F}^{-1}H^+\tilde{G}^{-1} = \tilde{F}^{-1}FTG\tilde{G}^{-1}
$$

How do we determine $\{F, G\}$?

The shifted Hankel Matrix can be factorized

 $H_{ij} = y_{i+j-1}$ $H_{ij}^{+} = y_{i+j}$ $y_t = c^T T^t x_0$

$$
H = FG \qquad H^+ = FTG
$$

How do we determine $\{F, G\}$?

- First pick a window in time of interest you want to analyze, *ti, t^f*
- One can (should) shift with $\Delta t = \tau > 1$ $H_{ij}^{\tau} = y_{i+j-1+\tau}$

18 hankel_shift = h_tmp_shift[t0:tf:dt,0:tf-t0:dt]

. . \setminus

 $\begin{array}{c} \hline \end{array}$

First - pick a window in time of interest you want to analyze, *ti, t^f*

Perform a singular value decomposition on *H* $H = U\Sigma V^T$ $\Sigma = \text{diag}(\text{singular values})$

$$
T_s = \Sigma^{-1/2} U^T H^+ V \Sigma^{-1/2} \qquad H^+ = FTG
$$

One very important point: need to truncate the singular values to a reasonable number

-
- If you desire just the ground state chose range of time suitably (contamination from just a single state) and take two singular values

For determining 2 states (gs + 1st excited) pick 3 singular values etc.

study the singular values to see how much information you can get from correlation function

Perform a singular value decomposition on *H* $H = U\Sigma V^T$ $\Sigma = \text{diag}(\text{singular values})$

take n_s largest singular values

$$
T_s = \Sigma^{-1/2}[0 : n_s] U^T[0 : n_s; H^+V[:, 0 : n_s] \Sigma^{-1/2}[0 : n_s]
$$

$$
\lambda_n, O_n = \text{eig}(T_s) \qquad H^+ = FTG
$$

$$
E_n = -\ln(\lambda_n)
$$

Now we have the eigen-energies - how do we get the overlap factors? See VarPro!

Input Parameter Free Multi-Exp Fits De Groen & De Moor Comp. Appl. Math. 20 (1987)

$$
H_{ij} = y_{i+j-1} \ H_{ij}^+ = y_{i+j} \qquad H = U\Sigma V^T \qquad n_s
$$

$$
T_s = \Sigma^{-1/2} [0 : n_s] \ U^T [0 : n_s;] H^+ V[:, 0 : n_s] \Sigma^{-1/2} [0 : n_s]
$$

$$
\lambda_n, O_n = \text{eig}(T_s) \qquad E_n = -\ln(\lambda_n)
$$

$$
Z_m = \Lambda_{m,n}^{-1} y(t) C_{t,t'}^{-1} \lambda_n^{t'} \qquad \Lambda_{m,n} = \lambda_m^t C_{t,t'}^{-1} \lambda_n^{t'}
$$

Use these values to seed the multi-exponential fit!

GPOF:

K. Orginos Latt2010 (unpublished) but on web C. Aubin & K. Orginos Latt2011 (on PoS) C.Aubin, K. Orginos & AWL private work

Lattice Correlation functions:

$$
C_{ij}(t) = \langle O_i(t)\tilde{O}_j^{\dagger}(0)\rangle
$$

=
$$
\sum_n Z_i^n \tilde{Z}_j^{n,\dagger} e^{-E_n t}
$$

Ideally, $\tilde{O}_i = O_i$ then one can solve a Generalized EigenValue Problem - Blossier et. al. JHEP 0904 (2009)

But this is often prohibitively expensive (requiring all-toall propagators)

Can we find a solution that handles non-symmetric, nonpositive definite correlation functions? Of Course!

Consider

$$
K_{ij}^{pq}(t,\tau) = \langle O_i(t + p\tau)\tilde{O}_j^{\dagger}(-q\tau) \rangle = C_{ij}(t + (p+q)\tau)
$$

$$
K(t) = \begin{pmatrix} C(t) & C(t+\tau) & C(t+2\tau) & \dots \\ C(t+\tau) & C(t+2\tau) & C(t+3\tau) & \dots \\ C(t+2\tau) & C(t+3\tau) & C(t+4\tau) & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}
$$

Time-evolution of operators produces orthogonal correlators $O(t + p\tau) = e^{p\tau H} O(t)e^{-p\tau H}$

One can then proceed with a generalized eigenvalue-like solution: a non-symmetric C can be shifted into a square-matrix *K*

GPOF:

C. Aubin & K. Orginos Latt2011 (on PoS) C. Aubin & K. Orginos Latt2011 (on PoS) C.Aubin, K. Orginos & AWL private work

$$
K_{ij}^{pq}(t,\tau) = \langle O_i(t + p\tau)\tilde{O}_j^{\dagger}(-q\tau) \rangle = C_{ij}(t + (p+q)\tau)
$$

But over shifting (too many p's and q's) leads to linearly dependent information

one must perform a singular-value decomposition (SVD) on K(t) and cut the number of allowed singular values

$$
K(t_0) = U\Sigma(t_0)V^{\dagger} \qquad \Sigma = \begin{pmatrix} \sigma_1 & 0 & \dots \\ 0 & \sigma_2 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}
$$

and $A(t) = \Sigma^{-1/2} U K(t) V^{\dagger} \Sigma^{-1/2}$ gives an eigenvalue problem for a non-symmetric matrix $A\tilde{q}^n = \lambda_n \tilde{q}^n$ $q^{n\dagger}A = \lambda_n q^{n\dagger}$ $q^{n\dagger} \tilde{q}^m = \delta_{nm}$

keeping 3 singular values $\lambda_n(t) = (1 - \delta)e^{-E_n t} + \delta e^{-E_{N+1} t}$

keeping 4 singular values $\lambda_n(t) = (1 - \delta)e^{-E_n t} + \delta e^{-E_{N+1} t}$

sweeping over choices or parameters to determine systematics

Prony = some guys name

G. R. de Prony Journal de l'cole Polytechnique, volume 1, cahier 22, 24-76 (1795)

Matrix = matrix

Arxiv:1301.1114
Matrix Prony arXiv:0905.0466

arXiv:0905.0466

Start with a vector of correlation functions perhaps a single src and multiple sinks

We would like to construct an operator such that

$$
\begin{pmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_N(t) \end{pmatrix}
$$

$$
y(t+\tau) = \hat{T}(\tau)y(t)
$$

T $\hat{\bm{\varGamma}}$ $(\tau) =$ Transfer Operator

 $y(t) =$

arXiv:0905.0466

$$
y(t + \tau) = \hat{T}(\tau)y(t)
$$

Transpose

$$
y(t + \tau)y^{T}(t) = \hat{T}(\tau)y(t)y(t)
$$

Transpose

$$
\hat{M}(\tau)y(t + \tau)y^{T}(t) = \hat{V}(\tau)y(t)y^{T}(t) \qquad \hat{T} = \hat{M}^{-1}\hat{V}
$$

Nothing special about *t*

arXiv:0905.0466

We have assumed T (and M and V) are independent of *t*but this is precisely what we desire from a "transfer matrix"

arXiv:0905.0466

$$
\hat{M}(\tau) \sum_{t_0}^{t_0 + \Delta t} y(t + \tau) y^T(t) = \hat{V}(\tau) \sum_{t_0}^{t_0 + \Delta t} y(t) y^T(t)
$$
\n**a solution**

\n
$$
\hat{M}(\tau) = \left[\sum_{t_0}^{t_0 + \Delta t} y(t + \tau) y^T(t) \right]^{-1}, \quad \hat{V}(\tau) = \hat{V} = \left[\sum_{t_0}^{t_0 + \Delta t} y(t) y^T(t) \right]^{-1}
$$

must sum over sufficient number of time slices to make matrices "full rank" for two-components, must sum over at least two time slices

Arxiv:1301.1114
Matrix Prony arXiv:0905.0466

arXiv:0905.0466

$$
\hat{M}(\tau) \sum_{t_0}^{t_0 + \Delta t} y(t + \tau) y^T(t) = \hat{V}(\tau) \sum_{t_0}^{t_0 + \Delta t} y(t) y^T(t)
$$
\n**a solution**

\n
$$
\hat{M}(\tau) = \left[\sum_{t_0}^{t_0 + \Delta t} y(t + \tau) y^T(t) \right]^{-1}, \quad \hat{V}(\tau) = \hat{V} = \left[\sum_{t_0}^{t_0 + \Delta t} y(t) y^T(t) \right]^{-1}
$$

most robust results come from maximizing Δt this requires that over a large range of time our ansatz is satisfied - only N states contribute in $t_0 \rightarrow t_0 + \Delta t$

Arxiv:1301.1114
Matrix Prony arxiv:0905.0466

arXiv:0905.0466

$$
y(t+\tau) = \hat{M}^{-1}(\tau)\hat{V}y(t) = \hat{T}(\tau)y(t)
$$

$$
\hat{M}(\tau) = \left[\sum_{t_0}^{t_0+\Delta t} y(t+\tau)y^T(t)\right]^{-1}, \ \hat{V}(\tau) = \hat{V} = \left[\sum_{t_0}^{t_0+\Delta t} y(t)y^T(t)\right]^{-1}
$$

given M and V one then solves the eigenvalue equation

$$
\hat{T}(\tau)q_n = (\lambda_n)^{\tau} q_n \qquad \lambda_n = e^{-E_n} \qquad \hat{T}(\tau) = \hat{M}^{-1}(\tau)\hat{V}
$$

given λ_n check to see if ansatz is satisfied - over range of $t_0 \rightarrow t_0 + \Delta t$ there should be no significant evidence of excited state contamination

arXiv:0905.0466

in Python

```
"" MATRIX PRONY ""
2021 import numpy as np
22 from scipy import linalg as spla
  def matrix_prony(corr,ti,tau,td=1):
23corr = np.array(corr)24
       n_c cfg, n_t, n_c corr = corr. shape
25
       if tau < n_corr:
2627
           print 'Matrix Prony Error:'
           print ' must chose at least %d time slices' %n_corr
28
29
           sys.exit(-1)y_{avg} = np.macan(corr, axis=0)30
       Minvt = np.array(map(np.outer, np-roll(y_avg, -td, 0), y_avg))31Vinvt = np.array(map(np.outer, y_avg, y_avg))32
       Minv = np.sum(Minvt[ti:ti+tau], axis=0)
33
34
       Vinv = np.sum(Vinvt[ti:tit+tau], axis=0)Transfer = np.dot(Minv, spla.inv(Vinv))
35
       le, 0e = spla.eig(Transfer)36
37
       ind = np.argv(t(e); indr = ind[::-1])38
39
       return le, Oe, indr
```
arXiv:0905.0466

$$
y(t+\tau) = \hat{T}(\tau)y(t)
$$

take correlation function with one source and two sinks

$$
y(t) = \begin{pmatrix} y_{SP}(t) \\ y_{SS}(t) \end{pmatrix}
$$

between $t=5$ and $t=15$ there appear to be two states

arXiv:0905.0466

take correlation function with one source and two sinks

$$
y(t) = \begin{pmatrix} y_{SP}(t) \\ y_{SS}(t) \end{pmatrix}
$$

between $t=5$ and $t=15$ there appear to be two states

between $t=5$ and $t=15$ there appear to be two states

arXiv:0905.0466

$$
y(t+\tau) = \hat{T}(\tau)y(t)
$$

take correlation function with one source and two sinks

$$
y(t) = \begin{pmatrix} y_{SP}(t) \\ y_{SS}(t) \end{pmatrix}
$$

between $t=6$ and $t=11$ also good

arXiv:0905.0466

take correlation function with one source and two sinks

between $t=2$ and $t=15$ too aggressive

arXiv:0905.0466

$$
y(t+\tau) = \hat{T}(\tau)y(t)
$$

take correlation function with one source and two sinks

$$
y(t) = \begin{pmatrix} y_{SP}(t) \\ y_{SS}(t) \end{pmatrix}
$$

between $t=7$ and $t=15$ also good

arXiv:0905.0466

$$
y(t+\tau) = \hat{T}(\tau)y(t)
$$

take correlation function with one source and two sinks

$$
y(t) = \begin{pmatrix} y_{SP}(t) \\ y_{SS}(t) \end{pmatrix}
$$

between $t=7$ and $t=15$ different range of fit ok

Arxiv:1301.1114
Matrix Prony arxiv:0905.0466

exponential decay of signal-to-noise for baryons challenging lack of positive-definite correlation functions allow "false plateaus" is late-time dip of effective mass true ground state value? results much more sensitive to choices of fit-range, MP-range want algorithm to weight all possible reasonable choices

Arxiv:1301.1114
Matrix Prony arXiv:0905.0466

arXiv:0905.0466

The algorithm I currently use (systematics are not uniquely defined)

pick minimum Δt_{MP}

$$
\hat{M}(\tau) = \left[\sum_{t_0}^{t_0 + \Delta t} y(t+\tau)y^T(t)\right]^{-1}
$$

pick minimum Δt_{plat} in exp fit $t_f = t_i + \Delta t_{plat}$ Δt_{plat} choice guided by excited

state masses

pick minimum and maximum t you want to consider (correlator dependent)

loop over independently chosen t_0 , Δt_{MP} , t_i , Δt_{plat}

Arxiv:1301.1114
Matrix Prony arxiv:0905.0466

The algorithm I currently use (systematics are not uniquely defined)

specific for baryons, for each fit, pick a weight factor

$$
\omega_i = \frac{Q_i}{\sigma_i^2} \qquad Q = \int_{\chi^2_{min}}^{\infty} d\chi^2 \mathcal{P}(\chi^2, dof) \qquad Q \in [0, 1]
$$

 σ_i = statistical uncertainty for a given fit

this choice allows for late time fluctuations being real, but suppresses them by their larger statistical uncertainty

$$
\bar{m} = \frac{\sum_i w_i m_i}{\sum_j w_j}
$$

arXiv:0905.0466

16% and 84% quantiles chosen for systematic uncertainty inner band statistical outer band stat+sys added in quadrature $P(m) =$ mass probability distribution function $\mathcal{P}(m_i) = \frac{1}{\sum_i^2}$ w_i *^j w^j*

Questions

Can the noise of our numerical results be used to rigorously chose a number of singular values in the Hankel Matrix/GPOF methods?

The growth of computing power and algorithms means that TODAY is the beginning of a renaissance in nuclear physics where these exciting things are just becoming possible!

