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Fitting Noisy Lattice QCD Correlation Functions

Lattice QCD and Lattice QCD “data” 

why “poor man’s”? 

Variational Projection 

Input Parameter Free multi-exponential fits 

GPOF 

Matrix Prony

These are all methods I learned working with 
Kostas Orginos @ W&M/JLab, 2008-2010



QCD is The fundamental theory of  the strong interactions
Lattice QCD

qb,�,f 0(x) Quark of color b, spin β, flavor f

flavors = up (u),      strange (s), top (t) 
down (d), charm (c),  bottom (b)

colors = red, green, blue
quarks transform under the 
fundamental representation of 
SU(3) color (unitary 3x3)

spin = 4 spin states, 2 particle, 2 anti-
particle

LQCD = q̄a,↵,f (x) [Dµ�µ +m]b,�,f
0

a,↵,f qb,�,f 0(x)� 1

4
Gµ⌫Gµ⌫



QCD is The fundamental theory of  the strong interactions

[Dµ]
b
aqb(x) = �a,b@µqb(x) + ig[Aµ]

b
aqb(x)

LQCD = q̄a,↵,f (x) [Dµ�µ +m]b,�,f
0

a,↵,f qb,�,f 0(x)� 1

4
Gµ⌫Gµ⌫

g g g2

1

4
Gµ⌫Gµ⌫

gluons adjoint rep. of 
SU(3) color - 8 gluons

Lattice QCD



QCD is The fundamental theory of  the strong interactions
Lattice QCD

qb,�,f 0(x)
degrees of freedom of QCD are  

quarks 
gluons

LQCD = q̄a,↵,f (x) [Dµ�µ +m]b,�,f
0

a,↵,f qb,�,f 0(x)� 1

4
Gµ⌫Gµ⌫

[Aµ]
b
a

degrees of freedom of nature are protons, neutrons, …

uu

d

proton

u

d

neutron

d

Mn = 939.565379 MeVMp = 938.272046 MeV

Mn �Mp = 1.29333217(42) MeV

Me = 0.511 MeV



QCD is The fundamental theory of  the strong interactions
LQCD = q̄a,↵,f (x) [Dµ�µ +m]b,�,f

0

a,↵,f qb,�,f 0(x)� 1

4
Gµ⌫Gµ⌫

QCD is a remarkably simple theory to write down.  At low 
energies (will define) QCD is a theory of only 3 or 4 
parameters: mu 

md 
(ms) 
g

mass of the up quark (dimensionfull) 
mass of the down quark (dimensionfull) 
mass of the strange quark (dimensionfull) 
gauge coupling between quarks and gluons 
(dimension-less)

Once these parameters are fixed - everything else is a 
prediction!  - proton mass, He binding energy, neutron star 
equation of state (maximum neutron star mass), …

Lattice QCD



g g g2

low energy                                                                    high energy

Lattice QCD

Asymptotic 
Freedom

Strong
Coupling

2004 Nobel Prize
David Gross

David Politzer
Frank Wilczek

�s(Q) =
g2(Q)

4⇥



low energy                                                                    high energy

Lattice QCD

Asymptotic 
Freedom

Strong
Coupling

|{
z}L a

Asymptotic Freedom
Feynman Path Integrals
Wilson Lattice Field Theory
Monte Carlo methods

allows numerical solution
with exact theory as 
(no uncertainty quantification)

small distance
=

large energy

a ! 0



Feynman Path Integrals

The path-integral gives us a relation between matrix elements of 
operators and a high dimensional integral over field configurations.


We know how to do the integral on the right (in principle at least).  
The beginning of lattice QFT is to discretize the universe so that 
we can compute the path-integral representation directly with a 
computer.

Z =

Z
DAµD D e

iSQCD
SQCD =

Z
d

4
xLQCD

h⌦|Ô(y)Ô†(x)|⌦i = 1

Z
Z

DAµD D e
iSQCDO(y)O†(x)

32⇥ 32⇥ 32⇥ 64 = 221
Suppose we chop the universe into size

our path integral goes over all field 
configurations on all sites,        terms!n221



Feynman Path Integrals

How can we actually perform this integral?


If we Wick-rotate to Euclidean time, t -> itE, then we have

Z =

Z
DAµD D e

iSQCD
SQCD =

Z
d

4
xLQCD

h⌦|Ô(y)Ô†(x)|⌦i = 1

Z
Z

DAµD D e
iSQCDO(y)O†(x)

h⌦|Ô(yE)Ô†(xE)|⌦i = 1

Z
Z

DAµD D e
�SE

QCDO(yE)O†(xE)

For zero quark chemical-potential (zero baryon chemical potential)

e�SE
QCD 2 R

We can use this factor as a probability measure to importance 
sample the integral with Monte-Carlo methods for those field 
configurations that minimize SE

QCD



Feynman Path Integrals
h⌦|Ô(yE)Ô†(xE)|⌦i = 1

Z
Z

DAµD D e
�SE

QCDO(yE)O†(xE)

We can make Ncfg different samples of the field configurations 
and then our correlation functions are approximated with finite 
statistics

h⌦|Ô(yE)Ô†(xE)|⌦i = lim
Ncfg!1

1

Ncfg

NcfgX

i=1

h⌦|Ô(yE)[A
i
µ, i, i]Ô†(xE)[A

i
µ, i, i]|⌦i

We really need to compute the mean - not the median (as 
dictated by the rules of Quantum Field-Theory)


At finite statistics (finite Ncfg) we will have an approximation to 
the correlation functions with some computable statistical 
uncertainty that can be systematically improved (with more 
computing time)

[Ai
µ, i, i] = the ith value of the fields on “configuration” i 



Feynman Path Integrals
h⌦|Ô(yE)Ô†(xE)|⌦i = 1

Z
Z

DAµD D e
�SE

QCDO(yE)O†(xE)

What do we expect our Euclidean spacetime correlation functions 
to look like?  Let us take xE=0 (without loss of generality - 
translation invariance lets us do this) and          for simplicity~yE = 0

C(t) = h⌦|Ô(t,~0)Ô†(0,~0)|⌦i
Insert a complete set of states 
(completeness) 1 =

X

n

|nihn|

C(t) =
X

n

h⌦|Ô(t)|nihn|Ô†(0)|⌦i

=
X

n

h⌦|eĤtÔ(0)e�Ĥt|nihn|Ô†(0)|⌦i

=
X

n

ZnZ
†
ne

�Ent

Zn = h⌦|Ô(0)|ni

Lattice QCD results are 
given by a sum of noisy 
exponentials - a 
challenging numerical 
analysis problem



[D
W

+M ]S(x, y;U) =
1

a4
�
xy

Quark contractions: Making protons, pions, …

Quark propagator 

Pion correlation function

⌦
u(x)�5d(x)d(y)�5u(y)

↵
F
= �tr {�5Sdd(x, y;U)�5Suu(y, x;U)}

To solve for the quark propagator, S, 
we must invert a large sparse matrix

[DW +M ]�1

Then - we Wick-contract the quarks together to make states of 
interest: e.g. the pion

C(t) = h⌦|Ô(t,~0)Ô†(0,~0)|⌦i
Ô†(y) = d̄(y)�5u(y)

Ô(x) = ū(x)�5d(x)



[D
W

+M ]S(x, y;U) =
1

a4
�
xy

Quark contractions: Making protons, pions, …

Proton correlation function

A proton has 2 u-quarks and 1 d-quark.  The 
contractions are slightly more complex - we 
need to keep track of which u-quark from x 
goes to which u-quark at y - 2 contractions 
(Nu! * Nd!)

xy

-
2 protons (proton-proton scattering) has 4! * 2! = 48 contractions
He3 (ppn) has 5! * 4! = 2880 contractions

He4 (ppnn) has 6! * 6! = 518400 contractions!

…
Symmetries can be used to largely reduce this growth

Yamazaki, Kuramashi, Ukawa - Phys.Rev. D81 (2010)

But this Wick-contraction cost can be dominant for multi-nucleon 
lattice QCD calculations



[D
W

+M ]S(x, y;U) =
1

a4
�
xy

Quark contractions: Making protons, pions, …

Proton correlation function

A proton has 2 u-quarks and 1 d-quark.  The 
contractions are slightly more complex - we 
need to keep track of which u-quark from x 
goes to which u-quark at y - 2 contractions 
(Nu! * Nd!)

xy

-
2 protons (proton-proton scattering) has 4! * 2! = 48 contractions
He3 (ppn) has 5! * 4! = 2880 contractions

He4 (ppnn) has 6! * 6! = 518400 contractions!

…
The cancellations (- signs) in these contractions give rise to a signal-
to-noise problem



Signal-to-Noise

Calculations involving nucleons suffer a severe signal-to-noise problem

Signal = Ze�mN t
h
1 + �Zne

�(En�mN )t
i

Signal for a proton 
correlation function

Signal-to-noise for a proton 
correlation function
mN ' 939 MeV
m⇡ ' 135 MeV

Signal-to-noise for A 
nucleons

Solving this problem requires solutions at early Euclidean-time 
before the Noise becomes large - but this requires sophisticated 
“wave-functions” for the proton, which compounds the Wick-
contraction cost mentioned above

Signal

Noise

⇠
p

Nsample e

�(mN� 3
2m⇡)t

Signal

Noise

⇠
p

Nsample e

�A(mN� 3
2m⇡)t



Lattice QCD: Recap
Lattice QCD is a stochastic approximation to the path-integral 
formulation of  QCD in imaginary (Euclidean) time 

LQCD applications to NP require Peta- to Exa-scale 
computing - want to get the most out of  our cycles 

Numerical Results exactly modeled as a sum of  noisy 
exponentials with exponentially degrading signal-to-noise ratios

CN (t) =
X

n

Z̃nZ
†
ne

�Ent

lim
t!1

CAN (t) = Z̃0Z
†
0e

�(AmN+�EA)t

�EA ' 10 MeV
mN ' 103 MeV
A = 1, 2, 3, 4, . . .

gaps to excited states can also be in the 10-100 MeV range 
to resolve both energy levels, need                                 which 
is precisely where the noise is growing unwieldy  

current calculations typically use just 1 or 2 Markov chains - 
due to computational costs - though this may change soon

t ⇠ 1/(E1 � E0)



Lattice QCD: Recap
Why “poor man’s”?  
 
 
 
 
 
 
a “rich man” would create a large basis of  operators that all 
couple to the same states - so that a diagonalization of  this 
basis can be performed via a generalized eigenvalue problem 
leaving one with linear combinations of  operators that couple 
predominantly to single states, n. 
This idea works extremely well for mesons (quark—anti-quark 
states) but is prohibitively costly for 2 or more nucleons

C(t) =
X

n

Z̃nZ
†
ne

�Ent

! Cij(t) =
X

n

Z̃i,nZ
†
j,ne

�Ent



Lattice QCD: Recap
Standard Tool: Effective Mass

C(t) =
X

n

Z̃nZ
†
ne

�Ent

meff (t, ⌧) ⌘
1

⌧
ln

✓
C(t)

C(t+ ⌧)

◆

lim
t!1

meff (t, ⌧) = E0



Variational Projection Golub & Pereyra Inverse Problems 19 (2003)
arXiv:0907.0529

Very simple idea: 
if a fit function has mixed linear/non-linear dependence 
on the fit parameters, one does not need to perform a 
numerical minimization on all the parameters - one 
can first perform a linear least squares on the linear 
parameters, solving as a function of the non-linear 
ones



Variational Projection Golub & Pereyra Inverse Problems 19 (2003)
arXiv:0907.0529

Very simple idea: first perform linear-least squares

f(�, t) =
X

n

Zn�
t
n �n = e�En

in lattice QFT, correlation functions fit with

⇥2 =
X

t,t0

[y(t)� f(�, t)]C�1
t,t0 [y(t

0)� f(�, t0)]

� = {Zn,�n}

⇤⇥2

⇤Zn
= 0

=
h
��t

nC
�1
t,t0(y(t

0)� Zm�t0

m)� (y(t)� Zm�t
m)C�1

t,t0�
t0

n

i(repeated indices summed over)



Variational Projection Golub & Pereyra Inverse Problems 19 (2003)
arXiv:0907.0529

Very simple idea: first perform linear-least squares

symmetry in 

Zm�t
mC�1

t,t0�
t0

n = y(t)C�1
t,t0�

t0

n

⇤⇥2

⇤Zn
= 0

=
h
��t

nC
�1
t,t0(y(t

0)� Zm�t0

m)� (y(t)� Zm�t
m)C�1

t,t0�
t0

n

i

Zm�m,n = y(t)C�1
t,t0�

t0

n �m,n = �t
mC�1

t,t0�
t0

n

t $ t0



Variational Projection Golub & Pereyra Inverse Problems 19 (2003)
arXiv:0907.0529

Very simple idea: first perform linear-least squares

Zm = ��1
m,n y(t)C

�1
t,t0 �

t0

n
⇥�2

⇥Zn
= 0

we have solved for the overlap factors as 
functions of the eigenvalues

plug these solutions back into χ2 and perform 
numerical minimization on just the non-linear 
parameters (En)



Variational Projection Golub & Pereyra Inverse Problems 19 (2003)
arXiv:0907.0529

Very simple idea: first perform linear-least squares

Zm = ��1
m,n y(t)C

�1
t,t0 �

t0

n

⇥2 =
X

t,t0

[y(t)� f(�, t)]C�1
t,t0 [y(t

0)� f(�, t0)]

f(�, t) =
X

n

Zn�
t
n �n = e�En

�m,n = �t
mC�1

t,t0�
t0

n

When counting the degrees of freedom in the fit DON’T forget 
to count the overlap factors you have also determined!

readily extend this to matrix of correlation functions



Variational Projection Golub & Pereyra Inverse Problems 19 (2003)
arXiv:0907.0529

can also apply the same idea to chiral extrapolation formulae 
which usually have mixed linear/non-linear dependence on LECs

E. Jenkins, A. Manohar, J. Negele and AWL
arXiv:0907.0529

Fit to Octet and Decuplet baryon mass results with SU(3) 
Baryon Chiral Perturbation Theory

NLO: 11 LECs NNLO: 30 LECs



Input Parameter Free Multi-Exp Fits De Groen & De Moor 
Comp. Appl. Math. 20 (1987)

“The fit of a sum of exponentials to noisy data” 
(Note: typos in paper)



Input Parameter Free Multi-Exp Fits De Groen & De Moor 
Comp. Appl. Math. 20 (1987)

yt = c

T
T

t
x0

xt+1 = Txt

Given the outputs of a non-degenerate n-dimensional linear 
system

x

T
0 = (1, . . . , 1)

ci 6= 0, i = 1, . . . , n
yt = c

T
xt

construct the p x q Hankel Matrix
with p,q > n H =

0

B@
y0 · · · yq�1
...

. . .
...

yp�1 · · · yq+p�2

1

CA
Hij = yi+j�1

{xt, c} � Rn



Input Parameter Free Multi-Exp Fits De Groen & De Moor 
Comp. Appl. Math. 20 (1987)

H = FG =

0

BBB@

cT

cTT
...

cTT p�1

1

CCCA
�
x0 Tx0 · · · T q�1x0

�

The Hankel Matrix can be factorized

H =

0

B@
y0 · · · yq�1
...

. . .
...

yp�1 · · · yq+p�2

1

CA yt = c

T
T

t
x0



Input Parameter Free Multi-Exp Fits De Groen & De Moor 
Comp. Appl. Math. 20 (1987)

(     is           matrix)

The factorization matrices can be inverted H = FG

F : Rn ! Rp G : Rq ! Rn H p⇥ q

11n = F̃�1HG̃�1

{ ˜F�1, ˜G�1} = pseudo-inverse{F,G}



Input Parameter Free Multi-Exp Fits De Groen & De Moor 
Comp. Appl. Math. 20 (1987)

H+ = FTG

The shifted Hankel Matrix can be factorized

Hij = yi+j�1 H+
ij = yi+j

H = FG

yt = c

T
T

t
x0

We can construct a matrix similar to T

Ts = F̃�1H+G̃�1 = F̃�1FTGG̃�1

How do we determine             ?{F,G}



Input Parameter Free Multi-Exp Fits De Groen & De Moor 
Comp. Appl. Math. 20 (1987)

H+ = FTG

The shifted Hankel Matrix can be factorized

Hij = yi+j�1 H+
ij = yi+j

H = FG

yt = c

T
T

t
x0

How do we determine             ?{F,G}
First - pick a window in time of interest you want to 
analyze, ti, tf

One can (should) shift with �t = � > 1
H�

ij = yi+j�1+�



Input Parameter Free Multi-Exp Fits De Groen & De Moor 
Comp. Appl. Math. 20 (1987)

First - pick a window in time of interest you want to 
analyze, ti, tf

One can (should) shift with �t = � > 1
H�

ij = yi+j�1+�

H =

0

B@
y0 · · · yq�1
...

. . .
...

yp�1 · · · yq+p�2

1

CA



Input Parameter Free Multi-Exp Fits De Groen & De Moor 
Comp. Appl. Math. 20 (1987)

Perform a singular value decomposition on H
H = U�V T � = diag(singular values)

Ts = ��1/2 UT H+ V ��1/2 H+ = FTG

One very important point: need to truncate the singular values 
to a reasonable number

If you desire just the ground state - chose range of time suitably 
(contamination from just a single state) and take two singular values

For determining 2 states (gs + 1st excited) pick 3 singular values etc.

study the singular values to see how much information you can get 
from correlation function



Input Parameter Free Multi-Exp Fits De Groen & De Moor 
Comp. Appl. Math. 20 (1987)

Don’t get greedy (don’t try and determine too many excited 
states)

0 10 20 30 40 50
t

0.18

0.19

0.20

0.21

0.22
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0.24

nuc.dat
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distribution of singular values
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0.50

�2

�1

�0

Perform a singular value decomposition on H
H = U�V T � = diag(singular values)

in this case, at most, one can determine 4 energies and only 3 with 
confidence (the 4th absorbs the “slop”)



Input Parameter Free Multi-Exp Fits De Groen & De Moor 
Comp. Appl. Math. 20 (1987)

Perform a singular value decomposition on H
H = U�V T � = diag(singular values)

take      largest singular values ns

Ts = ��1/2[0 : ns]U
T [0 : ns, :]H+ V [:, 0 : ns]�

�1/2[0 : ns]

�n, On = eig(Ts)

En = � ln(�n)

H+ = FTG

Now we have the eigen-energies - how do we get the overlap 
factors? See VarPro!



Input Parameter Free Multi-Exp Fits De Groen & De Moor 
Comp. Appl. Math. 20 (1987)

H = U�V T

Ts = ��1/2[0 : ns]U
T [0 : ns, :]H+ V [:, 0 : ns]�

�1/2[0 : ns]

�n, On = eig(Ts) En = � ln(�n)

Hij = yi+j�1 H+
ij = yi+j

Zm = ��1
m,n y(t)C

�1
t,t0 �

t0

n �m,n = �t
mC�1

t,t0�
t0

n

Use these values to seed the multi-exponential fit!

ns



Cij(t) = hOi(t)Õ
†
j(0)i

=
X

n

Zn
i Z̃

n,†
j e�Ent

GPOF:
Lattice Correlation functions:

Ideally,                then one can solve a Generalized 
EigenValue Problem - Blossier et. al. JHEP 0904 (2009)

Õi = Oi

But this is often prohibitively expensive (requiring all-to-
all propagators)

Can we find a solution that handles non-symmetric, non-
positive definite correlation functions?  Of Course!

K. Orginos Latt2010 (unpublished) but on web
C. Aubin & K. Orginos Latt2011 (on PoS)
C.Aubin, K. Orginos & AWL private work



Consider

Kpq
ij (t, �) = hOi(t+ p�)Õ†

j(�q�)i = Cij(t+ (p+ q)�)

K(t) =

0

BBB@

C(t) C(t+ �) C(t+ 2�) . . .
C(t+ �) C(t+ 2�) C(t+ 3�) . . .
C(t+ 2�) C(t+ 3�) C(t+ 4�) . . .

...
...

...
. . .

1

CCCA

Time-evolution of operators produces orthogonal 
correlators O(t+ p�) = ep�HO(t)e�p�H

One can then proceed with a generalized eigenvalue-like 
solution: a non-symmetric        can be shifted into a 
square-matrix

C
K

GPOF: K. Orginos Latt2010 (unpublished) but on web
C. Aubin & K. Orginos Latt2011 (on PoS)
C.Aubin, K. Orginos & AWL private work



Kpq
ij (t, �) = hOi(t+ p�)Õ†

j(�q�)i = Cij(t+ (p+ q)�)

But over shifting (too many p’s and q’s) leads to linearly 
dependent information
one must perform a singular-value decomposition (SVD) 
on K(t) and cut the number of allowed singular values

K(t0) = U�(t0)V
† � =

0

B@
�1 0 . . .
0 �2 . . .
...

...
. . .

1

CA

A(t) = ��1/2UK(t)V †��1/2and
gives an eigenvalue problem for a non-symmetric matrix

Aq̃n = ⇥nq̃
n qn†A = ⇥nq

n† qn†q̃m = �nm

GPOF: K. Orginos Latt2010 (unpublished) but on web
C. Aubin & K. Orginos Latt2011 (on PoS)
C.Aubin, K. Orginos & AWL private work
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keeping 3 singular values

⇥n(t) = (1� �)e�Ent + �e�EN+1t

GPOF: K. Orginos Latt2010 (unpublished) but on web
C. Aubin & K. Orginos Latt2011 (on PoS)
C.Aubin, K. Orginos & AWL private work
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keeping 4 singular values

⇥n(t) = (1� �)e�Ent + �e�EN+1t

GPOF: K. Orginos Latt2010 (unpublished) but on web
C. Aubin & K. Orginos Latt2011 (on PoS)
C.Aubin, K. Orginos & AWL private work
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sweeping over choices or parameters to 
determine systematics

GPOF: K. Orginos Latt2010 (unpublished) but on web
C. Aubin & K. Orginos Latt2011 (on PoS)
C.Aubin, K. Orginos & AWL private work



Matrix Prony
arXiv:1301.1114
arXiv:0905.0466

Prony = some guys name

Matrix = matrix

G. R. de Prony Journal de l'cole Polytechnique, volume 1, cahier 22, 24-76 (1795)
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y(t) =

0

BBB@

y1(t)
y2(t)
...

yN (t)

1

CCCA

Start with a vector of correlation functions
  perhaps a single src and multiple sinks

We would like to construct an
operator such that

y(t+ �) = T̂ (�)y(t)

T̂ (⌧) = Transfer Operator
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y(t+ �) = T̂ (�)y(t)

y(t+ �)yT (t) = T̂ (�)y(t)yT (t)

Nothing special about t

T̂ = M̂�1V̂M̂(�)y(t+ �)yT (t) = V̂ (�)y(t)yT (t)

Transpose
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y(t+ �) = T̂ (�)y(t)

M̂(�)
t0+�tX

t0

y(t+ �)yT (t) = V̂ (�)
t0+�tX

t0

y(t)yT (t)

We have assumed T (and M and V) are independent of 
but this is precisely what we desire from a “transfer matrix”

t
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M̂(�)
t0+�tX

t0

y(t+ �)yT (t) = V̂ (�)
t0+�tX

t0

y(t)yT (t)

a solution

must sum over sufficient number of time slices to 
make matrices “full rank”  for two-components, must 
sum over at least two time slices

M̂(�) =

"
t0+�tX

t0

y(t+ �)yT (t)

#�1

, V̂ (�) = V̂ =

"
t0+�tX

t0

y(t)yT (t)

#�1
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M̂(�)
t0+�tX

t0

y(t+ �)yT (t) = V̂ (�)
t0+�tX

t0

y(t)yT (t)

a solution

M̂(�) =

"
t0+�tX

t0

y(t+ �)yT (t)

#�1

, V̂ (�) = V̂ =

"
t0+�tX

t0

y(t)yT (t)

#�1

most robust results come from maximizing      
this requires that over a large range of time our ansatz 
is satisfied - only N states contribute in 

�t

t0 ! t0 +�t
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given M and V one then solves the eigenvalue equation

T̂ (⇥)qn = (�n)
�qn T̂ (�) = M̂�1(�)V̂

M̂(�) =

"
t0+�tX

t0

y(t+ �)yT (t)

#�1

, V̂ (�) = V̂ =

"
t0+�tX

t0

y(t)yT (t)

#�1

y(t+ �) = M̂�1(�)V̂ y(t) = T̂ (�)y(t)

given     check to see if ansatz is satisfied - over range 
of                    there should be no significant evidence 
of excited state contamination

�n

t0 ! t0 +�t

�n = e�En
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in Python
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y(t+ �) = T̂ (�)y(t)

y(t) =

✓
ySP (t)
ySS(t)

◆
take correlation function with 
one source and two sinks

between t=5 and t=15 there appear to be two states
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y(t+ �) = T̂ (�)y(t)

y(t) =

✓
ySP (t)
ySS(t)

◆
take correlation function with 
one source and two sinks

between t=5 and t=15 there appear to be two states
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y(t+ �) = T̂ (�)y(t)

y(t) =

✓
ySP (t)
ySS(t)

◆
take correlation function with 
one source and two sinks

between t=5 and t=15 there appear to be two states
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y(t+ �) = T̂ (�)y(t)

y(t) =

✓
ySP (t)
ySS(t)

◆
take correlation function with 
one source and two sinks

between t=6 and t=11         also good
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y(t+ �) = T̂ (�)y(t)

y(t) =

✓
ySP (t)
ySS(t)

◆
take correlation function with 
one source and two sinks

between t=2 and t=15         too aggressive
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y(t+ �) = T̂ (�)y(t)

y(t) =

✓
ySP (t)
ySS(t)

◆
take correlation function with 
one source and two sinks

between t=7 and t=15         also good
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y(t+ �) = T̂ (�)y(t)

y(t) =

✓
ySP (t)
ySS(t)

◆
take correlation function with 
one source and two sinks

between t=7 and t=15         different range of fit ok
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exponential decay of signal-to-noise for baryons challenging

lack of positive-definite correlation functions allow “false plateaus”
is late-time dip of effective mass true ground state value?

results much more sensitive to choices of fit-range, MP-range
want algorithm to weight all possible reasonable choices
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The algorithm I currently use 
(systematics are not uniquely defined)

pick minimum �tMP M̂(�) =

"
t0+�tX

t0

y(t+ �)yT (t)

#�1

pick minimum �tplat tf = ti +�tplatin exp fit
�tplat choice guided by excited 

state masses
pick minimum and maximum t you want to consider 
(correlator dependent)

loop over independently chosen t0,�tMP , ti,�tplat
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The algorithm I currently use 
(systematics are not uniquely defined)

specific for baryons, for each fit, pick a weight factor

Q =

Z 1

�2
min

d�2P(�2, dof) Q 2 [0, 1]

�i = statistical uncertainty for a given fit

this choice allows for late time fluctuations being real, but 
suppresses them by their larger statistical uncertainty

m̄ =

P
i wimiP
j wj

!i =
Qi

�2
i
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systematic

y(t+ �) = T̂ (�)y(t)

y(t) =

✓
ySP (t)
ySS(t)

◆
take correlation function with 
one source and two sinks

16% and 84% quantiles chosen for systematic uncertainty
inner band statistical outer band stat+sys added in quadrature

P(m) = mass probability distribution function

P(mi) =
wiP
j wj



Questions
Can the noise of  our numerical results be used to 
rigorously chose a number of  singular values in the 
Hankel Matrix/GPOF methods?

The growth of  computing power and algorithms 
means that TODAY is the beginning of  a renaissance 
in nuclear physics where these exciting things are just 
becoming possible!



Thank You


