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Research aim:

understand how statistics can be merged with
physics to construct better theoretical models
and drive the experimental effort.

Better:

e Experimental data - theoretical model adequacy,
e Quantified predictive power,

e Quantified information contents of (missing) observables, what will be the
impact of new data on theory (experiment design) ?

e Bias under control (priors, role of systematic errors). (’\g
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A paradigm shift in (theoretical) nuclear physics ? -
statistics



Sloppiness in nuclear physics, why we should care ?

dth = Gm
mLZ — (GTG)—IGTdexp
cov(m*?) = ¢?(GTG)™ 1

Condition number of G
(Omax/Fmin) very large!
Minor changes in G cause
great changes in G~ 1
(noise amplification)

In statistics known as a collinearity.

“Rediscovered” and extended in the field of system biology.
Differential geometry interpretation — D. Vretenar will show
the first applications in nuclear physics!

M. K. Transtrum et.al., PRL 104, 060201 (2010)
B. B. Machta et al., Science, 342 (2013)
M. K. Transtrum et.al., PRE 83, 036701 (2011)

Value of a parameter

Parameters fluctuate but model remains predictive.

Model calibration can become challenging.

Regularization parameter



Eigenvalues of the Fisher Information Matrix
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Discrete Ising Radioactive Neural  Systems
diffusion model decay network biology

Parameter Space Compression Underlines Emergent Theories and Predictive Models
Benjamin B. Machta, Ricky Chachra, Mark K. Transtrum, James P. Sethna
Science vol. 342, nov. 2013



Exceptional nuclear physics

s Low-energy nuclear physics models are different.
+ Most of them are inexact.
Most of them are sloppy.

@ & Nuclear data is different.
< <d Similar information content, redundancy.

How to deal with these ? £, 1B P(8,)P( 1
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Add a priori expectations, physical [EEar=SE
constraints and use Bayesian ST TR
methods to reduce the
sloppiness of models.

Learn from inverse problems field.



Toys

* Nuclear shell model
e Energy Density Functionals

Tools

* Nonlinear least-squares (sorry!)
e Regularization methods

lllustrations



Nuclear structure models (part 1/5)

Shell model

Local: defined valence space, two-body matrix elements and single particle energies
TBME: Schematic, realistic, purely empirical, mixed

Most often empirical corrections are added to the realistic interaction
Number of parameters: 10-10000
Computational time varies

No problems with convergence

Well understand, hundreds of interactions

Interest in description of known data,

predictions and in parameters!
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7 [ _q: Chong Qi, KTH Stockholm, Tuesday, June 21st

Optimisation of the shell-model Hamiltonian
for heavy nuclei and the underlying uncertainty




Nuclear structure models (part 2/5)

lho

Ohw

H = Zean + Z ZVJT (ab:cd)Tr(ab; cd)

alb,ec<d JT

f,r;r(ab: C'd) = Z AJ’MTTZ (ab)AJMTT:(Cd)
MT.

H = i.’f,‘ Og
i=1

P
= (¢l HIpe) = Y xi (¢l Oilhi)
i=1

protons
neutrons

(shell gaps not in scale)

No experimental paper about the
structure of nuclei around doubly-magic
core without shell model calculations for
comparison.




Nuclear structure models (part 3/5)

Energy Density Functionals
e Global (universal)

e Number of parameters: 6-52

* Problems with convergence

e Hundreds of parameterizations

* Interest in predictions and in some parameters ..==£Eii§
e Computational time varies R R
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few % electron Fermi gas

quark gluon plasma?




Nuclear structure models (part 4/5)

E=Eyn+ j d*rEgy + Ecou + Epair — Ecorr

Pr=0 = Pp t Pn Pr=1 = Pp — Pn

[

neutron matter
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Functional humber
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density (fm)

S — fﬁ([_l)An—H_z

| — power of densities,
n — numer of deriviatives

M. Kortelainen, R.J. Furnstahl, W. Nazarewicz, M. V. Stoistov, PRC 82, 011304(R) (2010)




N3LO Energy Density Functional (part 5/5)

Nuclear energy density
functionals constructed in terms
of derivatives of densities up to
sixth, next-to-next-to-
next-to-leading order (N3LO).

PHYSICAL REVIEW C 78, 044326 (2008)

Local nuclear energy density functional at next-to-next-to-next-to-leading order

It builds on the standard B. G. Carlsson,' J. Dobaczewski." and M. Kortelainen'
functionals related to the contact Department of Physics, Post Office Box 35 (YFL), FI-40014 University of Jyvéiskyld, Finland

. Institute of Theoretical Pl ] ‘Warsaw. ul. Hoza 69, PL &1 Warsaw, Poland
an d Skyr me fO rces, w h IC h (Received 31 July 2008: published 27 October 2008)

constitute the zero-order (LO)
and second-order (NLO)
expansions, respectively.

Number Of independent pa ra meters Computer Physics Communications 181 (2010) 1641-1657
assuming galilean, spherical, space-
inversion and time-reversal symmetries:

. . = - =
Contents lists available at ScienceDirect o AT

Computer Physics Communications

Order N u m ber of termS www._elsevier.com/flocate/cpe

0] 1

2 4 Solution of self-consistent equations for the N>LO nuclear energy density
4 8 functional in spherical symmetry. The program HosPHE (v1.02) "

[ 15 B.C. Carlsson?, |. Dobaczewski -, ]. Toivanen?, P. Vesely®

N 3 LO 25 J i e of al Physics, fflrl\'{‘rill:l'tf:3;£:ﬂ\\'. Haza “"Er.i:,::{ Poland

Full functional 25x2 + 2 giving
52 coupling constants.



Tools

 Nonlinear least-squares
e Regularization methods



Regularization of least-square problems

As the considered problem is nonlinear we use the
dumped Gauss-Newton iteration scheme.

REGULARIZATION FACTOR Need to approximate Jacobian.

min(||Gm — d||3+22||L(m — mPTior)||}

Regularization factor is kept constant during iterations.

LEAST-SQUARE DISTANCE FROM THE
TERM EXPECTED POINT

dth = Gm
ml? = G*td

Shell model: TBME and SPE are in the same units
m* = G*d

and of the same order of magnitude.
EDF: We work in natural units.

G T = (GTG)_l GT The distance from the prior point is meaningful.
G* =(GTG + 22LTL)"1GT

T The approach can be interpreted within the
cov(m*) = a2G*G*

Bayesian framework.

Major problems:
e choice and interpretation of the regularization parameter, its

GG
- Rmmtrue

influence on uncertainty estimation,
* validity of approach for nonlinear problems




lllustrations



Which problem would you
prefer to solve ?

Normalized spectrum of singular values

Option 1

Estimate parameters of the nuclear
shell model for the sd shell nuclei:
approx. 160 parameters, 400 data
points (binding and excitation
EEED)

Option 2

Estimate parameters of the of the
Skyrme like EDF:

12 parameters, 150 data points
(binding energies, single particle
energies, charge radii)




Nuclear Shell Model

2.2. Linear Combination (LC) method

In the above fitting procedure, not all matrix elements are well determined, and some of
them can be determined only with certain ambiguities, because available data are limited.
In order to resolve this problem, the Linear Combination (LC) method [11] was proposed,
which enables us to separate well-determined parameters from such poorly determined
ones.

M. Honma, B. A. Brown, T. Mizusaki, T. Otsuka, NPA 704 (2002)
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No single paper analyzing the
uncertainties of model parameters and
predictions from statistical perspective.

o
n

o
oY
e |
.
3

-
ki
.

Parameters are re-adjusted, often no
details published.

rms deviation (MeV)
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B. A. Brown, W. A. Richter, PRC 74, 034315 (2006)




Nuclear Shell Model

Nuclear shell model for sd shell nuclei: 160-4°Ca
Parameters:

158 TBME and 6 SPE (no isospin symmetry)
Experimental data:

binding energies, excitation energies (427 points)
Prior information:

realistic interaction (how to quantify uncertainty ?)

Sum of squared residuals
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Parameter Value (prior)

Parameter Value (prior)

Nuclear Shell Model
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Nuclear Shell Model
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Nuclear Shell Model

1 1
—® parameter value

=8 crror of parameter

g Parameter values and their errors, for
non-regularized solution.

1 1
®—8® Non-regularized solution
=@ Regularized solution
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Comparison of error estimates for
regularized and non-regularized solutions.
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Nuclear Shell Model

Correlation between error estimate and
R coeff. for regularized solution.

R Coefficient
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R coeff. for non-regularized solution.




Nuclear Shell Model

Counts
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Nuclear Shell Model — Pb region

Shell model above 2°¢Pb:
e 2838 parameters
e 151 data points

Parameter value (adjusted)
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Energy Density Functionals: novel forms

Work done in collaboration with Jacek Dobaczewski
and his groups at York and Jyvaskyla.

Work performed during my employment at the
University of Warsaw in 2014-2015.

The experimental data set consist of:

e Single particle energies (48 points)
e Binding energies (71 nuclei)
e Charge radii (48 points)
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novel forms

Energy Density Functionals

Parameter error
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Conclusions & Perspectives

A priori information play a role!
This role can be positive or destructive.
How to quantify its uncertainty ?
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Some nuclear structure models are easier 0.12 0.14 0.16 0.18
. Neutron skin thickness in 2°%Pb [fir
to work with than the others. eutron skin thickness in = bb [fm]

Single criterium for sloppiness is still missing.
You will not know before you try.

Information content of nuclear observables can be very different.

Application of variable selection/model reduction methods remains unexplored.
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