Bayesian Methods for Finding Jets in Heavy Ion Collisions

Ron Soltz

Lawrence Livermore National Laboratory

30-JUN-2016, INT Bayesian NP

LLNL-PRES-054603 R. Soltz

Outline

- Why are we here ?
- Heavy Ion Collisions & Finite T QCD
- Jets in Heavy Ion Collisions
- Bayesian Methods for Finding Jets
- Other Applications

Why are we here (at the INT) ?

• It's the QCD Lagrangian (our most perfect theory)

$$L_{QCD} = -\frac{1}{4} F^a_{\mu\nu}(x) F^{\mu\nu}_a(x) + \sum_{f=1}^{n_f} \overline{\psi}^{\alpha}_f(x) \left(\not\!\!D_{\alpha\beta} - m_f \delta_{\alpha\beta} \right) \psi^{\beta}_f(x)$$

- Analytic Solution Exists for one Problem
 - high energy scattering (jet production)
- Models and/or Numerical Techniques needed for
 - nuclear structure/reactions
 - nuclear astrophysics
 - finite temperature phenomena

Bayesian Methods are good fit for (messy) Nuclear Physics

Quark Gluon Plasma (QGP) Phase Diagram

Relativistic Heavy Ion Collision History

- First theory: Chapline *et al*. (73), Bjorken (83)
- Experimental Program
 - LBL-Bevalac 1980s

```
First attempt at Bayesian Methods began in 2009.
```

- BNL-AGS/CERN-SPS 80s and 90s
- BNL-RHIC 2000 2025 1st (
- CERN-LHC 2009 20??

1st Compelling Results

Flow and Jet Quenching

Both initial results are measurements of asymmetry

The Heavy Ion Model

- Bulk properties (T,V, ρ , η /s, ξ) now constrained \rightarrow
 - previous talks by Scott, Steffen/Jonah
- Remaining questions require jets (& heavy quarks)
 - What are the (strongly interacting) constituents ?
 - How does the QGP form (thermalize) ?

Jet Production in p+p collisions

- Jets = highly collimated streams of produced by hard scattering of quarks/gluons
 - jet production calculated precisely in perturbation theory
 - fragmentation into particles (hadrons) modeled with PYTHIA
 Monte Carlo model of Lund String Fragementation
 - For our purpose, p+p jet models have no tunable parameters

Analyzing Jets in p+p collisions

- Experimentalists rely on jet-finding algorithms to identify and study jets
 - particles are combined in pair-wise fashion for small values of $(\Delta R_{ij})^2/R^2 = [(y_i y_j)^2 + (\phi_i \phi_j)^2]/R^2$, R=jet-cone radius
 - jet-finding proceeds until all particles above specified momentum (p_T) within radius (R) are combined
 - this works well for p+p and e+e- collisions

Jets fragmentation in vacuum and QGP

use photon-quark jet as example

- photon escapes unscathed, with unmodified jet energy
- quark jet modified by plasma
- jet-finder to contend with reduced energy jet within high multiplicity backgrounds

jet processes in p+p

- quark (parton) distribution function measured with DIS
- QCD scattering cross-sections calculated perturbatively

Pythia string fragmentation – modeled, parameters tuned with data

jet processes in QGP

- first two process same as p+p
- full jet evolution model under construction \rightarrow **JETSER**

Present theory depends on

Jets in Heavy Ion Collisions

- Jets scatter, radiate, loss energy as they traverse QGP
- This process is governed by parameters
 - diffusion: $\hat{q} = \langle p_T \rangle^2$, drag: $\hat{e} = \langle p_z \rangle/L$
 - and higher moments of $\langle p^4_T \rangle$, $\langle p^2_z \rangle$, etc.
- Energy loss + backgrounds will challenge jet finding algorithms

My goals for this workshop (and beyond)

- Understanding jets in heavy ion physics depends on our ability to find them using algorithms developed for simpler environments (p+p and e+e-)
- The most interesting jets are the hardest to find
 the ones that couple most strongly to the medium
- Can we develop simple model to apply jetmodification to Pythia outputs, add heavy ion backgrounds, and compare directly to particle distributions ?

Bayesian approach to extract jet quench parameters from data

Develop simple model to test idea

- Use 3 Component Model
 - 1. Generate photon-quark jets with Pythia
 - 2. Modify jet-outputs with q, e parameters
 - loop over particle list
 - rescale momenta || to jet axis (drag)
 - add to momenta \perp to jet axis (diffusion)
 - 3. Generate heavy ion background particles
 - 1. Multiplicity = number of particles
 - 2. Geometry = generate L for transport
 - 3. Particle Flow = determined by geometry

Have all we need for heavy ion backgrounds in initial state

Heavy Ion Backgrounds with T_RENTO

- T_RENTO = Thickness_{Reduced} Event Nuclear Topology
- Monte Carlo samples reduced nuclear thickness
 - Settings : input nuclei, energy dependent n-n cross-section
 - Parameters : p=0 (weights), k=1.4 (binomial factor)

constrained independently

– Outputs (entropy=multiplicity, ε_2 , ε_3 , ε_4 , ε_5

T_RENTO Multiplicity Study

PHENIX data / TRENTO comparison

T_RENTO with Flow and Jet-Finder

Bayesian Formulation

- Model θ = Pythia + Re-Scaling + T_RENTO
- Model Parameters to Constrain: q, e
- Other Parameters: mult, L, ϵ_2 , p_{CM} , R
 - mult can be measured, and L inferred
 - R = cone-like radius opposite photon-jet
- Measurements: p_{iet} (photon), p_i for particles/cells
- Bayesian formulation
 - $P[\theta(e,q, \epsilon_2); mult, p_{jet}, p_i] \approx exp \Sigma[y_i^{model}(x) y_i^{exp}(x)]/(2\sigma_i^2)$
 - errors are from summing particle/cells (Poisson)

Figure for discussion

slowJet in pythia with trento background trento multiplicity = 523

Another figure for discussion

slowJet in pythia with trento background trento multiplicity = 661

Questions

- Is this approach sensible ?
- Which assumptions are suspect ?
- What have I missed ?
- Has this approach already been attempted ?
 see <u>DataScience@LHC2015</u> talk by SLAC scientists
- Where do I get started : MADAI, mtd@github ?

How does this relate to nuclear detection/attribution ?

JETSCAPE Collaboration (2016-2020)

- Jetscape plans develop new event generator to model full physics of jets in QGP, constrain with data
- Data comparison may benefit from this work