
Bayesian Unified Monte Carlo Method for 
Evaluating and Utilizing Nuclear Reaction Data

Donald Smith, Argonne Associate of Seville Staffing LLC

Roberto Capote, International Atomic Energy Agency

Denise Neudecker, Los Alamos National Laboratory

Patrick Talou, Los Alamos National Laboratory

INT Program: INT 16-2a

Bayesian Methods in Nuclear Physics

University of Washington, Seattle, Washington

June 13 – 17, 2016



Outline of This Talk

• Motivation and Background
• Historical Nuclear Data Evaluation
• Nuclear Data Evaluation in a Linear(ized) World
• Unified Monte Carlo: Beyond Linearity
• Evaluated Data Validation
• Wrap-up 



MOTIVATION AND 

BACKGROUND



Motivation

To develop comprehensive and accurate numerical
data libraries containing recommended values for 
nuclear physics observables that are to be employed 
for computational analyses in a wide range of nuclear 
applications, and to accomplish this by using the best
available theoretical and experimental information and 
mathematically well-justified data evaluation methods.



Nuclear Data Applications in 
Nuclear Technology

• System modeling plays a large role in system 
development by reducing time and cost.

• Broad scope of nuclear data needs: many 
elements, isotopes, reaction types, energy 
ranges, etc.

• Important societal implications:
- Safety
- Reliability
- Cost

Medical 
Diagnostics

Medical 
Radiation 
Therapies

Nuclear Non-Proliferation

Nuclear Propulsion

Nuclear Energy and Safety Technologies

Neutron Radiography



Nuclear Data Library Requirements for Applications

• Provide recommended quantitative information on mean values
and uncertainties for many elements and isotopes, nuclear 
processes, particles, angles, and energy ranges.

• Data sufficiently accurate and detailed for system modeling.
• Readable by system modeling codes (i.e., uses standard formats).
• Well validated by C/E comparisons with available nuclear system

performance data from well-characterized integral benchmarks.
• Readily accessible to a wide range of users (i.e., not classified).

The following nuclear data libraries are intended to satisfy these requirements: 
ENDF/B (U.S.), JEFF (Europe), JENDL (Japan), ROSFOND (Russia), and CENDL
(China). In reality there is a considerable degree of overlap in their content.



No. NSUB Sublibrary Short VII.1 VII.0 VI.8

name name

1 0Photonuclear g 163 163 -

2 3Photo-atomic photo 100 100 100

3 4Radioactive decay decay 3817 3838 979

4 5Spont. fis. yields s/fpy 9 9 9

5 6Atomic relaxation ard 100 100 100

6 10Neutron n 423 393 328

7 11Neutron fis.yields n/fpy 31 31 31

8 12Thermal scattering tsl 21 20 15

9 19Standards std 8 8 8

10 113Electro-atomic e 100 100 100

11 10010Proton p 48 48 35

12 10020Deuteron d 5 5 2

13 10030Triton t 3 3 1

14 200303He he3 2 2 1

Formally Released:
December 22, 2011ENDF/B Libraries are developed in the U.S. by CSEWG

(National Lab, university, and foreign contributions).

NOTE: ENDF/B-VIII.0 will be available for formal release in about a year.

https://ndclx4.bnl.gov/gf/download/frsrelease/138/2242/ENDF-B-VII.1.tar.gz
https://ndclx4.bnl.gov/gf/download/frsrelease/138/2242/ENDF-B-VII.1.tar.gz


Neutron Reaction Sub-library
[216.0 Mb zipfile]

Thermal Neutron Scattering Sub-library

[10.0 Mb zipfile]

Proton Reaction Sub-library
[13.6 Mb zipfile]

Triton Reaction Sub-library
[145.3 kb zipfile]

Neutron Induced Fission Product Yields 
Sub-library
[1.6 Mb zipfile]

Decay Reaction Sub-library
[13.7 Mb zipfile]

Atomic Relaxation Reaction Sub-library
[1.6 Mb zipfile]

Full ENDF/B-VII.1 
Library

[325.82 Mb 
tarball]

Neutron Standards Sub-library

[225.4 kb zipfile]

Photonuclear Sub-library

[56.2 Mb zipfile] 

Deuteron Reaction Sub-library
[89.5 kb zipfile]

Helium-3 Reaction Sub-library
[115.4 kb zipfile]

Spontaneous Fission Product Yields Reaction 
Sub-library
[295.1 kb zipfile]

Photoatomic Reaction Sub-library
[7.5 Mb zipfile]

Electron Reaction Sub-library
[7.0 Mb zipfile]

The entire ENDF/B-VII.1 library or portions of it can be 
downloaded from the following website: 

http://www.nndc.bnl.gov/endf/b7.1/download.html

All these files are 
highly compressed!

http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-neutrons.zip
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-thermal_scatt.zip
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-protons.zip
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-tritons.zip
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-nfy.zip
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-decay.zip
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-atomic_relax.zip
https://ndclx4.bnl.gov/gf/download/frsrelease/138/2242/ENDF-B-VII.1.tar.gz
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-standards.zip
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-gammas.zip
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-deuterons.zip
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-helium3s.zip
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-sfy.zip
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-photoat.zip
http://www.nndc.bnl.gov/endf/b7.1/zips/ENDF-B-VII.1-electrons.zip
http://www.nndc.bnl.gov/endf/b7.1/download.html


HISTORICAL 

NUCLEAR DATA 

EVALUATION



Persistent Challenges to Nuclear Data Evaluation

• Nuclear Theory and Modeling:
- Even the best nuclear theories tend to have limited quantitative predictability.
- Most theoretical models are known to have some unresolved defects.
- A “unified” theory that applies for all nuclei and processes does not exist.

• Experimental Data:
- Often not sufficiently comprehensive (sparse or lacking).
- Data are excessive in some cases, and this too can introduce difficulties.
- Unresolved discrepancies.

• Evaluation Procedures:
- Required assumptions are often not satisfied.
- Computational challenges (number crunching).
- Difficulties in estimating and dealing with data correlations.
- Difficulties in reconciling differential and integral data.



Nuclear Reaction Data Evaluation in the “Good Old Days” (≤ early 1970’s)

+ + Sketched “eyeguide” to 
hand plotted data points 
on ruled graph paper

E(1) Sigma(1)
E(2) Sigma(2)
….
E(n) Sigma(n)



NUCLEAR DATA 

EVALUATION IN A 

LINEAR(IZED) 

WORLD



Deterministic Linear Model Data Uncertainty Propagation

Single Variable

If “model” function “M” is truly linear in parameter “x”:

y = M(x) = a x + b     (“a” and “b” are constants)
Δy = a Δx
 var(y) = a (Δx)2 a = a var(x) a

If “M” is non-linear in x:

y = M(x) = M(x0) + (dM/dx)0 (x – x0) +  higher-order terms  
var(y) ≈ (dM/dx)0 var(x) (dM/dx)0 +  higher-order terms

Multiple Variables ( “Law” of Error Propagation )

y (dimension “m”) ::  x (dimension “n”)
M (a model algorithm, e.g., “m” model functions)
y = M(x)  ::   y0 = M(x0)
Vy = A+ Vx A +   higher-order terms
(A)ij = [∂Mi(x)/∂xj]0 ::  A (n x m “sensitivity” or “model design” matrix)

If M is a collection of functions, some of 
whose members may be highly non-linear, 
and if some of the variances in Vx are large, 
this “trash pail” may become stuffed with a 
considerable quantity of “mathematical 
debris” whose neglect could result in 
undesirable consequences in evaluations, 
including misleading biases and poor
estimates of variances for the derived Vy .

Linear uncertainty propagation generates 
approximate uncertainties and correlations 



Experimental Data for Nuclear Reaction Evaluations

• Evaluators must rely on data provided by experimenters and experimental data compilers.

• Experimenters tend to do a rather “limited” job of estimating and reporting uncertainties for their 
experiments (and correlations are infrequently considered and reported).

• Data compilation efforts have improved considerably during the past 20 years (e.g., EXFOR), but 
compilers cannot document such information unless it is provided and approved by experimenters.

• For realistic evaluation exercises involving many reaction processes and large bodies of experimental 
data, it is necessary for evaluators to automatically acquire and manipulate experimental data 
information that is available from data centers in the form of compilations such as EXFOR.

• The available experimental data are frequently related indirectly to the variables that are to be 
evaluated (e.g., cross-section ratios, integral data, data at arbitrary energies and angles, etc.)

• To perform a “modern evaluation”, an evaluator must assemble a collection of pertinent mean 
values and their covariance matrices from many origins, often reflecting widely variable reliability.



Example of an EXFOR File*

SUBENT        22282002   20080204

BIB                  5         20

REACTION   ((90-TH-232(N,F),,SIG)/(92-U-235(N,F),,SIG))

ERR-ANALYS (ERR-T)        Total uncertainty

(MONIT-ERR)    235U(n,f) monitor cross section (4%)

(ERR-1)        Number of U-235 atoms        (1.47%)

(ERR-2)        Number of Th-232 atoms       (1.64%)

(ERR-3,,0.887) Fission rate ration        (<0.887%)

(ERR-4,,0.276) Correction factor          (<0.276%)

COVARIANCE (COR,ERR-T,PER-CENT) Macro correlation coefficients

100

87    100

86     87    100

87     87     87    100

ENDBIB              20

COMMON               3          3

MONIT-ERR  ERR-1      ERR-2     

PER-CENT   PER-CENT PER-CENT

4.         1.47       1.64     

ENDCOMMON            3

DATA                 5          4

EN         EN-ERR     DATA       ERR-T

MEV        MEV NO-DIM     PER-CENT

13.47      0.18       0.150     2.41

14.00      0.06       0.158     2.38

14.46      0.16       0.166     2.37

14.89      0.29       0.181     2.38

ENDDATA              6

ENDSUBENT           35

* 80-column ASCII format. Many EXFOR files are much longer and 
contain considerably more information than this one.

EXFOR (EXchange FORmat)

• An ongoing international collaboration with the mission of 
compiling experimental nuclear reaction data and making it 
readily available on-line in adopted standardized formats.

• Coordinated by IAEA Nuclear Data Section – Vienna, Austria.

• Website: https://www-nds.iaea.org/exfor/exfor.htm

• Provides numerical data plus information on data sources 
(reports, journal articles, author communications, etc.)

• Also, some descriptive information is usually available.

• Computer readable “computational” files are provided for 
automatic handling of large quantities of data.

• EXFOR data are also available from collaborating nuclear data 
centers (e.g., BNL-NNDC and NEA Data Bank - Paris).

https://www-nds.iaea.org/exfor/exfor.htm


Experimental data can be “uncooperative” …

• Too much experimental data, even if consistent, can result in 
unrealistically small evaluated uncertainties if the data are treated 
as uncorrelated ... and estimating correlations can be difficult.

• Too little experimental data places a heavy demand on modeling.

• Discrepant experimental data Forces an evaluator to make hard 
choices:  estimate corrections, keep or discard, down-weight, etc.



Least-squares Data Evaluation in a Linear(ized) World [~ mid 1970]

• The Generalized Least-Squares Method (GLS) is the “workhorse” of contemporary nuclear reaction data 
evaluation activities. It has been used to produce many of the evaluations included in ENDF/B.

• GLS is based on the assumptions that the data being evaluated are normally (Gaussian) distributed, that 
linear relationships exist between the various involved variables (both primary and derived), and that the 
model and experimental data are uncorrelated.

• There are two distinct approaches to applying GLS:
1) Essentially averaging (merging) theoretical model-calculated and experimental information.
2) Employing experimental data to adjust assumed prior values of model parameters and then

using the adjusted models to derive mean values and covariances that constitute the evaluations.
• Both variants are conceptually Bayesian although probability functions are not considered explicitly.
• The equations used are relatively simple, but assembling the required information and performing the 

analyses for large-scale evaluations is very challenging, both administratively and computationally:

These equations* show the least-square 
condition in linear form as well as the 
solution mean values and covariance 
matrix. The subscript “a” refers to prior 
information that usually is generated 
from nuclear model calculations.
* D.L. Smith, Report ANL/NDM-128, Argonne National 
Laboratory (1993).



A Celebrated Problem Encountered with GLS:
“Peelle’s Pertinent Puzzle” (PPP)

x1

x2

<x>

• By ≈1987 it was clearly evident that some evaluations produced by the 
least squares method (GLS) yielded unreasonable solutions (e.g., “too 
low” mean values). This effect was first described by Robert Peelle ,ORNL.

• Discovery of the PPP phenomenon challenged the previously assumed 
invincibility of the GLS evaluation method.

• PPP was eventually attributed to improperly constructed covariance 
matrices, nonlinearities, discrepancies, large uncertainties, and strong 
correlations (usually the consequence of “hidden” variables).

• “Fixes” (approximations) to deal with the PPP effect have been suggested 
(and used) to “minimize” its impact in practical evaluations.

• A better solution would be to avoid “hidden” variables as much as possible 
by including them in the evaluation process. (Kenneth Hanson, LANL).

?

Comment: PPP may be 
mitigated by these “fixes” 
but the effect never goes 
away completely as long 
as GLS is strictly applied.



UNIFIED MONTE CARLO:

GOING BEYOND 

LINEARITY



Desired Features of an Advanced
Data Evaluation Method

• Able to deal with nonlinear theoretical models without the need to 
linearize them.

• Able to handle model and experimental data that are not necessarily 
normally distributed (Gaussian) w/o the need to reject useful information.

• Able to include accurate integral data in a way that reduces uncertainties 
while avoiding introducing biases (QUESTION: Any ideas how to do this?).

• Consistent with Bayesian statistical concepts.
• Evaluated results converge to the Generalized Least-Squares (GLS) solution 

when the conditions for GLS are adequately satisfied.
• Computationally “manageable”.
• Offer the possibility for seamless progression from (models + experiments) 
 evaluated results  derived results for system variables.



Variable Transformation and Stochastic Uncertainty Propagation [~ 2004]

• Model parameters x (vector dimension “n”) are governed by a normalized probability density function 
r(x). If all that is known about these parameters are mean values <x> and covariance matrix Vx, then we 
assume r is a multi-variable normal distribution (according to Jaynes’ Principle of Maximum Entropy).

• Generate a collection of values {xk} = {x1, x2, … , xk , … xK} through random sampling in a manner 
consistent with the probability function r. Note that K will need to be a rather large number (as large as 
necessary to achieve statistical convergence in computational applications that employ these values).

• Derived variables y (vector dimension “m”) are then calculated using a model M such that y = M(x).

• Generate a corresponding collection of random values {yk} by applying the relation yk = M(xk), (k=1,K).

• The yk will be distributed according to an inherent prior probability function p0, which is unlikely to be 
expressible analytically but can be characterized by its moments that can be calculated from the 
collection {yk} , e.g., mean values <y>, covariance matrix Vy, skewness, kurtosis, etc.

Mean Values:   <yi> = yi0 ≈ (1/K)  k=1,K yik for i = 1,m 

Covariances:     Vyij ≈ (1/K)  k=1,K (yik-yi0)(yjk-yj0)      for i,j = 1,m

Moments of any order can be calculated in principle, 
but the higher the order, the bigger K must be to 
achieve statistical convergence, e.g., mean values 
(K>103), covariances (K>104), skewness (K>105), etc.

Information of 
potential value 
is not explicitly 
discarded by 
this stochastic  
approach.



Non-linear transformations change the shape of PDF’s …

• Exercise: Stochastic analyses with K = 1,000,000 histories (MATLAB).
• Random collection {xk} generated from a normal distribution with mean value = 

1, standard deviation = 0.3, skewness = 0, and kurtosis = 3.
• M.C. results for {xk} collected into 100 bins and plotted as a histogram.
• Calculate mean value, standard deviation, skewness, and kurtosis for {xk}. 
• Transformation: y = M(x) = exp(c x) with c = constant.
• Generate 1,000,000 corresponding samples of {yk} for both c = 1 and c = 2.
• M.C. results for the {yk} collected into 100 bins and plotted as histograms.
• Calculate mean value, standard deviation, skewness, and kurtosis for the {yk} sets 

corresponding to both c = 1 and c = 2.

Moments {xk} {yk} : c=1 {yk} : c=2

Mean Value 1.0003 2.8426 8.8526

Standard 
Deviation

0.3001 
(30.0%)

0.8720 
(30.7%)

5.8380 
(66.0%)

Skewness ≈0 (varies) 0.9518 2.2910

Kurtosis 3.0036 4.6592 13.7593

{xk}

{yk} : c=1

{yk} : c=2

Note: The {yk} PDF’s are actually lognormal!



Total Monte Carlo (TMC) [~ 2007]

A.J. Koning* and D. Rochman, 
Annals of Nuclear Energy, Volume 
35, Issue 11, November 2008, Pages 
2024–2030.
*Preprint with figures shown in this slide 
obtained from A.J.K. prior to publication.

• The TMC concept demonstrated the potential for performing seamless Monte Carlo 
analyses progressing from estimated nuclear model parameters  calculated nuclear 
reaction data  nuclear system performance (including uncertainties).

• As originally proposed, the influence of experimental nuclear data was not treated
explicitly in this approach. Also, TMC is not truly Bayesian.

• More recent studies by Koning and Rochman, as well as by Helgesson and Sjoestrand, 
have been investigating ways to remedy these deficiencies.



The concept of UMC-G stemmed from 
boredom experienced while waiting for 
auto repairs to be performed at a garage.

Unified Monte Carlo – Variant “G” (UMC-G)   [~ 2007]

• The concept is based on a direct application of Bayes Theorem: p(y) = C x p0(y|yC,VC) x L(q|qE,VE). 

The prior probability p0 and likelihood L are independent probability density functions, while C is 
a normalization constant. It is assumed here that the analytical forms of both p0 and L are known 
explicitly. Note that q = f(y) since the evaluated (and model-calculated) variables y and 
experimental variables q need not be related one-to-one, but only through functions f.

• The mean values yC and covariance matrix VC are derived from model parameters x with mean 
values x0 and covariance matrix Vx through the model transformation M , i.e., y = M(x). The 
stochastic method is used to determine these mean values yC and the covariance matrix VC in 
this approach. The  higher moments are ignored.

• The analytical form of p0 associated with the stochastically generated collection {yk} is unknown
so it is approximated by a normal (Gaussian) probability function by invoking the Principle of 
Maximum Entropy (erroneously, as it happens, since more information IS actually known!). Thus:

p0(y|yC,VC) ~ exp{-(½)[(y – yC)+ • VC
-1 • (y – yC)]}          (“+” signifies “transpose”)

• We then assume that the mean values qE and covariance matrix VE for the experimental data are 
known so that, by the same reasoning as applied to the prior, we have a normal function L:

L(q|qE,VE) ~ exp{-(½)[(q – qE)+ • VE
-1 • (q – qE)]} .

• A stochastic analysis of the posterior probability function p(y) yields the evaluated results.



S{y}

S{x}
xk

p0(y|yc,Vc) > 0

L(q|qE,VE) > 0
p0(y|yc,Vc) ≈ 0

L(q|qE,VE) ≈ 0

·

· yk

r(x) > 0

yk = M(xk) 

p0(y|yc,Vc) and L(q|qE,VE) > 0 
so p(y) > 0

r(x) ≈ 0

Topology Issues

This schematic diagram 
shows mapping from space 
S{x} to space S{y} by the 
theoretical (model) 
algorithm M. The shaded 
areas denote regions of 
non-negligible probability
for r (green) and p0 (blue).

The region enclosed by a red dashed circle 
indicates that portion of space S{y} where the 
likelihood function L(q|qE,VE) is non-negligible. 
In the region labeled Overlap, where “blue” 
and “red” dashed circles intersect, the posterior 
probability function is also non-negligible.

Remember:
q = f(y)

p0(y) ≈ 0
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RATIO CASE

100.00 150.00 200.00 250.00 300.00
10.00

20.00

30.00

40.00

50.00

M
O

D
E

L

MODEL

y1=210 +/- 63 (30%)

y2=32 +/- 9.6 (30%)

100.00 150.00 200.00 250.00 300.00
10.00

20.00

30.00

40.00

50.00

E
X

P
E

R
I
M

Cov(1,2) = 0.

Cov(1,2) = 0.95

EXPERIM
f1=y1=205.6 +/- 61.7 (30%)

f2=y2/y1=0.209 +/- 0.010 (5%) ~ 43

“y2”= 43+/-2

vs 32+/- 9

“Toy” Example

In this example, q1 = 
f1 = y1 and q2 = f2 = 
y2/y1. Consistency of 
the experimental
ratio data and model 
calculated values for 
the variables is poor.  

.

y2

y2

y1

y1

This profile shows 

the region in y-

space where the 

normal probability 

distribution for 

experimental data

in q-space appears 

to be concentrated. 

Prior

Likelihood .
Notice that the profile

shape in y-space is 

clearly NOT normal!

mailto:R.CapoteNoy@iaea.org
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Extreme Case: 5% exp. ratio unc., 95% model correl.

100.00 150.00 200.00 250.00 300.00
10.00

20.00

30.00

40.00

50.00

C
O

M
B

I
N

E
D

COMBINED

GLS UMC

151 +/- 37 (25%)

30 +/- 7 (22%)

195 +/- 44 (22%)

37.5 +/- 7 (18%)

100.00 150.00 200.00 250.00 300.00
10.00

20.00

30.00

40.00

50.00
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100.00 150.00 200.00 250.00 300.00
10.00

20.00

30.00

40.00

50.00

E
X

P
E

R
I
M

GLS evaluated Mean 

Value <y1> is 29% 

larger than for UMC!

mailto:R.CapoteNoy@iaea.org
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Nuclear Data Sheets 110 (2009) 3107

p0(σ | σC,VC)
Nuclear Data Sheets 108 (2009) 2655

mailto:R.CapoteNoy@iaea.org


29
4th IAEA TM of the International  A&M Code Centre Network, Vienna, 

Austria, July 29-31, 2015

R. Capote, IAEA Nuclear Data Section

R.CapoteNoy@iaea.org

UMC vs GLS: a real evaluation

55Mn(n,)

Good agreement between UMC-G and 

GLS is obtained when the experimental 

data are consistent and the relationships

between the data are basically linear.

mailto:R.CapoteNoy@iaea.org


Additional Comments on UMC-G
Some Strengths of UMC-G:
• It is explicitly a Bayesian approach that works directly with probability functions.
• It does not require either the prior or likelihood probability functions to be normal in order to generate an 

acceptable posterior probability function.
• Efficient Monte Carlo sampling techniques, such as the Metropolis-Hastings method, can be used to 

generate a collection of variable vectors that represent the posterior probability function. They can then be 
used to calculate estimates of the moments such as mean values, covariance matrix, skewness, etc.

• UMC-G will yield the same results as GLS provided that the prior, likelihood, and thus the posterior, are 
explicitly normal probability functions w.r.t. the variables to be evaluated (no ratio data).

• UMC-G will yield the same results as GLS when the relationships between the various data are linear.  
• UMC-G results converge to GLS results when the data are consistent and uncertainties are small.

Some Weaknesses of UMC-G:
• Analytical expressions for both the prior and likelihood functions must be known to generate an analytical

posterior function that can be sampled by Monte Carlo.
• While in most instances the likelihood function will be explicitly normal because of limited knowledge of the 

moments of experimental data probability distributions, it is unlikely that the prior probability function from 
modeling will be normal or even known analytically. Thus, it must be approximated by an analytic function
(resulting in lost information) to be able to employ UMC-G.

• It is computationally intensive (as is the case for ALL the Monte Carlo approaches).



Unified Monte Carlo – Variant “B” (UMC-B)   [~ 2011]

• It was recognized early-on that the requirement in UMC-G for the prior, likelihood, and posterior 
probability functions to be expressible analytically was a serious limitation of this approach. In 
order to apply UMC-G it is necessary, in most cases, to discard potentially useful information
about the prior function p0 in order to approximate it by a normal distribution.

• To overcome this limitation, UMC-B uses a distinct Bayesian approach in which each individual 
transformed kth sample value from variable space S(x) to variable space S(y) - in accordance with 
r(x) and model M - is ultimately weighted by a corresponding scalar likelihood factor ωk. 

{xk} M(xk)  {yCk}  {qk}  {ωk} 

• The collection {yCk} is distributed according to a prior probability function p0 that is not explicitly 
analytical but can be incorporated in a Bayesian analysis by employing as likelihood factors the 
collection of scaler weighting factors {ωk} that are defined by experimental data and given by:

ωk = exp{-(½)[(qk – qE)T • VE
-1 • (qk – qE)] .

• While an analytical expression for the posterior probability function p(y) is not provided, it is 
possible to calculate the moments of p by employing the collection of pairs of quantities {yCk,ωk}. 
For example, the “solution” mean values and covariance matrix are given by: 

<yi> ≈ [Σk=1,K ωk yCik] / [Σk=1,K ωk] ,    (i=1,m)

(Vy)ij = [Σk=1,K ωk yCik yCjk] / [Σk=1,K ωk] – <yi> <yj> .  (i,j=1,m).

The concept of UMC-B emerged while 
Roberto Capote and Andrej Trkov were 
having breakfast one morning before a 
daily session of the covariance workshop 
being held at Port Jefferson, New York.

Remember:
q = f(y)

Note: Subscript “C” signifies 
“calculated” using model M.

No information is 
discarded in UMC-B

UMC-B offers a way to incorporate 
experimental information in TMC.



Comments on UMC-B

Some Strengths of UMC-B*:
• UMC-B shares several favorable attributes with UMC-G, e.g., it does not demand linearity.
• UMC-B overcomes a major limitation of UMC-G since it does not require an explicit analytical representation of 

the prior probability function.
• It is conceptually very easy to understand and implement.

Some Weaknesses of UMC-B*:
• A disadvantage of UMC-B is encountered if the region of y-space where both the prior and posterior probability 

functions have non-negligible probability is very small. In order that this region be adequately sampled, a very 
large number of Monte Carlo sampling histories, and a wide space of sampling variable values, may be required 
to minimize the chance of introducing bias and to yield adequate statistical precision for the derived moments.

• All sample values considered by this approach are based on calculations involving the theoretical model M (i.e., 
sampling p0 ) rather than on sampling the actual posterior probability function p that treats the calculated and 
experimental results on an equal footing. So, UMC-B is quite sensitive to the possible existence of model defects.

• Summarizing: While both GLS and UMC-G can be symmetric w.r.t. the handling of experimental and model data, 
UMC-B is not symmetric. Depending on one’s perspective, this may be an advantage or a disadvantage.

• The analysis can be very computationally intensive, especially if the model and experimental data disagree.

*NOTE: In her talk at this workshop, Denise Neudecker will discuss recent investigations of these issues, and she will 
also show comparisons of results from GLS, UMC-G, and UMC-B analyses for some specially designed “toy examples”.



EVALUATED DATA 

VALIDATION



“Proof of the Pudding” is in the eating …

• Before a comprehensive evaluated nuclear data library such as ENDF/B-VII.1 is formally 
released it is subjected to extensive C/E testing of its performance for thousands of well-
defined nuclear-application benchmarks* (mostly critical and sub-critical reactors).

• Before a new library can be licensed for use by various governmental agencies (e.g., NRC or 
NNSA) it must be established that it yields C/E values that are deemed by experts from the 
data user groups to be within acceptable limits (i.e., C/E ≈ 1), considering all the estimated 
uncertainties. Achieving this goal always involves many iterations and compromises.

• Inclusion of covariance (i.e., uncertainty) data is quite important for contemporary data 
libraries owing to a growing emphasis on Uncertainty Quantification. Covariances are also 
employed to produce “adjusted” evaluated data libraries for specific applications. These 
adjusted libraries may be used to seek approval from authorities (e.g., for reactor licensing). 

*The International Handbook of Evaluated Criticality Safety Benchmark Experiments was prepared by a working 
group comprised of experienced criticality safety personnel from the United States, the United Kingdom, Japan, the 
Russian Federation, France, Hungary, Republic of Korea, Slovenia, Serbia, Kazakhstan, Israel, Spain, Brazil, Czech 
Republic, Poland, India, Canada, China, Sweden, and Argentina. The handbook contains criticality safety benchmark 
specifications that have been derived from experiments that were performed at various nuclear critical facilities 
around the world. The benchmark specifications are intended for use by criticality safety engineers to validate 
calculational techniques used to establish minimum subcritical margins for operations with fissile material. The 
example calculations presented do not constitute a validation of the codes or cross section data. The handbook
contains 549 evaluations with benchmark specifications for 4708 critical, near-critical, or subcritical configurations
and 24 criticality alarm placement/shielding configurations with multiple dose points for each, and 200 configurations 
that have been categorized as fundamental physics measurements that are relevant to criticality safety applications.Godiva

http://icsbep.inel.gov/evaluations.shtml
http://icsbep.inel.gov/configurations.shtml


WRAP-UP



It’s important to re-emphasize that combinations of data from theory and 
experiment are generally needed to produce an acceptable evaluation …

• Contemporary theoretical models are usually approximations due to incomplete knowledge about nuclear 
processes. As a consequence there are defects (some known and many likely unknown) in these models.

• Many nuclear models involve semi-empirical parameters that must be adjusted to yield qualitative 
agreement with the available experimental data:

- Normalization issues.
- Shape variations with energy.

• Data from good-quality experiments can provide useful information that is pertinent to both the 
normalization and shape of cross-section excitation functions, but often this occurs only in certain energy 
regions that were (are) accessible with former (contemporary) experimental facilities and techniques.

• Many archival experimental data were acquired and analyzed with inadequate understanding of the 
existing experimental conditions (backgrounds, calibrations, etc.)

• While either models or experiments alone are usually insufficient when performing an evaluation, they 
tend to complement each other so that a combination of model data and experimental data, implemented 
in a Bayesian context, can go a long way toward fulfilling evaluated data needs for applications.



Many of the difficulties encountered in performing nuclear data evaluations tend to vanish when there is 
good agreement between “defect-free” model-calculated data (C) and comparable accurate experimental 

data (E), with modest-to-small uncertainties, regardless of the evaluation method used …

“The Truth”

C ≠ E
(Conflict)

C ≈ E
(Harmony)



But … it’s a bit idealistic to think that in most cases this could happen anytime soon …

Fulfillment of the goal of achieving complete RIGOR continues to be elusive. So … contemporary practices in 
nuclear data evaluation still involve a considerable degree of SORCERY ... Nevertheless, meaningful progress is 
being made toward improving both the data available to be evaluated as well as the evaluation methods used. 

Image provided by Denise Neudecker (May 2016)



Is UMC a “Silver Bullet” solution for every 
evaluation situation?

• Obviously (from the preceding discussions) it is not.

• But … one or another variant of UMC (and there are 
others besides UMC-G and UMC-B that are now being 
explored by the nuclear data community) can be useful 
in situations where non-linear effects are significant and 
non-normal data probability distributions are involved.

• For many situations, GLS has been shown to be a viable
evaluation tool that can provide reasonable results 
which adequately incorporate the underlying theoretical
and experimental data employed in these evaluations.

• For the foreseeable future it is likely that a combination
of GLS and UMC-type techniques will be employed, 
especially considering the large volumes of information 
that need be handled in producing most evaluations.

This is an allusion to a mythical “miraculous fix”, 
sometimes also portrayed as “waving a magic 
wand”. This figurative use derives from the use 
of actual silver bullets and the widespread folk 
belief that they were the only way of killing
werewolves or other supernatural beings.



Erma Bombeck

Born: February 21, 1927 
Died: April 22, 1996

Erma Louise Bombeck, born Erma Fiste, was an American humorist who achieved great 
popularity for a newspaper column that depicted suburban home life humorously, in the 
second half of the 20th century.

For 31 years since 1965, Erma Bombeck published 4,000 newspaper articles. Already in the 
1970s, her witty columns were read, twice weekly, by thirty million readers of 900 newspapers 
of USA and Canada. Besides, the majority of her 15 books became instant best sellers.

“Housework can kill you if done right.” 

… That may also be true with nuclear data evaluation!!!



The End


