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1. What is the Essence of the
Bayesian Paradigm?

* |tis that the only satisfactory way to quantify
uncertainty is by probability, and

* That probability is personal to an individual or
a group of individuals acting as a team.




2. What is Uncertainty and
Why Quantify it?

e Uncertainty is anything that you don’t know.

* Thus, like probability, uncertainty is also

personal, because your uncertainty could be
sure knowledge to another.

* Furthermore, uncertainty is time indexed,
because what is uncertain to you now can
become known to you later.




* Thus probability should carry two indices, you,
denoted by #, and time, denoted by .

* We quantify uncertainty to invoke the

scientific method, and the scientific method
mandates measurement.

* Per Lord Kelvin, if you cannot measure it, you
cannot talk about it.



3. Notation and Symbols.

* Let X; denote an uncertain quantity to ﬁ, at time 7.

* For example, X, could denote the failure time of a
structure, or the maximum stress experience by
the structure over its service life, the tomorrow’s
closing price of a stock. In other words, X, is simply
a label.

* Let X; denote the possible numerical values that X;
can take. For example X, =20 years, or X; = 15
lbs/square inch, or X, = $27.82, etc. Thus X, is
generic.



* When X; denotes an uncertain event , like rain
or shine tomorrow, or failure or survival by the
vear’s end, or pass or fail, or stock appreciates
or depreciates, then X, takes only two values
X; = 1orXx; =0. Thus (X; = 1) will denote the
event that it rains tomorrow or the item
survives to the year’s end.

* In what follows, we will focus on events
(X; =Xy), where x; =1 or 0.



* Our aim is to quantify #s uncertainty about
the event (X; = X,) at time 7, using the metric
of probability.

* To do so, we need to exploit the background
information, or history H, that ®has about
(X, = X,) at time 7; denote this as H(z). Bear in
mind that H will change with 7, because as
time passes on, & is liable to know more
about (X; = X;) but not for sure if (X; = 1) or

(X, = 0).



* With the above in place, &’s uncertainty about
the event (X, = X;) at time 7, in the light of
H(z), as quantified by probability, is denoted

P, (X1 = X5 H(2)).

* Furthermore, R"(X; = x;; H(7)) is a number
taking all values between 0 and 1(both
exclusive, under a personalistic interpretation
of probability).




4. Interpretations of Probability.

* Relative Frequency: An objectivistic view according to
which probability is the limit of the ratio of number of
times that (X; = X;) will occur when the number of
possible occurrences of (X; = 1) or (X; = 0) is infinite,
under almost identical circumstances of occurrence.

e Under this interpretation,ﬂ, H, and 7,do not matter so
that

I%\)T(Xl =Xy, H(z)) = P(X; = Xy),

and P(X; = X;) can be assessed only under repeated
observation of the event; this view demands hard
data on (X; = X,); furthermore, P(X; = X,) is unigue.




* The relative frequency notion of probability
underlies the frequentist (or sample theoretic)
approach to statistical inference with its long run
behavior notions of unbiased estimation, Type | &
Il Errors, Significance Tests, Minimum Variance,
Maximum Likelihood, Confidence Limits, Chi-
Square and t-Tests, etc.

* This is the approach advocated by Fisher and by
Neyman (though unlike Lehman, Neyman was
not hostile to the Bayesian argument).

* Bayesian statistical inference rejects the above
notions as being irrelvant.




* Personalistic Interpretation: F’{(X1 = Xq; H(7))
is the amount ﬁ is prepared to stake, at time 7, in
exchange for 1 unit, should (X; = X,) occur, in a 2-
sided bet. If X; = X, does not occur (in the future),
A loses the amount staked. This interpretation
assumes a linear utility, (risk aversion) by ﬁ‘

* Here probability is a gamble, and the 2-sided bet
ensures that ﬁ’s declared probability is a
reflection of his(her) true uncertainty. That is, the
2-sided bet ensures honesty, because:



* In a 2-sided bet, if § stakes p, for the future
occurrence of (X; = X;), then <Q\&should also be
prepared to stake (1 — p,) for (X; = X,) not
occurring, and *’s boss gets to choose the side of
the bet.

* Under the personalistic (or subjective)
interpretation, probability is not unique, it is
dynamic with 7, and cannot take the values 0 and
1,i.e.0<p; <1

* The role played by utility in a 2-sided bet leads
one to the claim that personal probability cannot
be separated from &'s utility.




5. The Rules (or Axioms) of Probability.

* |rrespective of how one interprets probability,
the following rules are adhered to.

e The rules tell us how to combine several

uncertainties (i.e. how the uncertainties
cohere).

* Consider two uncertain events at time 7, say
(X; =Xy and (X, =X,),%=10or0,1=1, 2, and
an individual # with history H(z). Then:



* i) Convexity:
F%T(Xi = X;; H(?)) = p;,
with 0 <p, < 1.

* ii) Addition:
R(Xy =X, 08 X; = Xp; H(7)) = py + P,
but only when X; = X; and X, =X, are
mutually exclusive.



* iii) Multiplication:
R'(Xy =x; and X, = X,; H(1))
= B'(Xy = Xq | X5 = Xy; H(7))-P, (X, = X,; H(7)).

e The middle term is called the conditional
probability of the event (X; = X;) supposing
that (X, = X,) were to be true.

* |tis very important to note that conditional
probabilities are in the subjunctive mood.




6. Operationalizing Conditional Probability.

* Int
pro
pro

P(X1:X1|X2 :X2):

ne relative frequency theory, conditional
oability is a definition; it is the ratio of two

nabilities. Thus

P(X,=xand X, =x,)
P(X, =X,)

. ifP(X2=x2) #0.



* Inthe personalistic theory, if:
R'(X; =Xy | X, =X,; H(z)) =, say,0<z <1,
then 7 is the amount staked by & at time 7, in the
light of H(z), on event (X; = X,) in a 2- sided bet,
but under the stipulation that the bet will be
settled only if (X, = X,) turns out to be true.

* All bets are off if (X, = X,) does not turn out to be
true.

* Note that at time 7, the disposition of both X; and
X, is not known to ﬁ Thus it is the subjunctlve
mood that is germane to conditional probability.



* Important Convention:

e All quantities known to # at time 7 with
certainty, are written after the semi-colon; e.g.
H(z). All quantities unknown to 4 at time 7,
but conjectured by 4 at 7, like (X, =X,) are
written after the vertical slash. Thus we have:

Pﬁf (X1 =X X5 = %55 H(2)).



/. Independence, Dependence,
& Causality.

* (X{=Xxy)and (X, =X,) are said to be independent
events if

P(Xy =X, | X, = X3 H(@) = R(X, = x;; H(2)),

for all values X1 Xy 5 OF else, they are dependent.

 Thus independence means that your disposition to bet

on say (X; = X;) will not change under the (supposed)
added knowledge of the disposition of (X, = X,).

* Consequently, mutually exclusive events are
necessarily dependent.




* Since (X, = X;) independent of (X, = X,) implies
that (X, = X,) is independent of (X; = X;), and
(X; = X;) dependent of (X, = X,) implies that
(X, = X,) is dependent of (X, = X,), the notion of
dependence does not encapsulate causality.

* The notion of causality involves a time ordering in
the occurrence of (X; = X;) and (X, = X,), if any,
whereas the notions of independence and
dependence refer to the disposition of ﬁ‘s mind
towards bets on (X; = X;) and (X, = X,) at time 7,
irrespective of how and when X; and X, reveal
themselves.



* To summarize, (X; = X,;) dependent of (X, = X,)
does not imply that (X, = X,) causes (X; = X,)
or that it does not cause (X; = X;).

* Note: The notions of independence and
dependence reflect the judgment of & at .

 Whereas a causal relationship between the
two events in question may lead to the
judgment of dependence, an absence of
causality between two events does not
necessarily imply independence of the events.




8. Generalizing the Rules of
Probability.

* For convenience, we skip writing ﬁ, 7, and
H(z) but recognize their presence (in the
personalistic context).

* Then for k uncertain events (X; = Xy), ...,
(Xic = %),



* i) P(X;=Xx,0rX,=X,o0r... or X, =X)
k
=Y P(X; =x),
1=1
if all the k events are mutually exclusive, and
e ii) P(X; =x;and X, =X, and ... and X, = X,)
=P(X;=X;| X;=X,and ... and X, = X,)

-P(X, =X, | X3=Xzand ... and X, = X,) -...-
P(X1 = M1 | X =X - P(X =%y

:HP(Xi — Xi)’

if all the k events are judged independent.



* If the events (X; = X;) and (X, = X,) are not mutually
exclusive, then i) above leads us to the result that

P(X; =X, 0or X, =X,)
= P(X; = Xg) + P(X; = %,) = P(X; =X, and X; = X,)
= P(Xy =Xp) + P(X; = %5) = P(Xy =X X; = Xp)-P(X; = Xy)
= P(Xy =Xy) + P(X; = Xp) = P(Xy = Xp)-P(X; = X5),

if X; and X, also happen to be independent (in addition
to being not mutually exclusive).



9. Why these Rules?

There are two arguments, one pragmatic, the
other mathematical/logical, which lead to the
conclusion that not following these rules leads

A to incoherence (i.e. a sure loss no matter

what the outcome; e.g heads | win, tails you
lose).



* i) The first argument is based on scoring rules
and is due to de Finetti and generalized by

Lindley.

* ii) The second argument is based on certain
axioms of “rational behavior”, called
behavioristic axioms, and is due to Ramsey

and Savage.



* To Kolmogorov, the axioms of probability are a
given (like commandments) and are the starting
point for the theory of probability.

* Cardano —the Italian polymath — discovered the
rules (axioms) of probability as a way to gamble
without a sure loss.

 Some psychologists, like Khaneman and Tversky,
and some economists like Allais and Ellsberg,
claim individuals do not like to be scored, nor do
they behave according to the axioms of rational
behavior, and thus cast pallor on the axioms of
probability.



 The above argument has opened the door to
alternatives to probability, like possibility
theory, upper and lower probabilities, and

fuzzy logic.

* Lindley and Savage have rejected such
alternatives to probability on grounds that the
behavioristic axioms underlying the axioms of
probability are normative. They prescribe
rational behavior, just like how the Paeno
Axioms prescribe the rules of arithmetic.




10. Extending the Rules of Probability.

 Some simple manipulations of the convexity, the
addition, and the multiplication rules enable us to
derive two new and very important consequences of
the above rules. These are:

* i) The Law of Total Probability (or Extension of
Conversation) — due to La Place:

P(Xl — X1) = P(Xl =X | Xz :O)‘ P(Xz :O)
+ F’(X1 =X | X2 :].)-l:’()(2 =1)

:Zizzlp(xl =X | Xy =%)-P(X; =X).

* Here, assessing the uncertainty about (X; = X,) is
facilitated by contemplating the dispositions of X..



* ii) Bayes’ Law (or the Law of Inverse
Probability) — due to Bayes and La Place:

P(X2:X2|X1: 1)P(X1: 1)

P(X,=x[X,=X,) = P(X, = x,)
2 = M2

P(Xz = X, | Xl — Xl)P(Xl — 1)

: Z;P(Xz =X, | Xy =X%)P(X; =X)

(by the Law of Total Probability), so that



Posterior Probability Prior Probability

l l

P(Xl =X | Xz — Xz) oC P(Xz = X, | Xl — 1)P(X1 — 1)

T

Conditional Probability

since the role of the denominator is to simply ensure
that the left hand side is a probability.

* Note: Bayes’ Law being a part of the theory of
probability, only deals with uncertain events, or
contemplated conditioning events.

* Observe the inversion of arguments in the posterior
and the conditional probabilities.




11. Bayes’ Law and Observed Data —
Notion of Likelihood.

e Recall, Bayes’ Law:
P(Xy =% | X, =%,) c P(X, =X, | X; =%)P(X; =x).

* Suppose now that (X, = X,) has actually been
observed by ﬁ, i.e. it is no more contemplated.

* Then, the left hand side should be written as
P(X; = X;; X, =X,) because now (X, = X,) has
become a part of &’s history at 7, namely H(z).



* The term P(X, = X, | X; = X;) is no more a
probability — because probability is germane
only for the unknowns.

* The above expression is therefore written as
L(X; = X;; X, =X,), and it is now called the
likelihood of (X, = X,), in the light of the
actually observed (X, = X,).



12. More on the Likelihood.

* |tis not a probability and therefore need not
obey the rules of probability.

e |tisa relative weight which ﬂ assigns to the
unknown events (X; = 1) and (X; = 0) in the light
of the observed (X, = X,).

* |tis generally assignhed by ﬁ, upon flipping the
arguments in P(X, = X, | X; = X;). Thus the often
expressed view that the likelihood is a probability.



13. Bayes’ Law with Likelihood.

Posterior

. : Prior
: F% (X, =%; X, =%,,H (7)) l

oc L3(X, = %5 X, =Xy, H (7)) - F%T(Xl =X;H (7)).

T

Likelihood

* This law prescribes a mathematical process by

which & changes his(her) mind in the light of
new information (data).

* However, in doing so we encounter caveats.



14. What is a Probability Model?

 Where do specifications such as the Bernoulli, the
exponential, the Weibull, the Gaussian, the bivariate
exponential, etc. come from?

* Consider P(X; = X;), and invoke the law of total
probability by extending the conversation to some
unknown (perhaps unobservable) quantity, say 6,
where 0 <6< 1. Then

° P(X, = 1):jP(X1:X1|9)P(9)d9

replacing the summation by the integral, since @ is
assumed continuous.



* P(X; =X,|6) is called a probability model for X,;

« ifP(X;=1]0) = 0= P(X;=0|0) =1- 06, then the
probability model is called a Bernoulli Model.

 Thus to summarize, under a Bernoulli Model

P{(Xl =1L H (7))

T

[%
Predictive _1[9 P (6;H (7))d6.
of X 0 T

Prior on 0

X, =1|6;H (7)) R (0:H (r))d0



 The essence of the above is that under a
Bernoulli Model, were we to know 6, then
P(X, = 1|0) = 6, but since we know & only
probabilistically, we average over all the values
of 8 to obtain P(X; = 1), which is now devoid

of 6.




15. Meaning of 6: To...

de Finetti— @ IS just a Greek symbol which
makes (X; = 1) independent of H(z).

Popper - 6 is a chance or a propensity (i.e. a
tendency for X; = 1).

For induction under the Bernoulli model go to
slide 54.

For hypotheses testing go to slide 66.




16. The Exponential & Weibull Models.

 Let T denote an unknown (at time 7) time to
failure of a structure, with T taking a value t, for

some t > ().

 Let H(7) denote the background knowledge
possessed by ﬂ about the structure at 7.

. ﬁ needs to assess the survivability of T, for a
mission time, t* > 0. Thus, we need

R'(T >t ;H ()= [R"(T >t"| 4;H ())-R*(A:iH (r))dA

by extending the conversation to 4 > 0.



e Suppose that * chooses an exponential distribution
as a probability model for T. Then for *,

‘ R*(T >t" | A;H (7)) =exp(-At)

and now

RT(T >t"H (7)) = Teﬂ* -B7(4;H (7))d4.

I I I

Predictive Exponential Prior
of T Failure Model on A



* If & prefers to choose a Weibull with shape

b > 0and scale 1 as a probability model for T,
then

P (T >t7H (7)) = Te‘“*)ﬂ -B7(B;H (2))dB.

0
| | |
Predictive Weibull Prior
of T Failure Model  on

* |n either case, the predictive distribution
entails integration for which either numerical
methods or MCMC is of use.



17. Choice of a Prior on Chance
(Propensity) 6.

* The simplest possibility is a uniform on (0, 1);
that is

PT(O;H (1) =1, 0<@<L.

* If the propensity of (X; = 1) is higher than that
of (X; = 0), a beta with parameters (a, b)
makes sense:

. RU(OH (@) =R (@ah) =21

r'(a)T'(b)
where T(x) = j e 'u*du = (x=1)!.

ea—l (1 . 9) b-1 |



a=2 b=1

R (0;a,b)

o

* As a gets bigger than b, the mode shifts to the
right and vice-versa.



18. Model & Predictive Failure Rates.

* Consider the exponential failure model

P(T >t | 1) =exp(-At)).

e Then it can be seen that the conditional
probability

. o . — 4P >t |A)
Pt <T <t +dt |T>t,1)=—1 ) = A
T P(T>t |A)

Model Failure
Rate of T




* The quantity
Pt <T <t +dt" |T >t";H (1))
Pt <T <t +dt" [T >t;H (2))

Pt  <T <t +dt |T >t ;H ()

is called the predictive failure rate of T.



19. Prior on Exponential Model
Failure Rate 4.

e Since A >0, a meaningful prior on 4is a
gamma distribution with parameters (scale) c
and (shape) d; that is

e (1c) e
(d-1!

* R @A@H(@)=FK(4cd)=

R (Aicd) | g5q




* The mean time to failure is 1/4, denoted
MTTF.

* Note: MTTF = (Model Failure Rate)!
but only for the exponential failure model.




20. Model Failure Rate of the Weibull
Failure Model.

- When F%\T(T >t* |,B) — e'(t*)ﬂ’

Pt <T <t +dt’ |T>t,B8)=48@t)""

is the model failure rate.
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* Depending on the choice of f it encapsulates
aging (6 > 1), non-aging (# = 1), or things like
improvement with age (f < 1) — work hardening.

p>2
At /

0 t

* Since f > 0, the gamma distribution would be a
suitable prior for p.



21. Predictive Probabilities Under Bernoulli Models.

* Let (X, =1) if the I-th unit survives to some
timet’, 1 =1, 2; (X, = 0) otherwise.

» Let H(z) be the background information of & at
timer>0,r<t.

* What are P;(Xi =1; H(z)), and
P.(X; =1and X, = 1; H())?



Focusonl1 =1, and ignoringﬁ and 7, consider
P(X, =1, H(7)

_jp(x =1|0)P(0;a,b)de

1

J :% ifa=b=1 similarlyP(X, =LH (2)).

Now consider P(X; =1 and X, = 1; H(7))
_jp(x =1and X, =1|8;H ())P(6;H (z))d6
jp(x _1|H)P(X =1|6) P(#;a,b)do

0

:j -9-1d9=j9 do=1, ifa=bh=1.
0

3



» Similarly, R'(X; = 1 and X, = 0; H(z)), when a =
b=1is

:j@ﬂ—@)ld@zj@d@—j@ﬂ@
0 0 L

—1_1_1
2 376"

* Observe that
P(X;=1;H(z)) >P (X, =1and X, = 1; H(z))
>P(X;=1and X, =0; H(7))
=P (X, =1, X;=0; H(7)).

e ThusP(X;=0and X, =0)=1-3—-5-¢=5.



Inductive Prediction Under Bernoulli
Models.

* The scenario of predicting X, =1, when we
know for sure that X; =1 —at time r—that is
the case of induction, involves some subtle, if
not tricky, arguments.

* We need to assess (X, = 1; X, = 1, H(z)).
* We start by ignoring the fact that X; = 1is

known, and suppressing & and H(z), consider
the proposition:



1
e P(X, =1 X, =1) = [ P(X, =1]6,X, =) P(8| X, =1)d@
1 0
= [P(X, =1]6) P(0| X, =1)dg

0 1
= [oP(o| X, =1)de.
0

* But by Bayes’ Law,
P(0] X, =1) c P(X, =1|0)P(&:H (7)), or

P(G; X, =1) oc L (8; X, =1)P(8;a,b),

since (X; = 1) is actually observed.



Suppose that we choose L(6; X; =1) =6, and
seta=Db=1; then

P(9; X, =1) oc @ =cO, where C is a constant.

To find the constant of proportionality c, we
Integrate

1 1
[P@; X, =1)d6=1=[codo=c=2.
0 0

Thus P(8; X, =1) =26 ~ Beta(a=2,b =1).



Thus to summarize,
1
P(X,=LX,=La=b=1)=[20d6 =2
0

Consequently, P(X, =1, X, =LH (r)) =1

<P(X,=LH (7))
<P(X,=1X,=1H (r)) =2,

The ability to do integrations is crucial. Thus a
need for MCMC methods.

Go to slide 66 for hypotheses testing.




23. Markov Chain Monte Carlo
— The Gibbs Sampler.

* There are several MCMC methods, one of
which is the Metropolis-Hastings Algorithm, a
special case of which is the Gibbs-Sampler.

* Gibbs sampling is a technique for generating
random variables from a distribution without
knowing its density.




* Suppose there exists a joint density f(x,y), and
we are interested in knowing characteristics of
the marginal f(X)=j f(x,y)dy.

y

* Then Gibbs sampling enables us to obtain a
sample from f(X) without requiring an explicit
specification of f(x), but requiring a
specification of f(X|y) and f(y|x).




 The technique proceeds as follows:
i) Choose Y, and generate X; from f (x| ;).
ii) Now generate y; from f (y | x).
iii) Next generate x; from f (x| y;).
iv) Repeat steps ii) and iii) k times to obtain
(Yo %o)s (Y1, %5 (Yi» %) = the Gibbs Sequence.

* Result: When K is large, the distribution of X,
is f (x) = x. is @ sample point from f(x). This
result is from the theory of Markov Chains.




* To get a sample of size m from f(x), repeat
steps i) through iv) m times using m different
starting values Y, Yo Yo -

* The Hammersley-Clifford theorem asserts
that a knowledge of the conditionals asserts a
knowledge of the joint.



24. Gibbs Sampling Under a Bernoulli.

* Recall the scenario of a Bernoulli(6)
probability model with a uniform distribution
for 6. The predictive distlribution iS:

R(X, =LH () = [ P(X,=1|6)-1d6

1 0
=j9d9=?,

if you have forgotte% your integration.

* Using Bayes’ Law, we have seen that
P(@| X,=1)=286.



* Thus knowing P(X,=1|0)=60 and P(8| X, =1) =20,
we can generate for some large k a Gibbs

Sequence
(Xg,80), (X, 6),....(X;,6)),

and thence a sample of size m, (X, X1 X,
from which P(X;=1H (7)) can be obtained as

Zr::x;/m.



25. Application: Gibbs Sampling from
an Exponential.

* Recall the scenario of an exponential(A) failure
(probability) model with a gamma (scale c,
shape d) distribution for 4. The predictive is

(T >t;H (7)) = j e “P(4;c,d)dA
]g ﬂc(ﬂ,C) —1
0 r'(d)

* Using Bayes’ Law, it can be shown that P(A|t)
is also a gamma (scale ¢ + t, shape d + 1).




* Thus, knowing P(t|1)=4e ™ and P(1]|t), we
can generate, for some large k (= 1000, say) a
Gibbs Sequence (4 t), (4, 1), (4. t) and
thence a sample of size m, (t.t; &) from
which P(T >t;H (z)) can be obtained as

L1#t, >1t].



BAYESIAN HYPOTHESIS TESTING



Bayesian Hypothesis Testing

* The testing of hypothesis is done to support a
theory or a claim in the light of available
evidence.

* |tis useful in astronomy, particle physics,
forensic science, drug testing, intelligence,
medical diagnosis, and acceptance sampling in
quality control and reliability.



A Simple Architecture

Let X be an unknown quantity

Let P(X|6) be a probability model for X,
where 0 is a parameter.

Suppose that 8 can take only two values, 6 =
6, or 8 = 04 (the case of a simple versus a
simple hypothesis).

let P(6@ = 0y) =1, > P(6 =6,) =11, =

1 —1II,



A Simple Architecture (continued)

Suppose that X has revealed itself as x.

Can we now say conclusively and emphatically, that
(Hy —the null hypothesis) or (H, —the alternate
hypothesis) is true?

Very rarely a yes, but most often a no.

The Bayesian paradigm does not permit an acceptance
or rejection of a hypothesis (without an involvement of
the underlying utilities).

All that one can do under the Bayesian paradigm claim
that a knowledge of x enhances our opinion of either
H, or of H, .



A Simple Architecture (continued)

* The quantity I, /I1; is termed (our) prior odds
on H, against H;.

Il .
. H—: = 1 = H, and H, are equally likely true, a
priori, and in our opinion.
1 . . .
. H—O > 1 = H, is (a priori) more likely to be true
1

than H,, in our opinion.



How Should Evidence x be Incorporated?

* By Bayes Law
et P(Ho,x H) 0.4 L(Ho, X)HO
the posterior of 8, under x and
e P(Oy;x,H) o< L(6; x)I14

P
* Let— = posterior odds on H, against H;
1

e Then —

* Thus
Posterior Odds = Ratio of Likelihood - Prior Odds.

Py _ L(6g;x) Tl
Py L(Oy;x) Ty

by simple algebra.



The ratio of likelihoods is called the Bayes’ Factor
B in favor of H, against H,.

Thus Posterior Odds = (Bayes Factor).
(Prior Odds).

Posterior Odds
Prior Odds

Equivalently, Bayes’ FactorB =

The logarithm of B is called the Weight of
Evidence.
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Reliability and Risk - A
Bayesian Perspective

By Nozer D. Singpurwalla

We all like to know how reliable and
how risky certain situations are, and our
increasing reliance on technology has
led to the need for more precise
assessments than ever before. Such
precision has resuited in efforts both to
sharpen the notions of risk and
reliability, and to quantify them.
Quantification is required for normative
decision-making, especially decisions
pertaining to our safety and wellbeing.
Increasingly in recent years Bayesian
methods have become key to such
quantifications.

Retliability and Risk provides a
comprehensive overview of the
mathematical and statistical aspects of
risk and reliability analysis, from a
Bayesian perspective. This book sets
out to change the way in which we think
about reliability and survival analysis by
casting them in the broader context of
decision-making. This is achieved by:
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+ Providing a broad coverage of the

diverse aspects of reliability, including: multivariate failure modeils, dynamic reliability,
event history analysis, non-parametric Bayes, competing risks, co-operative and
competing systems, and signature analysis

+ Covering the essentials of Bayesian statistics and exchangeability, enabling readers
who are unfamiliar with Bayesian inference to benefit from the book

+ Infroducing the nofion of “composite reliability”, or the collective reliability of a
population of items

+ Discussing the relationship between notions of reliability and survival analysis and
econometrics and financial risk

Reliability and Risk can most profitably be used by practitioners and research workers
in reliability and survivability as a source of information, reference, and open problems.
It can also form the basis of a graduate level course in reliability and risk analysis for
students in statistics, biostatistics, engineering (industrial, nuclear, systems), operations
research, and other mathematically oriented scientists, wherein the instructor could
supplement the material with examples and problems.

Hardback 396 pages 2006 ISBN 978-0-470-85502-7
USD $130.00 £74.95 €89.90




