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1. What is the Essence of the
Bayesian Paradigm?

• It is that the only satisfactory way to quantify 
uncertainty is by probability, and 

• That probability is personal to an individual or 
a group of individuals acting as a team.
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2. What is Uncertainty and
Why Quantify it?

• Uncertainty is anything that you don’t know.

• Thus, like probability, uncertainty is also 
personal, because your uncertainty could be 
sure knowledge to another.

• Furthermore, uncertainty is time indexed, 
because what is uncertain to you now can 
become known to you later.
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• Thus probability should carry two indices, you, 
denoted by    , and time, denoted by τ.

• We quantify uncertainty to invoke the 
scientific method, and the scientific method 
mandates measurement.

• Per Lord Kelvin, if you cannot measure it, you 
cannot talk about it. 
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3. Notation and Symbols.

• Let X1 denote an uncertain quantity to , at time τ.

• For example, X1 could denote the failure time of a 
structure, or the maximum stress experience by 
the structure over its service life, the tomorrow’s 
closing price of a stock. In other words, X1 is simply 
a label.

• Let x1 denote the possible numerical values that X1

can take. For example x1 = 20 years, or x1 = 15

lbs/square inch, or x1 = $27.82, etc. Thus x1 is 
generic.
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• When X1 denotes an uncertain event , like rain 
or shine tomorrow, or failure or survival by the 
year’s end, or pass or fail, or stock appreciates 
or depreciates, then X1 takes only two values
x1 = 1 or x1 = 0. Thus (X1 = 1) will denote the 
event that it rains tomorrow or the item 
survives to the year’s end.

• In what follows, we will focus on events 

(X1 = x1), where x1 = 1 or 0.
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• Our aim is to quantify ’s uncertainty about 
the event (X1 = x1) at time τ, using the metric 
of probability.

• To do so, we need to exploit the background 
information, or history H, that has about
(X1 = x1) at time τ; denote this as H(τ). Bear in 
mind that H will change with τ, because as 
time passes on, is liable to know more 
about (X1 = x1) but not for sure if (X1 = 1) or

(X1 = 0).
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• With the above in place, ’s uncertainty about 
the event (X1 = x1) at time τ, in the light of 
H(τ), as quantified by probability, is denoted

P (X1 = x1; H(τ)).

• Furthermore, P (X1 = x1; H(τ)) is a number 
taking all values between 0 and 1(both 
exclusive, under a personalistic interpretation 
of probability).








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4. Interpretations of Probability. 
• Relative Frequency: An objectivistic view according to 

which probability is the limit of the ratio of number of 
times that (X1 = x1) will occur when the number of 
possible occurrences of (X1 = 1) or (X1 = 0) is infinite, 
under almost identical circumstances of occurrence.

• Under this interpretation, , H, and τ,do not matter so 
that 

P (X1 = x1; H(τ)) = P(X1 = x1),

and P(X1 = x1) can be assessed only under repeated 
observation of the event; this view demands hard 
data on (X1 = x1); furthermore, P(X1 = x1) is unique.




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• The relative frequency notion of probability 
underlies the frequentist (or sample theoretic) 
approach to statistical inference with its long run 
behavior notions of unbiased estimation, Type I & 
II Errors, Significance Tests, Minimum Variance, 
Maximum Likelihood, Confidence Limits, Chi-
Square and t-Tests, etc. 

• This is the approach advocated by Fisher and by 
Neyman (though unlike Lehman, Neyman was 
not hostile to the Bayesian argument).

• Bayesian statistical inference rejects the above 
notions as being irrelvant. 
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• Personalistic Interpretation: P (X1 = x1; H(τ))

is the amount is prepared to stake, at time τ, in 
exchange for 1 unit, should (X1 = x1) occur, in a 2-
sided bet. If X1 = x1 does not occur (in the future), 

loses the amount staked. This interpretation 
assumes a linear utility, (risk aversion) by .

• Here probability is a gamble, and the 2-sided bet 
ensures that ’s declared probability is a 
reflection of his(her) true uncertainty. That is, the 
2-sided bet ensures honesty, because:




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• In a 2-sided bet, if stakes p1 for the future 
occurrence of (X1 = x1), then should also be 
prepared to stake (1 – p1) for (X1 = x1) not 
occurring, and ’s boss gets to choose the side of 
the bet.

• Under the personalistic (or subjective) 
interpretation, probability is not unique, it is 
dynamic with τ, and cannot take the values 0 and 
1, i.e. 0 < p1 < 1.

• The role played by utility in a 2-sided bet leads 
one to the claim that personal probability cannot 
be separated from   ‘s utility.
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5. The Rules (or Axioms) of Probability.

• Irrespective of how one interprets probability, 
the following rules are adhered to. 

• The rules tell us how to combine several 
uncertainties  (i.e. how the uncertainties 
cohere).

• Consider two uncertain events at time τ, say 
(X1 = x1) and (X2 = x2), xi = 1 or 0, i = 1, 2, and 
an individual with history H(τ). Then:
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• i) Convexity:

P (Xi = xi; H(τ)) = pi, 

with 0 < pi < 1.

• ii) Addition:

P (X1 = x1 or X2 = x2; H(τ)) = p1 + p2

but only when X1 = x1 and X2 = x2 are    
mutually exclusive.








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• iii) Multiplication:

P (X1 = x1 and X2 = x2; H(τ))

= P (X1 = x1 | X2 = x2; H(τ))·P (X2 = x2; H(τ)).

• The middle term is called the conditional
probability of the event (X1 = x1) supposing 
that (X2 = x2) were to be true. 

• It is very important to note that conditional 
probabilities are in the subjunctive mood.












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6. Operationalizing Conditional Probability.

• In the relative frequency theory, conditional 
probability is a definition; it is the ratio of two 
probabilities. Thus

,
)(

) and (
)|(

22

2211
2211

xXP

xXxXP
xXxXP






• if P(X2 = x2) ≠ 0. 
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• In the personalistic theory, if:

P (X1 = x1 | X2 = x2; H(τ)) = π, say, 0 < π < 1, 

then π is the amount staked by    at time τ, in the 
light of H(τ), on event (X1 = x1) in a 2- sided bet, 
but under the stipulation that the bet will be 
settled only if (X2 = x2) turns out to be true. 

• All bets are off if (X2 = x2) does not turn out to be 
true.

• Note that at time τ, the disposition of both X1 and 
X2 is not known to    . Thus it is the subjunctive 
mood that is germane to conditional probability.




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• Important Convention:

• All quantities known to     at time τ with 
certainty, are written after the semi-colon; e.g. 
H(τ). All quantities unknown to     at time τ, 
but conjectured by at τ, like (X2 = x2) are 
written after the vertical slash. Thus we have:

𝑃τ (X1 = x1| X2 = x2; H(τ)).
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7. Independence, Dependence, 
& Causality.

• (X1 = x1) and (X2 = x2) are said to be independent
events if 

P (X1 = x1 | X2 = x2; H(τ)) = P (X1 = x1; H(τ)),

for all values x1, x2 ; or else, they are dependent.

• Thus independence means that your disposition to bet 
on say (X1 = x1) will not change under the (supposed) 
added knowledge of the disposition of (X2 = x2).

• Consequently, mutually exclusive events are 
necessarily dependent.








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• Since (X1 = x1) independent of (X2 = x2) implies 
that (X2 = x2) is independent of (X1 = x1), and 
(X1 = x1) dependent of (X2 = x2) implies that 
(X2 = x2) is dependent of (X1 = x1), the notion of 
dependence does not encapsulate causality.

• The notion of causality involves a time ordering in 
the occurrence of (X1 = x1) and (X2 = x2), if any, 
whereas the notions of independence and 
dependence refer to the disposition of ‘s mind
towards bets on (X1 = x1) and (X2 = x2) at time τ, 
irrespective of how and when X1 and X2 reveal 
themselves.
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• To summarize, (X1 = x1) dependent of (X2 = x2)
does not imply that (X2 = x2) causes (X1 = x1)
or that it does not cause (X1 = x1).

• Note: The notions of independence and 
dependence reflect the judgment of at τ.

• Whereas a causal relationship between the 
two events in question may lead to the 
judgment of dependence, an absence of 
causality between two events does not
necessarily imply independence of the events. 
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8. Generalizing the Rules of 
Probability.

• For convenience, we skip writing , τ, and 
H(τ) but recognize their presence (in the 
personalistic context).

• Then for k uncertain events (X1 = x1), … ,      
(Xk = xk),
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• i)  P(X1 = x1 or X2 = x2 or … or Xk = xk)

if all the k events are mutually exclusive, and 

• ii) P(X1 = x1 and X2 = x2 and … and Xk = xk)

= P(X1 = x1 | X2 = x2 and … and Xk = xk)

·P(X2 = x2 | X3 = x3 and … and Xk = xk) ·…·

·P(Xk-1 = xk-1 | Xk = xk) · P(Xk = xk)

if all the k events are judged independent.

,)(
1





k

i

ii xXP

,)(
1





k

i

ii xXP
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• If the events (X1 = x1) and (X2 = x2) are not mutually 
exclusive, then i) above leads us to the result that 

P(X1 = x1 or X2 = x2)

= P(X1 = x1) + P(X2 = x2) – P(X1 = x1 and X2 = x2)

= P(X1 = x1) + P(X2 = x2) – P(X1 = x1|X2 = x2)·P(X2 = x2)

= P(X1 = x1) + P(X2 = x2) – P(X1 = x1)·P(X2 = x2),

if X1 and X2 also happen to be independent (in addition 
to being not mutually exclusive).
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9. Why these Rules?

• There are two arguments, one pragmatic, the 
other mathematical/logical, which lead to the 
conclusion that not following these rules leads 

to incoherence (i.e. a sure loss no matter 

what the outcome; e.g heads I win, tails you 
lose).
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• i) The first argument is based on scoring rules
and is due to de Finetti and generalized by 
Lindley.

• ii) The second argument is based on certain 
axioms of “rational behavior”, called 
behavioristic axioms, and is due to Ramsey 
and Savage.
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• To Kolmogorov, the axioms of probability are a 
given (like commandments) and are the starting 
point for the theory of probability.

• Cardano – the Italian polymath – discovered the 
rules (axioms) of probability as a way to gamble 
without a sure loss.

• Some psychologists, like Khaneman and Tversky, 
and some economists like Allais and Ellsberg, 
claim individuals do not like to be scored, nor do 
they behave according to the axioms of rational 
behavior, and thus cast pallor on the axioms of 
probability.
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• The above argument has opened the door to 
alternatives to probability, like possibility
theory, upper and lower probabilities, and 
fuzzy logic.

• Lindley and Savage have rejected such 
alternatives to probability on grounds that the 
behavioristic axioms underlying the axioms of 
probability are normative. They prescribe 
rational behavior, just like how the Paeno
Axioms prescribe the rules of arithmetic.
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10. Extending the Rules of Probability.
• Some simple manipulations of the convexity, the 

addition, and the multiplication rules enable us to 
derive two new and very important consequences of 
the above rules. These are:

• i) The Law of Total Probability (or Extension of 
Conversation) – due to La Place: 

• Here, assessing the uncertainty about (X1 = x1) is 
facilitated by contemplating the dispositions of X2.

)1()1|(                     

)0()0|()(

2211
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• ii) Bayes’ Law (or the Law of Inverse 
Probability) – due to Bayes and La Place:

(by the Law of Total Probability), so that

)(
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•

since the role of the denominator is to simply ensure 
that the left hand side is a probability.

• Note: Bayes’ Law being a part of the theory of 
probability, only deals with uncertain events, or 
contemplated conditioning events.

• Observe the inversion of arguments in the posterior 
and the conditional probabilities.

)()|()|( 1111222211 xXPxXxXPxXxXP 

Posterior Probability

Conditional Probability

Prior Probability
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11. Bayes’ Law and Observed Data –
Notion of Likelihood.

• Recall, Bayes’ Law:

• Suppose now that (X2 = x2) has actually been
observed by , i.e. it is no more contemplated.

• Then, the left hand side should be written as 
P(X1 = x1; X2 = x2) because now (X2 = x2) has 
become a part of ’s history at τ, namely H(τ).

).()|()|( 1111222211 xXPxXxXPxXxXP 

6/28/2016 Master Slides



• The term P(X2 = x2 | X1 = x1) is no more a 
probability – because probability is germane 
only for the unknowns. 

• The above expression is therefore written as 
L(X1 = x1; X2 = x2), and it is now called the 
likelihood of (X1 = x1), in the light of the 
actually observed (X2 = x2).
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12. More on the Likelihood.

• It is not a probability and therefore need not 
obey the rules of probability.

• It is a relative weight which assigns to the 
unknown events (X1 = 1) and (X1 = 0) in the light 
of the observed (X2 = x2).

• It is generally assigned by , upon flipping the 
arguments in P(X2 = x2 | X1 = x1). Thus the often 
expressed view that the likelihood is a probability.
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13. Bayes’ Law with Likelihood.

•

• This law prescribes a mathematical process by 
which changes his(her) mind in the light of 
new information (data).

• However, in doing so we encounter caveats.
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14. What is a Probability Model?

• Where do specifications such as the Bernoulli, the 
exponential, the Weibull, the Gaussian, the bivariate 
exponential, etc. come from?

• Consider P(X1 = x1), and invoke the law of total 
probability by extending the conversation to some 
unknown (perhaps unobservable) quantity, say θ, 
where 0 < θ < 1. Then

•

replacing the summation by the integral, since θ is   
assumed continuous.

 

1

0

1111 d)()|()(  PxXPxXP
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• P(X1 = x1|θ) is called a probability model for X1;

• if P(X1 = 1|θ) = θ P(X1 = 0|θ) = 1 – θ, then the 
probability  model is called a Bernoulli Model.

• Thus to summarize, under a Bernoulli Model



 

1

0

11 d))(;())(;|1())(;1(   HHH PXPXP

Predictive
of X

Prior on θ

.d))(;(

1

0

    HP
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• The essence of the above is that under a 
Bernoulli Model, were we to know θ, then 
P(X1 = 1|θ) = θ, but since we know θ only 
probabilistically, we average over all the values 
of θ to obtain P(X1 = 1), which is now devoid 
of θ.
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15. Meaning of θ: To…

• de Finetti– θ is just a Greek symbol which 
makes (X1 = 1) independent of H(τ).

• Popper - θ is a chance or a propensity (i.e. a 
tendency for X1 = 1).

• For induction under the Bernoulli model go to 
slide 54.

• For hypotheses testing go to slide 66.  
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16. The Exponential & Weibull Models.

• Let T denote an unknown (at time τ) time to 
failure of a structure, with T taking a value t, for 
some t ≥ 0.

• Let H(τ) denote the background knowledge 
possessed by about the structure at τ.

• needs to assess the survivability of T, for a 
mission time, t* > 0. Thus, we need 

by extending the conversation to λ > 0.





0

** d))(;())(;|())(;(   HHH PtTPtTP
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• Suppose that chooses an exponential distribution
as a probability model for T. Then for ,

•

and now

)exp())(;|( ** ttTP   H

.d))(;(e))(;(
0

* *




    HH PtTP t

Predictive
of T

Exponential
Failure Model

Prior 
on λ
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• If     prefers to choose a Weibull with shape 
β > 0 and scale 1 as a probability model for T, 
then

• In either case, the predictive distribution 
entails integration for which either numerical 
methods or MCMC is of use.

.d))(;(e))(;(
0

)(* *




    

HH PtTP t

Predictive
of T

Weibull
Failure Model

Prior 
on β
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17. Choice of a Prior on Chance 
(Propensity) θ.

• The simplest possibility is a uniform on (0, 1); 
that is

• If the propensity of (X1 = 1) is higher than that 
of (X1 = 0), a beta with parameters (a, b)

makes sense:

•

.10    ,1))(;(   HP

,)1(
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•

• As a gets bigger than b, the mode shifts to the 
right and vice-versa.

),;( baP 

0 1

1  ,2  ba


3
2

a = b = 1
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18. Model & Predictive Failure Rates.

• Consider the exponential failure model

• Then it can be seen that the conditional
probability

).exp()|( ** ttTP  
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Rate of T
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• The quantity 

is called the predictive failure rate of T.
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19. Prior on Exponential Model 
Failure Rate λ.

• Since λ > 0, a meaningful prior on λ is a 
gamma distribution with parameters (scale) c
and (shape) d; that is

• .
)!1(

)(e
),;())(;(
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• The mean time to failure is 1/λ, denoted 
MTTF.

• Note: MTTF = (Model Failure Rate)-1

but only for the exponential failure model.
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20. Model Failure Rate of the Weibull 
Failure Model.

• When 

is the model failure rate.

,e)|( )-(* * 

 ttTP 

1***** )(),|d(   ttTttTtP
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• Depending on the choice of β it encapsulates 
aging (β > 1), non-aging (β = 1), or things like 
improvement with age (β < 1) – work hardening.

• Since β > 0, the gamma distribution would be a 
suitable prior for β.

1*)(  t

0
*t

β > 2
β = 2

β = 1

β < 1

6/28/2016 Master Slides



21.  Predictive Probabilities Under Bernoulli Models.

• Let (Xi = 1) if the i-th unit survives to some 
time t*, i = 1, 2; (Xi = 0) otherwise.

• Let H(τ) be the background information of    at 
time τ > 0, τ < t*.

• What are P (Xi = 1; H(τ)), and 

P (X1 = 1 and X2 = 1; H(τ))?






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• Focus on i = 1, and ignoring    and τ, consider 
P(X1 = 1; H(τ))

• Now consider P(X1 = 1 and X2 = 1; H(τ))
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• Similarly, P (X1 = 1 and X2 = 0; H(τ)), when a = 
b = 1 is 

• Observe that 

P (X1 = 1; H(τ)) > P (X1 = 1 and X2 = 1; H(τ))

> P (X1 = 1 and X2 = 0; H(τ)) 

= P (X2 = 1, X1 = 0; H(τ)). 

• Thus P (X1 = 0 and X2 = 0) = 





 
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Inductive Prediction Under Bernoulli 
Models.

• The scenario of predicting X2 = 1, when we 
know for sure that X1 = 1 – at time τ – that is 
the case of induction, involves some subtle, if 
not tricky, arguments.

• We need to assess P (X2 = 1; X1 = 1, H(τ)). 

• We start by ignoring the fact that X1 = 1 is 
known, and suppressing     and H(τ), consider 
the proposition:




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•

• But by Bayes’ Law,

since (X1 = 1) is actually observed.

 
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• Suppose that we choose L(θ; X1 = 1) = θ, and         
set a = b = 1; then

• where c is a constant.

• To find the constant of proportionality c, we 
integrate

• Thus 

,)1;( 1  cXP 

.2d1d)1;(

1

0

1

0

1   ccXP 

).1,2(~2)1;( 1  baBetaXP 
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• Thus to summarize,

• Consequently, 

• The ability to do integrations is crucial. Thus a 
need for MCMC methods.

• Go to slide 66 for hypotheses testing.
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23. Markov Chain Monté Carlo 
– The Gibbs Sampler.

• There are several MCMC methods, one of 
which is the Metropolis-Hastings Algorithm, a 
special case of which is the Gibbs-Sampler.

• Gibbs sampling is a technique for generating 
random variables from a distribution without
knowing its density.
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• Suppose there exists a joint density f(x,y), and 
we are interested in knowing characteristics of 
the marginal

• Then Gibbs sampling enables us to obtain a 
sample from f(x) without requiring an explicit 
specification of f(x), but requiring a 
specification of f(x|y) and f(y|x).

.),()( 
y

dyyxfxf
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• The technique proceeds as follows:

i) Choose , and generate     from 

ii) Now generate from 

iii) Next generate from 

iv) Repeat steps ii) and iii) k times to obtain 

the Gibbs Sequence.

• Result: When k is large, the distribution of      
is is a sample point from f(x). This 
result is from the theory of Markov Chains.
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• To get a sample of size m from f(x), repeat 
steps i) through iv) m times using m different 
starting values  

• The Hammersley-Clifford theorem asserts 
that a knowledge of the conditionals asserts a 
knowledge of the joint.
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24. Gibbs Sampling Under a Bernoulli.

• Recall the scenario of a Bernoulli(θ)
probability model with a uniform distribution 
for θ. The predictive distribution is:

if you have forgotten your integration.

• Using Bayes’ Law, we have seen that
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• Thus knowing                          and                          
we can generate for some large k a Gibbs 
Sequence

and thence a sample of size m,                  
from which                          can be obtained as

  )|1( 1XP ,2)1|( 1  XP

),,(),...,,(),,( 111

1

1

1

1

0

1

0 kkXXX 

),,...,,( 21 m

kkk XXX

))(;1( 1 HXP

.
1


m

i

k mX

6/28/2016 Master Slides



25. Application: Gibbs Sampling from 
an Exponential.

• Recall the scenario of an exponential(λ) failure 
(probability) model with a gamma (scale c, 
shape d) distribution for λ. The predictive is

• Using Bayes’ Law, it can be shown that P(λ|t)

is also a gamma (scale c + t, shape d + 1).
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• Thus, knowing                        and               we 
can generate, for some large k (= 1000, say) a 
Gibbs Sequence                                      and 
thence a sample of size m,                    from 
which                        can be obtained as
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BAYESIAN HYPOTHESIS TESTING
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Bayesian Hypothesis Testing

• The testing of hypothesis is done to support a 
theory or a claim in the light of available 
evidence.

• It is useful in astronomy, particle physics, 
forensic science, drug testing, intelligence, 
medical diagnosis, and acceptance sampling in 
quality control and reliability.
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A Simple Architecture

• Let X be an unknown quantity

• Let 𝑃(𝑋|𝜃) be a probability model for X, 
where 𝜃 is a parameter.

• Suppose that 𝜃 can take only two values, 𝜃 =
𝜃0 or 𝜃 = 𝜃1 (the case of a simple versus a 
simple hypothesis).

• Let P 𝜃 = 𝜃0 = Π0 ⇒ 𝑃 𝜃 = 𝜃1 = Π1 =
1 − Π0
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A Simple Architecture (continued)

• Suppose that X has revealed itself as x.
• Can we now say conclusively and emphatically, that  

(H0 –the null hypothesis) or (H1 –the alternate
hypothesis) is true?

• Very rarely a yes, but most often a no.
• The Bayesian paradigm does not permit an acceptance 

or rejection of a hypothesis (without an involvement of 
the underlying utilities).

• All that one can do under the Bayesian paradigm claim 
that a knowledge of x enhances our opinion of either 
H0 or of H1 .
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A Simple Architecture (continued)

• The quantity Π0/Π1 is termed (our) prior odds 
on H0 against H1.

•
Π0

Π1
= 1 ⇒ H0 and H1 are equally likely true, a 

priori, and in our opinion.

•
Π0

Π1
> 1 ⇒ H0 is (a priori) more likely to be true 

than H1, in our opinion.
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How Should Evidence x be Incorporated?

• By Bayes’ Law
𝑃0 ≝ 𝑃 𝜃0; 𝑥, 𝐻 ∝ 𝐿 𝜃0; 𝑥 Π0

the posterior of 𝜃0 under x and
𝑃1 ≝ 𝑃 𝜃1; 𝑥, 𝐻 ∝ 𝐿 𝜃1; 𝑥 Π1

• Let 
𝑃0

𝑃1
= 𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 𝒐𝒅𝒅𝒔 on H0 against H1

• Then 
𝑃0

𝑃1
=

L 𝜃0;𝑥

𝐿 𝜃1;𝑥
·
Π0

Π1
, by simple algebra.

• Thus 
Posterior Odds = Ratio of Likelihood · Prior Odds.
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• The ratio of likelihoods is called the Bayes’ Factor 
B in favor of H0 against H1.

• Thus Posterior Odds = (Bayes Factor).
(Prior Odds).

• Equivalently, Bayes’ Factor B = 
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑂𝑑𝑑𝑠

𝑃𝑟𝑖𝑜𝑟 𝑂𝑑𝑑𝑠

• The logarithm of B is called the Weight of 
Evidence.

6/28/2016 Master Slides



6/28/2016 Master Slides


