Statistical Analysis of Nucleon-Nucleon interactions

INT Program

Bayesian Methods in Nuclear Physics

<u>Rodrigo Navarro Perez</u> (LLNL) Jose Enrique Amaro (UGR) Enrique Ruiz Arriola (UGR)

> Lawrence Livermore National Laboratory

June 22, 2016 Seattle, WA

LLNL-PRES-695520

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Four fundamental interactions

		Intensity	Range	Exchange
Gravitational		6 x 10 ⁻³⁹	Infinite	Gravitons?
Electromagnetic	\sum_{γ}	1/137	Infinite	photons
Weak		10-6	10⁻ ⁸ m	W⁺, W⁻, Z
Strong	$\rightarrow -\pi - \langle $	1	10 ⁻¹⁵ m	gluons, π

Strong interaction has the largest intensity but a very short range.

Scales

- Atomic scale
 - 1 Angstrom = 10^{-10} m
 - Bohr radius = 0.529 Å
 - Phosphorus atom ~ 1 Å
- Nuclear scale
 - 1 Fermi = 10⁻¹⁵ m
 - Proton radius ~ 0.85 fm
 - Inter-nucleon distance ~ 2 fm
 - Gold nucleus ~ 8.45 fm

How to determine the interactions? "Easy" for infinite range

- Coulomb (1785)
 - "Premier mémoire sur l'electrcité et le magnetisme"

- Cavendish (1798)
 - "Experiment to determine the density of the earth"
- Newton (1687)
 - " Philosophiæ Naturalis Principia Mathematica"

How to determine the interactions? "Not so easy" for the short range

- Scattering experiments
 - Over 20 different observables for energy and angle

Quantum chromodynamics (QCD)

Scattering experiments

- Study of the interaction between nucleons for over 60 years
- More than 7800 scattering data since the 1950's
- Several phenomenological models

The distribution of the data is relevant

Yukawa potential (1935)

- Exchange of a scalar field with mass
- pion-nucleon coupling constant
- Good description for large distance

Is there a signal for charge dependence?

Phenomenological potentials

- One big family of models
- Hamada-Johnston, Yale, Paris, Bonn, Nijmegen, Reid, Argonne, Granada, ...
- χ²/N ~ 1 in 1993
- One pion exchange for long range part
- ~ 40 parameters for short and intermediate range
- Different results in nuclear structure calculations

Statistical and Systematic error estimates are recent or missing.

Sources of uncertainty

- Numerical (Implementation)
 - Inexact solution method
 - Inherent to any numerical calculation
- Systematic (Model dependence)
 - Any model makes assumptions
 - Different representations for the NN interaction
- Statistical (Fitting bias)
 - Statistical fluctuations in any measurement
 - Uncertainty in data \rightarrow Uncertainty in parameters

Assuming independence among them $(\Delta F)^2 = (\Delta F^{\text{num}})^2 + (\Delta F^{\text{sys}})^2 + (\Delta F^{\text{stat}})^2$

Anatomy of phenomenological models

fitted to the Granada database

Short and Intermediate range

- Delta Shells
 - Coarse grained
 - Simplified calculations
 - High momentum components
- Sum of Gaussian functions
 - Smooth and soft
 - Nuclear structure calculations
 - Not as fast

Long range

- Electromagnetic contributions
 - Small but crucial
- One pion exchange
 Proper analytic behavior
- Optional
 - Two pion exchange
 - Δ degree of freedom
 - Born approximation

Six different phenomenological models

Granada database

Search	fill 💽 9:29
Search NN provider Start	
Channel: pp 💽	
Observable: all	
Energy (MeV): 0 < E < 350	
Write to file: ppdata.txt	
Output format: separate data	
Order by: energy	
Minclude star (*) data	
Minclude excluded data	

- NN scattering data from 1950 to 2013
 - http://nn-online.org/
 - http://gwdac.phys.gwu.edu/
 - NN Provider for Android
 - Google play store

[Amaro, RNP, Ruiz-Arriola]

- http://www.ugr.es/~amaro/nndatabase/
- 2868 pp and 4991 np data

Fitting NN scattering observables Selection of data

- Direct fits to all data NEVER give χ^2 /d.o.f. ≈ 1
 - Restrictive model ? → Improve model
 - − Mutually incompatible data → Reject incompatible data
- np $d\sigma/d\Omega$ at 162 MeV
- Statistical and systematic errors may be over or underestimated
- 3σ criterion
 - Fit all data (χ²/d.o.f. > 1)
 - Remove sets with improbably high or low χ²
 - Refit parameters

Fitting NN scattering observables Recovering data

- Mutually incompatible data
 - Which experiment is correct?
 - Is any of the two correct?
 - Maximization of experimental consensus
- Exclude data sets inconsistent with the rest of the database
 - Fit to all data (χ^2 /d.o.f. > 1)
 - Remove data sets with improbably high or low χ^2 (3 σ criterion)
 - Refit parameters
 - Re-apply 3σ criterion to all data

🍇 13

Fitting NN scattering observables Recovering data

300 recovered data with Granada procedure (consistent database)

Comparing with other models and experimental data

 χ^2 /d.o.f. = 1.06 with N = 2747 |_{pp} + 3691 |_{np}

[RNP, Amaro & Ruiz-Arriola. Phys.Rev.C88 (2013) 024002]

Different models fitted to the same database

Potential	T _{LAB}	N _{Data}	N _{parameters}	χ²/d.o.f.
DS - OPE	350	6713	46	1.05
DS - χTPE	350	6712	33	1.08
DS - ΔBorn	350	6719	31	1.06
Gauss - OPE	350	6712	42	1.07
Gauss - χTPE	350	6712	31	1.09
Gauss - ΔBorn	350	6712	30	1.14
				N: 4440 0007 0]

[RNP, Amaro & Ruiz Arriola. ArXiv:1410.8097v3]

Predictions are different Source of *systematic* uncertainties

Testing the normality of residuals

- Experiments by counting events → Poissonian statistics
- Large number of events \rightarrow Normal statistics
- Crucial assumption

$$R_{i} = \frac{O_{i}^{\exp} - O_{i}^{theor}(p_{1}, p_{2}, \dots, p_{P})}{\Delta O_{i}^{\exp}}$$

follows the standard normal distribution

- $\chi^2/d.o.f. = 1 \pm (2/d.o.f.)^{1/2}$
- Can be different from N(0,1), but it has to be known

Can only be checked a posteriori

Testing the normality of residuals

- Empirical distribution P_{emp}
- Normal distribution N(0,1)
- Finite size fluctuations
- Discrepancies between P_{emp} and N(0,1)
- How large is too large?
- Normality tests
 - Quantifying discrepancies
 - Test statistic T
 - Critical values

Tail Sensitive test

- Quantitative test with a graphical representation Aldor-Noiman et al. The American Statistician, 67(4):249–260, 2013.
- Quantile-Quantile plot
 - Theoretical quantiles

$$\frac{i}{N+1} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x_i^{m}} e^{-\frac{t^2}{2}} dt$$

Empirical Quantiles

$$x_1^{emp} < x_2^{emp} < \ldots < x_N^{emp}$$

- Mapping (x_i^{th}, x_i^{emp})
- $\operatorname{Lim}_{N \to \infty} (x_i^{\operatorname{emp}} x_i^{\operatorname{th}}) = 0$
- Confidence bands
 - Recipe and tables available at
 - J. Phys. G: Nucl. Part. Phys. 42 (2015) 034013

Testing the normality of residuals

Six statistically equivalent representations of the NN interaction Their discrepancies won't come from the data

Determining f_{π}

Bethe in 1940 from Deuteron properties

 $- f_{\pi}^{2} = 0.077 - 0.080$

$$V_{\pi}(r) = -f_{\pi}^2 \frac{e^{-m_{\pi}r}}{r}$$

- Different processes (NN, πN)
- Different values and precision

PION-NUCLEON COUPLING CONSTANT UNTIL 1980 PION-NUCLEON COUPLING CONSTANT AFTER 1980

M.E. Sainio arXiv:hep-ph/9912337 (1999)

Determining f_{π}

- In 1997 the Nijmegen group recommends
 - charge independent f²=0.075

"The present accuracies in the determination of the various coupling constants are such, that with a little improvement in the data and in the analyses these charge-independence breaking effects could be checked"

Determining f_{π}

Looking for signals of charge dependence

f _p ²	f ₀ ²	f _c ²	N _{parameters}	χ²/d.o.f.
0.075	idem	idem	46	1.051
0.0761(3)	idem	idem	46+1	1.051
0.0759(4)	0.079(1)	0.0763(6)	46+3	1.043
0.0758(4)	0.080(2)	0.0765(6)	46+3+9	1.036

[RNP, Amaro & Ruiz Arriola. ArXiv:1606.00592v1]

f_0^2 is incompatible with f_p^2 and f_c^2 at the 1σ level

Systematic vs. statistical uncertainties

- Same data
- Different representations
- Different predictions
- Who dominates the uncertainty?

NN Systematic Uncertainty

- Data is unevenly distributed on the $(T_{LAB}, \theta_{c.m.})$
- Same description in probed regions
- Incompatible predictions in unexplored areas
- A uniform experimental exploration is necessary but unlikely

Reproducing NN uncertainties from NN data

- Propagation with covariance matrix
 - Requires to calculate derivatives
- Monte-Carlo family of potentials
- Bootstrap the data
 - Simulate data ~ $N(O_i, \sigma_i)$
 - Refit parameters
- Replicate parameters correlations
 - Simulate parameters
 - Faster, but real distribution may differ

Reproducing NN uncertainties from NN data

LLNL-PRES-695520

Triton Binding Energy

Hyperspherical Adiabatic Expansion Method

- Monte-Carlo simulation of N = 250 potentials
- Error estimates in nuclear structure calculations
- $\Delta B_t^{\text{stat}} = 15(1) \text{ KeV}, \Delta B_t^{\text{num}} = 1 \text{ KeV}$

[RNP, Garrido, Amaro & Ruiz-Arriola. Phys.Rev.C99 (2014) 047001]

- N ~ 30 gives a fairly good estimate
- Reduction of target accuracy is possible
- ΔB_t^{sys} is even larger

³H and ⁴He Binding Energy

No Core Full Configuration Method

- Sum of Gaussians potential
- 33 Monte-Carlo potentials
- $\Delta(^{3}H)_{t}^{\text{stat}} = 15 \text{ KeV}, \Delta(^{4}He)_{t}^{\text{stat}} = 55 \text{ KeV}$

[RNP, Amaro, Ruiz-Arriola, Maris & Vary. Phys.Rev.C92 (2015) 064003]

Tjon Line correlation

Empirical correlation between binding energy calculations

Similarity Renormalization Group: $B_a = 4B_t + 3B_d$

[Ruiz-Arriola, Szpiegel & Timoteo. Few Body Syst. 55 (2014) 971-975]

Tjon Line Correlation

Numerical accuracy.

•
$$\Delta({}^{3}H)_{t}^{\text{num}} = 1 \text{ KeV}, \Delta({}^{4}He)_{t}^{\text{num}} = 20 \text{ KeV}$$

4-Body forces are masked by the numerical noise in 3 and 4 body calculations

Summary

- Nucleon Nucleon interaction
 - Over 8000 scattering data
 - Phenomenological models, least squares fit
 - Selection of data is relevant
- Statistical uncertainties
 - Normality of residuals has to be checked
 - Enough signal to determine charge dependence in f_{π}^{2}
- Systematic uncertainties
 - Dominate statistical ones
- Propagation into nuclear structure
 - Enough precision to see four body force?

