Statistical Analysis of Nucleon-Nucleon interactions

INT Program

Bayesian Methods in Nuclear Physics

Rodrigo Navarro Perez (LLNL) Jose Enrique Amaro (UGR) Enrique Ruiz Arriola (UGR)

June 22, 2016 Seattle, WA

LLNL-PRES-695520

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Four fundamental interactions

Strong interaction has the largest intensity but a very short range.

Scales

- Atomic scale
	- $-$ 1 Angstrom = 10^{-10} m
	- $-$ Bohr radius = 0.529 Å
	- Phosphorus atom ~ 1 Å
- **Nuclear scale**
	- -1 Fermi = 10^{-15} m
	- $-$ Proton radius \sim 0.85 fm
	- $-$ Inter-nucleon distance \sim 2 fm
	- $-$ Gold nucleus \sim 8.45 fm

How to determine the interactions? "Easy" for infinite range

- Coulomb (1785)
	- "Premier mémoire sur l'electrcité et le magnetisme"

- Cavendish (1798)
	- "Experiment to determine the density of the earth"
- Newton (1687)
	- " Philosophiæ Naturalis Principia Mathematica"

How to determine the interactions? "Not so easy" for the short range

- **Scattering experiments**
	- Over 20 different observables for energy and angle

Quantum chromodynamics (QCD)

Scattering experiments

- Study of the interaction between nucleons for over 60 years
- **More than 7800 scattering data since the 1950's**
- **Several phenomenological models**

The distribution of the data is relevant

Yukawa potential (1935)

- Exchange of a scalar field with mass
- **pion-nucleon coupling constant**
- Good description for large distance

Is there a signal for charge dependence?

Phenomenological potentials

- **One big family of models**
- Hamada-Johnston, Yale, Paris, Bonn, Nijmegen, Reid, Argonne, Granada, …
- $\sqrt{2/N} \sim 1$ in 1993
- **One pion exchange for long range part**
- \blacksquare ~ 40 parameters for short and intermediate range
- Different results in nuclear structure calculations

Statistical and Systematic error estimates are recent or missing.

Sources of uncertainty

- Numerical (Implementation)
	- Inexact solution method
	- Inherent to any numerical calculation
- Systematic (Model dependence)
	- Any model makes assumptions
	- Different representations for the NN interaction
- **Statistical (Fitting bias)**
	- Statistical fluctuations in any measurement
	- Uncertainty in data \rightarrow Uncertainty in parameters

Assuming independence among them $(\Delta F)^2 = (\Delta F \text{ num})^2 + (\Delta F \text{ sys})^2 + (\Delta F \text{ stat})^2$

Anatomy of phenomenological models

fitted to the Granada database

Short and Intermediate range

- Delta Shells
	- Coarse grained
	- Simplified calculations
	- High momentum components
- **Sum of Gaussian functions**
	- Smooth and sof
	- Nuclear structure calculations
	- Not as fast

Long range

- **Electromagnetic contributions**
	- Small but crucial
- **One pion exchange** – Proper analytic behavior
- **Optional**
	- Two pion exchange
	- Δ degree of freedom
		- Born approximation

Six different phenomenological models

Granada database

- **NN scattering data from 1950 to 2013**
	- <http://nn-online.org/>
	- <http://gwdac.phys.gwu.edu/>
	- NN Provider for Android
		- Google play store

[Amaro, RNP, Ruiz-Arriola]

- <http://www.ugr.es/~amaro/nndatabase/>
- 2868 pp and 4991 np data

Fitting NN scattering observables Selection of data

- Direct fits to all data NEVER give χ^2 /d.o.f. ≈ 1
	- Restrictive model ? → Improve model
	- Mutually incompatible data \rightarrow Reject incompatible data
- np *dσ/dΩ* at 162 MeV
- Statistical and systematic errors may be over or underestimated
- 3*σ* criterion
	- Fit all data (*χ* 2 */*d.o.f. > 1)
	- Remove sets with improbably high or low χ^2
	- Refit parameters

Fitting NN scattering observables Recovering data

- **Mutually incompatible data**
	- Which experiment is correct?
	- Is any of the two correct?
	- Maximization of experimental consensus
- Exclude data sets inconsistent with the rest of the database
	- Fit to all data (*χ* 2 */*d.o.f. > 1)
	- Remove data sets with improbably high or low *χ* 2 (3*σ* criterion)
	- Refit parameters

LLNL-PRES-695520

nce Livermore National Laboratory

– Re-apply 3*σ* criterion to all data

Fitting NN scattering observables Recovering data

Usual Nijmegen 3*σ* criterion (1677 rejected data)

300 recovered data with Granada procedure (consistent database)

Comparing with other models and experimental data

*χ*²/d.o.f. = 1.06 with *N* = 2747 | _{pp} + 3691 | _{np}

[RNP, Amaro & Ruiz-Arriola. Phys.Rev.C88 (2013) 024002]

Different models fitted to the *same* database

[RNP, Amaro & Ruiz Arriola. ArXiv:1410.8097v3]

Predictions are different Source of *systematic* uncertainties

Testing the normality of residuals

- Experiments by counting events \rightarrow Poissonian statistics
- **Large number of events** \rightarrow **Normal statistics**
- **Crucial assumption**

$$
R_i = \frac{O_i^{\exp} - O_i^{theor} (p_1, p_2, \dots p_p)}{\Delta O_i^{\exp}}
$$

follows the standard normal distribution

- γ^2 /d.o.f. = 1 ± (2/d.o.f.)^{1/2}
- Can be different from *N*(0,1), but it has to be known

Can only be checked *a posteriori*

Testing the normality of residuals

- Empirical distribution P_{emo}
- Normal distribution N(0,1)
- Finite size fluctuations
- Discrepancies between P_{emp} and *N*(0,1)
- **How large is too large?**
- **Normality tests**

LLNL-PRES-695520

- Quantifying discrepancies
- Test statistic *T*
- Critical values

Tail Sensitive test

- Quantitative test with a graphical representation Aldor-Noiman et al. The American Statistician, 67(4):249–260, 2013.
- **Quantile-Quantile plot**
	- Theoretical quantiles

$$
\frac{i}{N+1} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x_i^h} e^{-\frac{t^2}{2}} dt
$$

– Empirical Quantiles

$$
x_1^{emp} < x_2^{emp} < \ldots < x_N^{emp}
$$

- Mapping (x_i th, x_i ^{emp})
- $-$ Lim_{N→∞} (x_i ^{emp} − x_i th) = 0
- Confidence bands
	- Recipe and tables available at
		- J. Phys. G: Nucl. Part. Phys. 42 (2015) 034013

Testing the normality of residuals

Six statistically equivalent representations of the NN interaction Their discrepancies won't come from the data

Determining f π

Bethe in 1940 from Deuteron properties

 $-$ f_{π} $2 = 0.077 - 0.080$

$$
V_{\pi}(r) = -f_{\pi}^2 \frac{e^{-m_{\pi}r}}{r}
$$

- Different processes (NN, πN)
- Different values and precision

PION-NUCLEON COUPLING CONSTANT UNTIL 1980 PION-NUCLEON COUPLING CONSTANT AFTER 1980

M.E. Sainio arXiv:hep-ph/9912337 (1999)

Determining f π

- In 1997 the Nijmegen group recommends
	- charge independent f^2 =0.075
		- "The present accuracies in the determination of the various coupling constants are such,that with a little improvement in the data and in the analyses these charge-independence breaking effects could be checked"

Looking for signals of charge dependence

[RNP, Amaro & Ruiz Arriola. ArXiv:1606.00592v1]

f°_{o} 2 is incompatible with $\mathsf{f}_{\mathsf{p}}^{}$ 2 and $\mathsf{f}_{\mathsf{c}}^{}$ 2 at the 1 σ level

Systematic vs. statistical uncertainties

- Same data
- Different representations
- Different predictions
- Who dominates the uncertainty?

NN Systematic Uncertainty

- **Data is unevenly distributed** on the $(T_{\text{LAR}}, \theta_{\text{cm}})$
- Same description in probed regions
- Incompatible predictions in unexplored areas
- **A** uniform experimental exploration is necessary but unlikely

Reproducing NN uncertainties from NN data

- **Propagation with covariance matrix**
	- Requires to calculate derivatives
- **Monte-Carlo family of potentials**
- Bootstrap the data
	- Simulate data ~ *N(O_i,σ_i)*
	- Refit parameters
- **Replicate parameters correlations**
	- Simulate parameters
	- Faster, but real distribution may differ

Reproducing NN uncertainties from NN data

Lawrence Livermore National Laboratory LLNL-PRES-695520

Triton Binding Energy

Hyperspherical Adiabatic Expansion Method

- Monte-Carlo simulation of *N* =250 potentials
- Error estimates in nuclear structure calculations
- $\Delta B_t^{\text{stat}} = 15(1) \text{ KeV}, \Delta B_t^{\text{num}} = 1 \text{ KeV}$

[RNP, Garrido, Amaro & Ruiz-Arriola. Phys.Rev.C99 (2014) 047001]

- *N ~* 30 gives a fairly good estimate
- Reduction of target accuracy is possible
- **ΔB**_t^{sys} is even larger

³H and ⁴He Binding Energy

No Core Full Configuration Method

- Sum of Gaussians potential
- 33 Monte-Carlo potentials
- Δ (3H)_{*t*}stat</sub> = 15 KeV, Δ (4He)_{*t*}stat</sub> = 55 KeV

[RNP, Amaro, Ruiz-Arriola, Maris & Vary. Phys.Rev.C92 (2015) 064003]

Tjon Line correlation

Empirical correlation between binding energy calculations

Similarity Renormalization Group: B_{α} = 4B_t +3B_d

[Ruiz-Arriola, Szpiegel & Timoteo. Few Body Syst. 55 (2014) 971-975]

Tjon Line Correlation

Numerical accuracy.

$$
\Delta(3H)_{t}^{\text{num}} = 1 \text{ KeV}, \Delta(4He)_{t}^{\text{num}} = 20 \text{ KeV}
$$

4-Body forces are masked by the numerical noise in 3 and 4 body calculations

Summary

- **Nucleon Nucleon interaction**
	- Over 8000 scattering data
	- Phenomenological models, least squares fit
	- Selection of data is relevant
- Statistical uncertainties
	- Normality of residuals has to be checked
	- $\,$ Enough signal to determine charge dependence in $\mathsf{f}_{_\mathcal{\pi}}$ 2
- **Systematic uncertainties**
	- Dominate statistical ones
- **Propagation into nuclear structure**
	- Enough precision to see four body force?

