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Four fundamental interactions

Strong interaction has the largest intensity
but a very short range.

Intensity Range Exchange

Gravitational 6 x 10-39 Infinite Gravitons?

Electromagnetic 1/137 Infinite photons

Weak 10-6 10-8 m W+, W-, Z

Strong 1 10-15 m gluons, π
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 Atomic scale
– 1 Angstrom = 10-10 m
– Bohr radius = 0.529 Å
– Phosphorus atom ~ 1 Å

 Nuclear scale
– 1 Fermi = 10-15 m
– Proton radius ~ 0.85 fm
– Inter-nucleon distance ~ 2 fm
– Gold nucleus ~ 8.45 fm

Scales
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  Coulomb (1785)
– “Premier mémoire sur 

l'electrcité et le magnetisme”

How to determine the interactions?
“Easy” for infinite range

  Cavendish (1798)
– “Experiment to determine the 

density of the earth”
 Newton (1687)

– “ Philosophiæ Naturalis Principia 
Mathematica”
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 Scattering experiments
– Over 20 different observables for energy and angle

 Phenomenological potentials
– Least squares fit

How to determine the interactions?
“Not so easy” for the short range

 Quantum chromodynamics (QCD)

χ
2
=∑

i

(E i−T i)
2

σ i
2
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Scattering experiments
 

 Study of the interaction between nucleons for over 60 years

 More than 7800 scattering data since the 1950's

 Several phenomenological models

The distribution of the data is relevant
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 Exchange of a scalar field with mass
 pion-nucleon coupling constant
 Good description for large distance

Yukawa potential (1935)
 

Is there a signal for charge dependence?

V π (r )=−f π
2 e−mπ r

r
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 One big family of models

 Hamada-Johnston, Yale, Paris, Bonn, Nijmegen, Reid, Argonne, 
Granada, … 

 χ2/N ~ 1  in 1993

 One pion exchange for long range part

 ~ 40 parameters for short and intermediate range

 Different results in nuclear structure calculations

Phenomenological potentials
 

Statistical and Systematic error estimates are recent or missing.
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 Numerical (Implementation)
– Inexact solution method

– Inherent to any numerical calculation

 Systematic (Model dependence)
– Any model makes assumptions

– Different representations for the NN interaction

 Statistical (Fitting bias)
– Statistical fluctuations in any measurement

– Uncertainty in data ➡ Uncertainty in parameters

Sources of uncertainty
 

Assuming independence among them
 (ΔF)2 = (ΔF num)2 + (ΔF sys)2  + (ΔF stat)2
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Anatomy of phenomenological models
fitted to the Granada database

Short and Intermediate range

 Delta Shells
– Coarse grained

– Simplified calculations

– High momentum components

 Sum of Gaussian functions
– Smooth and sof

– Nuclear structure calculations

– Not as fast

Long range

 Electromagnetic contributions
– Small but crucial

 One pion exchange
– Proper analytic behavior

 Optional
– Two pion exchange
– Δ degree of freedom

● Born approximation

Six different phenomenological models
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Granada database
 

 NN scattering data from 1950 to 2013 

– http://nn-online.org/

– http://gwdac.phys.gwu.edu/

– NN Provider for Android
● Google play store

[Amaro, RNP, Ruiz-Arriola]

– http://www.ugr.es/~amaro/nndatabase/

 2868 pp and 4991 np data

http://nn-online.org/
http://gwdac.phys.gwu.edu/
http://www.ugr.es/~amaro/nndatabase/
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Fitting NN scattering observables
Selection of data

 Direct fits to all data NEVER give χ2/d.o.f. ≈ 1
– Restrictive model ?  Improve model➡
– Mutually incompatible data  Reject incompatible data➡

 np dσ/dΩ at 162 MeV
 Statistical and systematic errors may be over or underestimated

 3σ criterion
– Fit all data (χ2/d.o.f. > 1)

– Remove sets with 
improbably high or low χ2 

– Refit parameters
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Fitting NN scattering observables
Recovering data
 Mutually incompatible data

– Which experiment is correct?
– Is any of the two correct?
– Maximization of experimental consensus

 Exclude data sets inconsistent with the rest of the database
– Fit to all data (χ2/d.o.f. > 1)
– Remove data sets with improbably high or low χ2 (3σ criterion)
– Refit parameters
– Re-apply 3σ criterion to all data
– Repeat until no more data is excluded or recovered
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Fitting NN scattering observables
Recovering data

Usual Nijmegen 3σ criterion (1677 rejected data)

300 recovered data with Granada procedure (consistent database)
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 Comparing with other models  and experimental data

Fitting NN scattering observables
 

χ2/d.o.f. = 1.06 with N = 2747|pp + 3691|np

[RNP, Amaro & Ruiz-Arriola. Phys.Rev.C88 (2013) 024002]
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 Different models fitted to the same database

Fitting NN scattering observables
 

Predictions are different
Source of systematic uncertainties

Potential TLAB NData Nparameters χ2/d.o.f.

DS - OPE 350 6713 46 1.05

DS - χTPE 350 6712 33 1.08

DS - ΔBorn 350 6719 31 1.06

Gauss - OPE 350 6712 42 1.07

Gauss - χTPE 350 6712 31 1.09

Gauss - ΔBorn 350 6712 30 1.14

[RNP, Amaro & Ruiz Arriola. ArXiv:1410.8097v3]
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 Experiments by counting events → Poissonian statistics 

 Large number of events → Normal statistics
 Crucial assumption

follows the standard normal distribution

 χ2/d.o.f. = 1 ± (2/d.o.f.)1/2

 Can be different from N(0,1), but it has to be known

Fitting NN scattering observables
Testing the normality of residuals

Can only be checked a posteriori 

Ri=
Oi

exp−Oi
theor ( p1 , p2 ,… pP)

ΔOi
exp
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Fitting NN scattering observables
Testing the normality of residuals

 Empirical distribution Pemp

 Normal distribution N(0,1)

 Finite size fluctuations

 Discrepancies between Pemp 
and N(0,1)

 How large is too large?

 Normality tests
– Quantifying discrepancies

– Test statistic T

– Critical values
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Fitting NN scattering observables
Tail Sensitive test

 Quantitative test with a graphical representation 
Aldor-Noiman et al. The American Statistician, 

67(4):249–260, 2013.

 Quantile-Quantile plot
– Theoretical quantiles

– Empirical Quantiles

– Mapping (xi
th, xi

emp)

– LimN→∞ (xi
emp – xi

th) = 0

– Confidence bands 
● Recipe and tables available at

J. Phys. G: Nucl. Part. Phys. 42 (2015) 034013

 

i
N +1

=
1

√2π
∫
−∞

xi

th

e
−

t2

2 dt

x1
emp

< x2
emp

<…< xN
emp
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Fitting NN scattering observables
Testing the normality of residuals

Six statistically equivalent representations of the NN interaction
Their discrepancies won't come from the data
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 Bethe in 1940 from Deuteron properties
– fπ

2 = 0.077 – 0.080
 Different processes (NN, πN) 
 Different values and precision

Determining fπ 
 

M.E. Sainio arXiv:hep-ph/9912337 (1999)

V π (r )=−f π
2 e−mπ r

r
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 In 1997 the Nijmegen group recommends 
– charge independent f2=0.075 

“The present accuracies in the determination of the various 
coupling constants are such,that with a little improvement 
in the data and in the analyses these charge-independence 
breaking effects could be checked”

PiN Newslett. 13 (1997) 96

Determining fπ 
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 Looking for signals of charge dependence

Determining fπ 
 

f0
2 is incompatible with fp

2 and fc
2 at the 1σ level

fp
2 f0

2 fc
2 Nparameters χ2/d.o.f.

0.075 idem idem 46 1.051

0.0761(3) idem idem 46+1 1.051

0.0759(4) 0.079(1) 0.0763(6) 46+3 1.043

0.0758(4) 0.080(2) 0.0765(6) 46+3+9 1.036

[RNP, Amaro & Ruiz Arriola. ArXiv:1606.00592v1]
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 Same data
 Different representations
 Different predictions
 Who dominates the uncertainty?

Systematic vs. statistical uncertainties
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NN Systematic Uncertainty
 

 Data is unevenly distributed 
on the (TLAB,θc.m.)

 Same description in probed 
regions

 Incompatible predictions in 
unexplored areas

 A uniform experimental 
exploration is necessary but 
unlikely
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Reproducing NN uncertainties from NN data
 

 Propagation with covariance matrix

– Requires to calculate derivatives

 Monte-Carlo family of potentials

 Bootstrap the data

– Simulate data ~ N(Oi,σi)

– Refit parameters

 Replicate parameters correlations

– Simulate parameters

– Faster, but real distribution may differ
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Reproducing NN uncertainties from NN data
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Triton Binding Energy
 Hyperspherical Adiabatic Expansion Method

 Monte-Carlo simulation of N =250 potentials 

  Error estimates in nuclear structure calculations

  ΔBt
stat = 15(1) KeV, ΔBt

num = 1 KeV

[RNP, Garrido, Amaro & Ruiz-Arriola. Phys.Rev.C99 (2014) 047001]

 N ~ 30 gives a fairly good 
estimate

 Reduction of target accuracy is 
possible

 ΔBt
sys is even larger
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3H and 4He Binding Energy
No Core Full Configuration Method

  Sum of Gaussians potential

 33 Monte-Carlo potentials
 Δ(3H)t

stat = 15 KeV, Δ(4He)t
stat = 55 KeV

[RNP, Amaro, Ruiz-Arriola, Maris & Vary. Phys.Rev.C92 (2015) 064003]
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 Empirical correlation between binding energy calculations

Tjon Line correlation
 

Similarity Renormalization Group: Bα = 4Bt +3Bd

[Ruiz-Arriola, Szpiegel & Timoteo. Few Body Syst. 55 (2014) 971-975]
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Tjon Line Correlation
Numerical accuracy.

 Δ(3H)t
num = 1 KeV, Δ(4He)t

num = 20 KeV

4-Body forces are masked by the numerical 
noise in 3 and 4 body calculations
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 Nucleon Nucleon interaction
– Over 8000 scattering data
– Phenomenological models, least squares fit
– Selection of data is relevant

 Statistical uncertainties
– Normality of residuals has to be checked
– Enough signal to determine charge dependence in fπ

2 

 Systematic uncertainties
– Dominate statistical ones

 Propagation into nuclear structure
– Enough precision to see four body force?

Summary
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