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Going beyond generalized least

squares algorithms for estimating

nuclear data observables

INT16-2a, Seattle, WA      June 13-17, 2016

Speaker: D. Neudecker (Los Alamos National Laboratory)
P. Helgesson (Uppsala University),
D.L. Smith (Argonne Associate of Seville),
R. Capote (International Atomic Energy Agency),
P. Talou (Los Alamos National Laboratory)
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Questions to the audience:

 Are our statistical analysis methods mathematically

sound?

 Are there better suited statistical methods to solve

our physics problem?

 Can we use third (skewness) or fourth (kurtosis)

moment of a probability distribution function as a

measure to quantify how adequate a generalized

least square technique is?
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Outline:

Introduction:

➢ The question we want to answer

➢ The physics problem

➢ The statistics problem

The study undertaken:

➢ Modeling the physics problem

➢ Preliminary results and conclusions
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Introducing the physics and statistics

problem:

The physics problem:

 Aim of a nuclear data
evaluation at the example
of prompt fission neutron
spectra.

 The prompt fission
neutron spectrum and
challenges in quantifying it.

The statistics problem:

➢ Why is the generalized
least squares technique
insufficient for our needs?

➢ Alternative methods we are
looking at.
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What is the aim of the

field of nuclear data

evaluation?
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Aim of nuclear data evaluations:

We provided one recommended (i.e., evaluated) data set of

a nuclear physics observable of interest for nuclear data

application areas.

This recommended data set is often obtained by a statistical

analysis of experimental data and their covariances as

well as model predicted values and their covariances.

We provide recommended data in the form of evaluated mean

values and covariances.

Here, we look at prompt fission neutron spectra as a
representative example. 
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What is a prompt fission

neutron spectrum (PFNS)

& what is it needed for?
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A PFNS gives the energy distrib. of neutrons

emitted after scission & before β-decay
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A PFNS covers many orders of magnitude.

Maxw∝√Eexp(−E/T )
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We need to provide a realistic evaluated

PFNS and cov. for application needs:

➢ Development of innovative nuclear reactors (Generation IV
reactors, small and modular reactors)

➢ Neutron Dosimetry

➢ Global Security

➢ Non-proliferation …

Not only mean values but also

covariance matrices are needed!
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What are the challenges

encountered in

evaluations of a PFNS?
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Experimental data are scarce and

discrepant:

Biases due to multiple
scattered neutrons

Finite
counting
statistics
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Currently used nuclear models are effective &

their parameters fitted to exp. data.

Both the “evaluation”

and “ENDF/B-VII.1”

were obtained with the

same nuclear model

…. The differences

impact application

calculations

distinctly!!!

AND the model might

be defective!
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So, what is truth now??!!??
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Why is the generalized

least squares algorithm

insufficient?
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Generalized least squares is an algorithm we

often use for evaluations.

The generalized least squares algorithm combines model (“M”) and
experimental mean values (“x”) and their associated covariances to
evaluated mean values and covariances (“post”).

It requires:
➢Experimental data and model values to be normally distributed.
➢ Linear relationship between all observables.
➢ Non-discrepant data.
➢ Data that is less than ~30% uncertain.
➢ Data that should not cover many orders of magnitude.
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Generalized least squares is not ideal for

evaluating PFNS. 

It requires:
➢Experimental data and
model values are normally
distributed.
➢ Linear relationship
between all observables.
➢ Non-discrepant data.
➢ Data that is less than
~30% uncertain.
➢ Data should not cover
many orders of magnitude.

✔ In this case ...
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Model predicted values are NOT normally

distributed.
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We evaluate in log-space to get reasonable

results … how close to truth is that?
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Searching for alternative

evaluation techniques

based on Bayes

theorem:
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Unified Monte Carlo G (UMC-G) uses Bayes

theorem and makes assumptions about pdfs.

p(φ
post

) = C L(φ
X
,Cov

X |φM
 ) p

0
(φ

M
,Cov

M )Bayes Theorem:Bayes Theorem:

For studies here, we assume:

Likelihood function L is normally distributed with exp. 
data φ

x
 & covariances Cov

x
 produced to mirror 

PFNS and its challenges

Prior pdf p
0
 is normally distributed with prior mean values 

φ
M
 & covariances Cov

M
 calculated from model calculated 

values computed with sampled model parameters.
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Unified Monte Carlo B (UMC-B) weights model

values compared to experimental data.

A set of model values φ
M
(p

k
) is calculated by the model using a set

of sampled parameters p
k
.

Weights ωk are calculated by comparing  φ
M
(p

k
) & experiment:

Posterior mean values and covariances are calculated by

weighting  φ
M
(p

k
) with ωk:

 

 

ωk = exp{-(1⁄2)[(φ
Mk

  – φ
x
 )T • Cov

x

-1 • (φ
Mk

  – φ
x
 )]

<φpost,i> ≈ [Σk=1,K ωk,i φMk,i
] / [Σk=1,K ωk] , (i,j=1,m)

(Covpost)ij = [Σk=1,K φMk,j φMk,i
ωk ] / [Σk=1,K ωk] – <φpost,i

> <φpost,j
> . 
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Testing GLS, UMC-G & UMC-B and

results.

➢ Building a test-case similar to a
PFNS & its challenges

 

➢ Results

➢ Testing how close GLS, UMC-
G and UMC-B come to truth.

Question: Which evaluation

algorithm gives evaluated

results closest to truth?
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Generating a test surrounding similar to PFNS

with a model close to truth and with defects.

Truth:Truth:

We test:

➢ Model function = truth &
parameter space enclosing truth

➢ Model function = truth &
parameter space far from truth

➢ Model function suffers from
model defect

Skewness
similar to
PFNS models
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Generating a test surrounding similar to PFNS

with exp. Data close to truth and with biases

Truth:Truth:

We test:

➢ Experiment = truth+random error 

➢ Experiment = truth+random error+systematic biases & Cov
x
 

accounting for it 

➢ Experiment = truth+random error+systematic biases & Cov
x
 

underestimated

“Multiple scattering”       “Background”        “Counting statistics”
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and testing how close we get to truth

Slide 26

Study: Evaluating each case with GLS, UMC-

G & UMC-B.

Question: Which evaluation algorithm gives

evaluated results closest to truth?

RESULTS AND CONCLUSIONS 

ARE PRELIMINARY
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Preliminary conclusion:UMC-B closest to

truth if model=truth&parameter space good

Experiment: random experimental errors, no systematic biases,

Model: same function as truth, parameter space encloses truth
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Preliminary conclusion:UMC-B, GLS and

UMC-G similar if model=truth&par. space bad

Experiment: random
experimental errors, no
systematic biases,

Model: same functional
form as truth, parameter
space does not enclose
true parameters

“eval. Parameters” far

from true ones → local

maximum
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Preliminary conclusion:UMC-B farthest from

truth if model defective

Experiment: random
experimental errors,
systematic biases, bad
cov.

Model: defective

χ for UMC-B distinctly

worse compared to

model = truth
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Preliminary conclusion:can we identify model

defects by comparing GLS, UMC-B/G results?

➢ If model is good and a good parameter space was initially
chosen → UMC-B best and comparable χ 

➢  If model is good and a bad parameter space was initially
chosen → UMC-B/G and GLS  have similar χ and end up in local
maximum

➢  If model is defective → UMC-B has the (distinctly!!) highest χ

→ can we use a comparison of evaluation results for UMC-

B/G & GLS to diagnose model defects?? 
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Questions to the audience:

 Are our statistical analysis methods mathematically

sound?

 Are there better suited statistical methods to solve

our physics problem?

 Can we use third (skewness) or fourth (kurtosis)

moment of a probability distribution function as a

measure to quantify how adequate a generalized

least square technique is?

Thank you for your attention and your answers!
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Backup: Parameters for study shown

Truth:Truth: a
1
=1; a

2
=0.5 ; a

3
=2

Model=Truth & good par. space: b
1
=0.9a

1
; b

2
=1.1a

2
; b

3
=1.15a

3

Model=Truth & bad par. space: b
1
=0.6a

1
; b

2
=1.5a

2
; b

3
=0.6a

3

Defective model: c
1
=1.15;c

2
=0.008;c

3
=1.85

Parameter uncertainties: 30% for b
1
, b

2
, b

3
, c

1
, c

3
; 100% for c

2
.

Defective model:

Exp.=Truth & random error:                                                                                     Random error is sampled
around 0 with smallest unc. (~1%) at 1 MeV & largest unc. (~70%) at 10 MeV

Exp.=Truth & random+systematic error:

Parameter uncertainties: 30% for b
1
, b

2
, b

3
, c

1
, c

3
; 100% for c

2
.

d
1
=0.005;d

2
=0.2;d

3
=0.02

Adequate systematic unc: ∆d = (0.01, 0.5, 0.03)

Underestimated systematic unc: ∆d = (0, 0, 0.03)
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