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Motivation

Is it possible to make scientific inference with a model when the
parameters are unknown and the model might be wrong and the
data is terrible?



Thomas claims:

1. The probability that two subsequent events
will both happen is a ratio compounded of
the probability of the 1st, and the probability
of the 2d on supposition the 1st happens.

2. If there be two subsequent events be
determined every day, and each day the
probability of the 2d is b/N and the
probability of both P/N, and I am to receive
N if both of the events happen the 1st day
on which the 2d does; I say, according to
these conditions, the probability of my
obtaining N is P/b.

Bayes, T. and Price, R. (1763) “An Essay towards solving a Problem in the Doctrine

of Chances.” Philosophical Transactions of the Royal Society of London. 53:370-418.



Thomas claims:

1. P(A,B) = P(A)P(B|A)

2. P(A|B) = P(A,B)/P(B)

P(A|B) = P(A)P(B|A)/P(B)



Thomas claims:

p(θ|y) ∝ π(θ)f (y |θ)

I θ is a parameter vector, or a model, or
something we want to learn

I y is data

I p(·) is the posterior

I π(·) is the prior

I f (·) is the likelihood



Simple Gaussian Example

I y = θ + ε, ε ∼ N(0, σ2)

I θ ∼ N(µ, δ2)

I Observe y1, · · · , yn

p(θ|y) ∝ exp

{
− 1

2δ2
(θ − µ)2

}
exp

{
− 1

2σ2

∑
i
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}

...

θ|y ∼ N
(
ν, γ2

)
ν =

n
σ2 Ȳ + 1

δ2
µ

n
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δ2
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n

σ2
+

1
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)−1



Markov Chain Monte Carlo

Method of drawing sequence of correlated samples from a
distribution by constructing a Markov chain whose stationary
distribution is the one of interest. This is useful when the
distribution is not otherwise tractable and only requires knowing
the distribution up to a constant. The samples can be used for
inference (e.g. means, variances quantiles).



Markov Chain Monte Carlo: Metropolis-Hastings

Assume x follows some distribution with density p and that we
have xk with p(xk) > 0.

1. Draw a candidate x ′ from q(x ′|xk).

2. Compute α = p(x ′)q(xk |x ′)
p(xk )q(x ′|xk )

3. Draw u ∼ Unif (0, 1).

4. If u ≤ α, set xk+1 = x ′, else set xk+1 = xk .

Often, q is a random walk so q(x ′|xk) = q(xk |x ′) and α simplifies
(original Metropolis). Sometimes, q is p (Gibbs sampling). Good
results often require some tuning of q (e.g. the step size of the
random walk).



Simple Gaussian Example with MCMC
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Figure: First 100 draws µ.



Simple Gaussian Example with MCMC

Histogram of mu
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Figure: Histogram of µ with ”true” value.



Simple Gaussian Example with MCMC
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Gaussian Example with Unknown Mean and Variance

I y |θ ∼ N(θ, σ2)

I θ ∼ N(µ, δ2)

I σ2 ∼ Unif (0,U)

I Observe y1, · · · , yn
Sample from p(µ, σ2|y) by sampling sequentially from the full
conditional posteriors: p(µ|σ, y) and p(σ2|µ, y) which are simply
proportional to their joint density.



Gaussian Example with Unknown Mean and Variance
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Gaussian Example with Unknown Mean and Variance

Histogram of mu
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Black Box Functions

I y |θ ∼ N(η(θ), σ2)

I θ ∼ π(θ)

MCMC only requires that you can evaluate η(·).



Black Box 1-D: Mini Cosmic Emu with Unknown w
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Black Box 2-D: Mini Cosmic Emu with Unknown w and σ8

Histogram of w
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Slow Black Box Functions

What if the function takes a month of computation? When the
simulation is to slow to call inside the MCMC, we need to
approximate it. The basic idea is to run the simulation over a
training set and build a statistical model that predicts the results
at untried settings.



Gaussian Process

Assume that univariate y is a function of d-D x . Let ~y be a
collection of these points associated with the matrix X (ith row
goes with yi ).

~y ∼ N
(
~0, σ2R(X )

)
Ri ,j = exp

{
−

p∑
k=1

βk(Xi ,k − Xj ,k)2

}

This has the squared exponential covariance which produces
continuous and very smooth draws. Given a training set (~y ,X ) and
priors, the GP parameters σ2 and ~β can be estimated with MCMC.



Gaussian Process Cartoon
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Conditional GP

(
y1
y2

)
∼ N

{
~0,

[
Σ11 Σ12

Σ21 Σ22

]}
(1)

y1|y2 ∼ N
{

Σ12Σ−122 y2,Σ11 − Σ12Σ−122 Σ21

}
(2)

Assume that Σ is the aforementioned function of X , that y2 are
points that we’ve observed at X2, and that y1 are points that we
want to predict at X1. Everything on the right is known and gives
us the distribution for the new points.



Conditional GP

y1|y2 ∼ N
{

Σ12Σ−122 y2,Σ11 − Σ12Σ−122 Σ21

}
I The mean for new points is a weighted average of the

observed points.

I The variance goes to zero as a new point approaches an
observed point.

I This is just Bayes rule again. The GP is a prior for the
unobserved points and we know the conditional relationship
between the observed points and unknown points.



Gaussian Process Cartoon
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The Universe. How’s that work?

Sloan Digital Sky Survey.



Simulating the Universe

N-Body Simulations. These take a long time.



Choosing the Simulations

Latin Hypercube over the parameters of interest.
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Comparing Sims and Data

The power spectrum describes how the matter is distributed over
large scales.
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Making the Sausage, Step 1

The data is a noisy version of the model at the “correct” input.

y = η(θ) + ε

ε ∼ N
(
~0,Σy

)
π(θ) = 1, θ ∈ C

p(θ|y) ∝ exp

{
1

2
(y − η(θ))′Σ−1y (y − η(θ))

}



Making the Sausage, Step 2

Treat η(·) as an unknown function, with observations
η∗ = (η(t1), . . . , η(tm))′.

π(θ, η(·)|y , η∗) ∝ L(y |η(θ)) · L(η∗|η(·)) · π(η(·)) · π(θ)



η: Decomposing the Multivariate Output

Compute a principal component basis from the simulations.

η(t) =

q∑
i=1

φiwi (t) + ε
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η: GPs for Basis Weights

wi (t) ∼ N(0, λ−1wi R(t; ρi ))

Corr(wi (t),wi (t
′)) =

p∏
k=1

ρ
4(tk−t′k )

2
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η Start Combining Things

w1
...
wq

 ∼ N


0

...
0

 ,

λ
−1
w1R(t; ρ1) 0 0

0
. . . 0

0 0 λ−1wqR(t; ρq)




Find η again

η|w , λη ∼ N

(
Φw ,

1

λη
I

)



η Put some priors on things

π(λwi ) ∝ λaw−1wi e−bwλwi , i = 1, . . . , q,

π(ρik) ∝ ρ
aρ−1
ik (1− ρik)bρ−1, i = 1, . . . , q, k = 1, . . . , p



Making the Sausage, Step 3: Just the emulator.

π(λη, λw , ρ|η) ∝∣∣(ληΦ′Φ)−1 + Σw

∣∣− 1
2 exp{− 1

2 ŵ
′([ληΦ′Φ]−1 + Σw )−1ŵ} ×

λ
a∗η−1
η e−b

∗
ηλη ×

q∏
i=1

λaw−1wi e−bwλwi ×
q∏

i=1

p∏
j=1

ρ
aρ−1
ij (1− ρij)bρ−1,

where

a∗η = aη +
m(nη − q)

2
,

b∗η = bη + 1
2η
′(I − Φ(Φ′Φ)−1Φ′)η, and

ŵ = (Φ′Φ)−1Φ′η.



The emulator is pretty useful.

For example, it can do sensitivity studies.
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Bringing data back

y = η(θ) + ε,

y = Φyw(θ) + ε

y |w(θ), λy ∼ N(Φyw(θ), (λyWy )−1), λy ∼ Ga(ay , by )



Making the Sausage, Step 4 (Part 1)

ŵy = (Φ′yWyΦy )−1Φ′yWyy ,

a∗y = ay + 1
2(n − q),

b∗y = by + 1
2(y − Φy ŵy )′Wy (y − Φy ŵy ),

Λy = λyΦ′yWyΦy ,

Λη = ληΦ′Φ,

Iq = q × q identity matrix,

Σwyw =

λ
−1
w1R(θ, θ∗; ρ1) 0 0

0
. . . 0

0 0 λ−1wqR(θ, θ∗; ρq)

 ,

ẑ =

(
ŵy

ŵ

)
,

Σẑ =

(
Λ−1y 0

0 Λ−1η

)
+

(
Iq Σwyw

Σ′wyw Σw

)
.



Making the Sausage, Step 4 (Part 2)

π(λη, λw , ρ, λy , θ|ẑ) ∝

|Σẑ |−
1
2 exp

{
− 1

2 ẑ
′Σ−1ẑ ẑ

}
× λa

∗
η−1
η e−b

∗
ηλη ×

q∏
i=1

λaw−1wi e−bwλwi ×

q∏
i=1

p∏
k=1

ρ
aρ−1
ik (1− ρik)bρ−1 × λa

∗
y−1

y e−b
∗
y λy × I [θ ∈ C ],



Cooking the Sausage

All of these parameters are estimated with one-at-a-time
Metropolis-Hastings MCMC.



Posterior for Scientific Parameters
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Stuff Not Appearing In This Talk

I Prediction, with all of the uncertainty.

I Systematic bias.


