Measuring the neutron-star equation of state with gravitational-wave observations

Ben Lackey Syracuse University INT, Seattle, Washington, 30 June 2016

Second generation gravitational-wave detectors

- Will reach design sensitivity in the next few years
- Sensitive to gravitational-waves between $\sim\!10\text{Hz}$ and a few kHz

Post-Newtonian waveform without matter effects

Phase(t) = 0PN(t; \mathcal{M}) Chirp mass: $\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$

Post-Newtonian waveform without matter effects

- Tidal field created by companion induces a quadrupole moment in the NS
 - Tidal field: \mathcal{E}_{ij}
 - Quadrupole moment: Q_{ij}
- Amount of deformation depends on stiffness of EOS via the tidal deformability λ :

 $Q_{ij} = -\lambda(\text{EOS}, M)\mathcal{E}_{ij}$

- Tidal effects first appear at same order as 5PN point-particle terms
- Leading term $\tilde{\Lambda}$ is a linear combination of the tidal deformabilities of each object

$$(v/c)^{2} \qquad (v/c)^{7} \qquad (v/c)^{10}$$
Phase(t) = 0PN(t; \mathcal{M}) $\left[1 + 1PN(t; \eta) + \dots + 3.5PN(t; \eta) + 5PN(t; \tilde{\Lambda})\right]$
 $\tilde{\Lambda} = \frac{8}{13} \left[(1 + 7\eta - 31\eta^{2})(\Lambda_{1} + \Lambda_{2}) + \sqrt{1 - 4\eta}(1 + 9\eta - 11\eta^{2})(\Lambda_{1} - \Lambda_{2})\right]$

- Tidal effects first appear at same order as 5PN point-particle terms
- Leading term $ilde{\Lambda}$ is a linear combination of the tidal deformabilities of each object
- Effect of remainder term $\delta \tilde{\Lambda}$ is ~10-100 times smaller

$$\begin{split} & \frac{(v/c)^2}{(v/c)^7} \frac{(v/c)^{10}}{(v/c)^{10}} \frac{(v/c)^{12}}{(v/c)^{12}} \\ & \text{Phase}(t) = 0 \text{PN}(t; \mathcal{M}) \left[1 + 1 \text{PN}(t; \eta) + \dots + 3.5 \text{PN}(t; \eta) + 5 \text{PN}(t; \tilde{\Lambda}) + 6 \text{PN}(t; \tilde{\Lambda}, \delta \tilde{\Lambda}) \right] \\ & \tilde{\Lambda} = \frac{8}{13} \left[(1 + 7\eta - 31\eta^2)(\Lambda_1 + \Lambda_2) + \sqrt{1 - 4\eta}(1 + 9\eta - 11\eta^2)(\Lambda_1 - \Lambda_2) \right] \\ & \delta \tilde{\Lambda} = \frac{1}{2} \left[\sqrt{1 - 4\eta} \left(1 - \frac{13272}{1319}\eta + \frac{8944}{1319}\eta^2 \right) (\Lambda_1 + \Lambda_2) + \left(1 - \frac{15910}{1319}\eta + \frac{32850}{1319}\eta^2 + \frac{3380}{1319}\eta^3 \right) (\Lambda_1 - \Lambda_2) \right] \end{split}$$

- Both NSs contribute to tidal effect
- Leads to phase shift of 5–15 radians

Parameter estimation

• Can estimate the parameters $\vec{\theta}$ of each inspiral from the data **d** with Bayes' theorem:

• Time series of stationary, Gaussian noise n has the distribution

$$p_n[n(t)] \propto e^{-(n,n)/2}$$
 $(a,b) = 4 \operatorname{Re} \int_0^\infty \frac{\tilde{a}(f)\tilde{b}(f)}{S_n(f)} df$

• (data from detector \mathbf{d}) = (noise \mathbf{n}) + (model of GW signal $m(\vec{\theta})$)

$$p(d|\vec{\theta}) \propto e^{-(d-m,d-m)/2}$$

Parameter estimation

• Can estimate the parameters $\vec{\theta}$ of each inspiral from the data **d** with Bayes' theorem:

• Can sample the posterior with Markov chain Monte Carlo (MCMC), then marginalize over nuisance parameters

Parameter estimation

- Result of MCMC simulation for system with SNR=30
- Bayesian parameter estimation for aLIGO-aVirgo network:

L. Wade et al. PRD 89, 103012 (2014)

- The tidal deformability is calculated from the EOS
- This can be inverted to find EOS parameters from observations of the tidal parameters and masses

• Use Bayes' theorem again to estimate masses and EOS parameters:

• Use Bayes' theorem again to estimate masses and EOS parameters:

B. Lackey, L. Wade. PRD 91, 043002 (2015)

• Use Bayes' theorem again to estimate masses and EOS parameters:

• Likelihood is the product of the marginalized distributions for each event

 $p(d_1, \dots, d_N | \vec{x}) = \prod_{n=1}^{N} p(\mathcal{M}_n, \eta_n, \tilde{\Lambda}_n | d_n) |_{\tilde{\Lambda}_n = \tilde{\Lambda}(\mathcal{M}_n, \eta_n, \text{EOS})}$

 The 4 EOS parameters are found from an MCMC simulation of the 4+2N parameters by marginalizing over the 2N mass parameters

- We simulated a year of events for the aLIGO-aVirgo network
 - Each detector had ~40 BNS events/year with SNR>8
 - Sampled the masses uniformly in the range $1.2 M_{\odot} 1.6 M_{\odot}$
 - Assumed MPA1 as the true EOS

- 68% credible region
- 95% credible region
- 99.7% credible region

B. Lackey, L. Wade. PRD 91, 043002 (2015)

B. Lackey, L. Wade. PRD 91, 043002 (2015)

- Phase difference between 3PN and 3.5PN: ~IGW cycle
- At a given post-Newtonian order, there are many ways to calculate the phase
 - Approximants: Taylor**TI**, ..., Taylor**T4**, Taylor**F2**
 - Phase difference between approximants: ~IGW cycle

- Model used for constructing waveform template has dramatic effect on recovered tidal parameter
- Used TaylorF2 as waveform template

Constructing a more accurate waveform model

Additional matter effects

- Tidal fields $\mathcal{E}_{ij\dots}$ from companion star induce quadrupole Q_{ij} and higher order multipoles
 - Quadrupole: $Q_{ij} = -\Lambda(\mathrm{EOS}, m)m^5\mathcal{E}_{ij}$ 5PN
 - Octopole: $O_{ijk} = -\Lambda^{(3)}(\text{EOS}, m)m^7 \mathcal{E}_{ijk}$ 7PN
 - Hexadecapole: $H_{ijkl} = -\Lambda^{(4)}(\text{EOS}, m)m^9 \mathcal{E}_{ijkl}$ 9PN

Additional matter effects

- Most NS properties are correlated in a nearly EOS-independent way
- There is effectively only one EOS-dependent parameter during inspiral

Kent Yagi. PRD 89, 043011 (2014)

Additional matter effects

More accurate BNS waveform

- Effective one body (EOB) waveforms have significantly smaller uncertainties
- Take ~ 10 minutes to evaluate starting at 10Hz
 - Too slow for parameter estimation

Reduced order model

• Construct a set of orthonormal basis functions that approximate any waveform $h(t; \vec{\theta}) = A(t; \vec{\theta}) e^{i\Phi(t; \vec{\theta})}$ in the parameter space

$$A(t;\vec{\theta}) \approx \sum_{i=1}^{\infty} c_i(\vec{\theta}) \hat{e}_i(t) \qquad \Phi(t;\vec{\theta}) \approx \sum_{i=1}^{\infty} c_i(\vec{\theta}) \hat{e}_i(t)$$

Reduced order model

- Construct a set of orthonormal basis functions that approximate any waveform $h(t; \vec{\theta}) = A(t; \vec{\theta}) e^{i\Phi(t; \vec{\theta})}$ in the parameter space $A(t; \vec{\theta}) \approx \sum_{i=1}^{N_A} c_i(\vec{\theta}) \hat{e}_i(t) \qquad \Phi(t; \vec{\theta}) \approx \sum_{i=1}^{N_\Phi} c_i(\vec{\theta}) \hat{e}_i(t)$
- 8-dimensional parameter space (I mass and 3 tidal parameters for each NS)
 - Can use mass ratio q and rescale waveform with total mass M
 - Use 10% accurate fits for I=3,4 tidal parameter in terms of I=2 tidal parameter
 - Results in 3 dimensional parameter space $\vec{\theta} = \{q, \Lambda_1, \Lambda_2\}$

Empirical interpolation method

• Can re-express phase basis $\{e_i(t)\}$ in terms of waveform evaluated at empirical times T_j and empirical interpolants $B_j(t)$

n

$$\Phi(t;\vec{\theta}) \approx \sum_{j=1}^{n} \Phi(T_j;\vec{\theta}) B_j(t)$$

• where $B_j(t) = \sum_{i=1}^{n} \hat{e}_i(t) (V^{-1})_{ij}$ and $V_{ji} = \hat{e}_i(T_j)$

Interpolating waveform parameters

- Waveform at each empirical node T_j interpolated with Chebyshev polynomials
- Coefficients b_{lmn} calculated with Gaussian quadrature

Accuracy of ROM

- Compare ROM to 10,000 waveforms randomly sampled in parameter space
 - Maximum amplitude error: ~2% (0.2% before last cycle)
 - Maximum phase error: ~0.04 radians
 - Much less than the tidal effect of \sim 5-10 radians

Speed of ROM

- Implementation of ROM in LAL (written in C)
 - Faster than original Matlab tidal EOB code by a factor of $\sim\!1000$
 - Faster than all time-domain waveforms in LAL

Conclusions

- EOS and NS structure can be recovered with $\sim\!I$ year of BNS observations
- But, it's crucial that we have accurate and fast waveform models

Thank you

Other EOS models

• 95% credible regions

Other EOS models

