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How many would like to see Bayesian analysis:

How Bayesian analysis actually is:
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Lepage Plots

m 1997 - How to Renormalize the Schrédinger equation

m " _mimic the real short-distance structure of the target and probe
by simple short-distance structure..."

m Low-energy data will never contain sufficient information to tell the
difference between this mimicry and reality

m structure as an expansion in a
small parameter

m Lepage plot = Error Plot

m Goal to diagnose whether the
expansion is "working"




Lepage Plots

m Approximate unknown
high-energy potentials
with smeared delta
functions

m Impose an ultraviolet
cutoff to remove
less-understood
physics, A

m Add correction terms
which imitate short
range physics — each
one will bring an
additional parameter
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m Look at 1Sy phase shifts as
corrections are added

m should see power law scaling




Lepage Plot as Error Plot

Normal Q-Q Plot - Normal Q-Q Plot
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m Is it distributed around
zero?

m Is it normal?
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|dealized Lepage Plot — Polynomial Residuals
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Is there a way to account for errors from data and lower-order
coefficients? Yes!




Statistical Errors

m Both statistical and truncation errors are expressed through
marginalization integrals

m Truncation: Retains information only of the posterior of €

pr(Ax(x)|D, k) = Tll Jde [ [dekga...des
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m Statistical: Benefits from coefficient posteriors and

correlation matrices
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Statistical Errors

m Account for errors from data
and lower-order coefficients

Co = ey £ 0

m R - orthogonal matrix of eigenvectors

Gy = +o . . .
= b m A - Diagonal matrix of inverse

m Anti-correlations expected variances in SVD frame.

from polynomial structure
m Transfer between spaces:
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Statistical Errors

m check analytics with MCMC
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Lepage Plots in Practice — Polynomial Residuals

linear behaviour, dominanC@ of first-order truncation?
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Evolution of Lepage Plots in k
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Slopes vs Noise
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Scaling > Value
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Residual

LP as Diagnostic

m Uniform Prior m Gaussian Prior (¢ = 5)
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Can we quantify this objection to the results of the Uniform Prior?




Residual Scaling - Uniform Prior

Slope of linear region
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Residual Scaling - Uniform Prior

M|x?/do.f.|

a9 | a | az

2.24
1.64
1.85
1.96
1.39
1.85
2.67

R

0.203 = 0.014| 2.55 & 0.11

0.250 = 0.023| 1.57 4 0.40 |3.33 £ 1.31
0.269 = 0.039|0.954 & 1.094/8.16 =+ 8.05
0.333 = 0.067| -1.88 = 2.69 |44.7 + 32.6
0.566 = 0.132| -14.8 = 6.85 | 276 £ 117
0.590 = 0.291| -16.4 £ 18.1 | 311 £ 395
0.242 = 0.788| 8.97 & 56.3 |-373 £ 1494

TABLE I: Fit results for standard x* approach with Zmee = 1/7 and ¢ = 0.05.
stolen from Schindler,DP (2009)

m "if one did not know the underlying values of a0 and al one might
be hard put to explain the extent to which the fit at order 2 is
superior to that at order 3, or indeed, that at order 5."

m Coincidentally (7), the fit at order 2 is the only order where we see

the correct scaling.

m Lepage plots as model selection?

m Remember: this is still a toy-model-sample-size of 1




Model Selection
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Model Selection

Slope of linear region
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m do Lepage plots offer a new
window to the Bayesian
analysis or a different
perspective on an old one?

m Different Questions?

m How big of a model is
justified by the data?

m Which model scales
correctly?

m May be too soon to tell..




Residual

Residual Scaling - Gaussian Prior

Slope of linear region
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The Diagnostic

m Slopes of first-order approximation obscured by statistical
fluctuations.

m Seeing statistically significant changes in slope at
values of x near the breakdown scale may be sufficient?

m To what extent may this inform model selection?

m When parameter estimation fails, slopes will be defined by residuals
as e.g.

0cyg +dcix + Z cpx"

n=2
m Could this discrepancy be turned into a parameter

estimation diagnostic?

m This has been a quick glance at a single toy problem...more for the
future.




THEORISTS ANONYMOUS

= Admit that you have a problem: your theory has uncertainties
m Acknowledge the existence of a higher power

m Seek to understand its impact on out theory

m Make a searching and fearless inventory of errors

m Acknowledge your mistakes

m Make amends for those mistakes

m Help others who must deal with the same issues




THEORISTS ANONYMOUS

m Admit that you have a problem: your theory has uncertainties

Acknowledge the existence of a higher power

Seek to understand its impact on out theory

m Make a searching and fearless inventory of errors

Acknowledge your mistakes

= Make amends for those mistakes

Help others who must deal with the same issues
m Attend INT Bayesian Program Thank You!




Concerns...continued

Is the first term expansion good enough?

m Can we extrapolate the correlation matrix from the fit ¢, ...cx to
the marginalization for truncated terms?

1-0 Symmetric Error Bands: pr(£|D1,c =5k = 1)

1-0 Symmetric Error Bands: pr(£|D1,c = 5k = 3)
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