TRUNCATION ERRORS IN EFFECTIVE FIELD THEORY

Daniel Phillips Ohio University

Natalie Klco Ohio University & University of Washington

For the BUQEYE collaboration

R.J. Furnstahl, S. Wesolowski (Ohio State University) NK (Ohio University & University of Washington) DP, A. Thapaliya (Ohio University)

Research Supported by the US DOE and NSF

How many would like to see Bayesian analysis:

How Bayesian analysis actually is:

Bayesian Flow

Wesolowski, NK, Furnstahl, DP, Thapaliya, J.Phys.G (2016)

Diagnostics:

- Setup
 - specify priors
- Guidance
 - Evidence Ratios
 - Hyperparameter posteriors
- Parameter Estimation
 - \blacksquare Stability (x_{max}, \bar{a})
- Validation
 - Cross-validation
 - Lepage Plots

Lepage Plots

- 1997 How to Renormalize the Schrödinger equation
- "..mimic the real short-distance structure of the target and probe by simple short-distance structure..."
- Low-energy data will **never** contain sufficient information to tell the difference between this mimicry and reality

- structure as an expansion in a small parameter
- Lepage plot = Error Plot
- Goal to diagnose whether the expansion is "working"

Lepage Plots

- Approximate unknown high-energy potentials with smeared delta functions
- Impose an ultraviolet cutoff to remove less-understood physics, ∧
- Add correction terms which imitate short range physics – each one will bring an additional parameter

- Look at ¹S₀ phase shifts as corrections are added
- should see power law scaling

Lepage Plot as Error Plot

- Validation Stage
- **Q**: Can we convince ourselves that the next term indeed behaves as x^{k+1} ?
 - Translated as expectation on residuals
 - not a new concept

- Is it distributed around zero?
- Is it normal?

Idealized Lepage Plot - Polynomial Residuals

Is there a way to account for errors from data and lower-order coefficients? Yes!

Statistical Errors

- Both statistical and truncation errors are expressed through marginalization integrals
 - \blacksquare Truncation: Retains information only of the posterior of \bar{c}

$$\begin{aligned} \operatorname{pr}(\Delta_k(x)|D,k) &= \frac{1}{x^{k+1}} \int \operatorname{d}\bar{c} \int \cdots \int \operatorname{d}c_{k+2}...\operatorname{d}c_{\infty} \\ \operatorname{pr}(c_{k+1} &= \frac{1}{x^{k+1}} \left(\Delta_k(x) - \sum_{n=k+2}^{\infty} c_n x^n \right), c_{k+2},...c_{\infty}|\bar{c}|\operatorname{pr}(\bar{c}|D,k) \end{aligned}$$

 Statistical: Benefits from coefficient posteriors and correlation matrices

Statistical Errors

 Account for errors from data and lower-order coefficients

$$c_0 = \mu_{c_0} \pm \sigma_{c_0}$$

$$\vdots$$

$$c_k = \mu_{c_k} \pm \sigma_{c_k}$$

 Anti-correlations expected from polynomial structure

$$C = \left(G^{\mathsf{T}}E^{-1}G + \frac{1}{\bar{c}^2}\mathcal{I}\right)^{-1}$$
$$= \mathsf{R}\Lambda\mathsf{R}^{-1} = \mathsf{R}\Lambda\mathsf{R}^{\mathsf{T}}$$

- R orthogonal matrix of eigenvectors
- Λ Diagonal matrix of inverse variances in SVD frame.
- Transfer between spaces: $\mathbf{c}_{\mathsf{EFT}} = \mathbf{R}^{-1} \mathbf{c}_{\mathsf{SVD}}$
- Errors now independent: $\sigma_{f(x)} = \sqrt{((\mathbf{RG})^{\mathsf{T}})^2 \cdot Diagonal} [\mathbf{\Lambda}]$

Statistical Errors

■ check analytics with MCMC

Lepage Plots in Practice - Polynomial Residuals

Evolution of Lepage Plots in k

Slopes vs Noise

Scaling > Value

LP as Diagnostic

Uniform Prior

$$\begin{split} \sigma_{M=4}(x) &= (0.33 \pm 0.07) \\ &- (1.88 \pm 2.69)x + (44.65 \pm 32.6)x^2 \\ &- (181.9 \pm 149.79)x^3 + (263.61 \pm 228.5)x^4 \end{split}$$

• Gaussian Prior ($\bar{c} = 5$)

$$\begin{split} \sigma_{M=4}(x) &= (0.247 \pm 0.024) \\ &+ (1.65 \pm 0.46)x + (2.98 \pm 2.38)x^2 \\ &+ (0.38 \pm 4.4)x^3 - (0.02 \pm 4.9)x^4 \end{split}$$

Can we quantify this objection to the results of the Uniform Prior?

Residual Scaling - Uniform Prior

Residual Scaling - Uniform Prior

M	$\chi^2/d.o.f.$	a_0	a_1	a_2
1	2.24	0.203 ± 0.014	2.55 ± 0.11	
2	1.64	0.250 ± 0.023	1.57 ± 0.40	3.33 ± 1.31
3	1.85	0.269 ± 0.039	0.954 ± 1.094	8.16 ± 8.05
4	1.96	0.333 ± 0.067	-1.88 ± 2.69	44.7 ± 32.6
5	1.39	0.566 ± 0.132	-14.8 ± 6.85	276 ± 117
6	1.85	0.590 ± 0.291	-16.4 ± 18.1	311 ± 395
7	2.67	0.242 ± 0.788	8.97 ± 56.3	-373 ± 1494

TABLE I: Fit results for standard χ^2 approach with $x_{max}=1/\pi$ and c=0.05.

stolen from Schindler, DP (2009)

- "if one did not know the underlying values of a0 and a1 one might be hard put to explain the extent to which the fit at order 2 is superior to that at order 3, or indeed, that at order 5."
- Coincidentally (?), the fit at order 2 is the only order where we see the correct scaling.
- Lepage plots as model selection?
- Remember: this is still a toy-model-sample-size of 1

Model Selection

$$\operatorname{pr}(\bar{c}|k,D) = \frac{\operatorname{pr}(D|\bar{c},k)\operatorname{pr}(\bar{c}|k)}{\operatorname{pr}(D|k)}$$

- pr(Pregnant|Woman) ≠
 pr(Woman|Pregnant)
- Take uniform prior on k
- $ightharpoonup \operatorname{pr}(D|k) \propto \operatorname{pr}(k|D)$

$$\frac{\Pr(M_i|D)}{\Pr(M_8|D)} = \frac{\int_{0}^{100} \Pr(D|M_i,R) \Pr(M_i|R) \Pr(R)}{\int_{0}^{100} \Pr(D|M_8,R) \Pr(M_8|R) \Pr(R)}$$

Model Selection

different information than DI (R,0,100)

- do Lepage plots offer a new window to the Bayesian analysis or a different perspective on an old one?
- Different Questions?
 - How big of a model is justified by the data?
 - Which model scales correctly?
- May be too soon to tell..

Residual Scaling - Gaussian Prior

The Diagnostic

- Slopes of first-order approximation obscured by statistical fluctuations.
 - Seeing statistically significant changes in slope at values of x near the breakdown scale may be sufficient?
- To what extent may this inform model selection?
- When parameter estimation fails, slopes will be defined by residuals as e.g.

$$\delta c_0 + \delta c_1 x + \sum_{n=2}^{\infty} c_n x^n$$

- Could this discrepancy be turned into a parameter estimation diagnostic?
- This has been a **quick** glance at a **single** toy problem...more for the future

THEORISTS ANONYMOUS

- Admit that you have a problem: your theory has uncertainties
- Acknowledge the existence of a higher power
- Seek to understand its impact on out theory
- Make a searching and fearless inventory of errors
- Acknowledge your mistakes
- Make amends for those mistakes
- Help others who must deal with the same issues

THEORISTS ANONYMOUS

- Admit that you have a problem: your theory has uncertainties
- Acknowledge the existence of a higher power
- Seek to understand its impact on out theory
- Make a searching and fearless inventory of errors
- Acknowledge your mistakes
- Make amends for those mistakes
- Help others who must deal with the same issues
 - Attend INT Bayesian Program

Concerns...continued

- Is the first term expansion good enough?
- Can we extrapolate the correlation matrix from the fit $c_0,...c_k$ to the marginalization for truncated terms?

