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Simpler theory that reproduces results of full theory at long distances

Short-distance details irrelevant for long-distance (low-momentum) physics, 
e.g. multipole expansion

Expansion in ratio of physical scales: p/Λb

Symmetries of underlying theory limit possibilities: all possible terms up to a 
given order present in EFT

Short distances: unknown coefficients at a given order in the expansion need 
to be determined. Symmetry relates their impact on different processes

Examples: standard model, chiral perturbation theory, Halo EFT
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EFFECTIVE FIELD THEORY Monet (1881)

Control over unknown short-distance dynamics
⇒error grows as first omitted term in expansion
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A GENERIC EFT
Suppose we are interested in a quantity as a function of a momentum, p, 
that is small compared to some high scale, Λb.

EFT expansion for quantity is g(x) =
kX

i=0

Ai(x)x
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x =
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Ai(x) = ci(µ) + fi(x, µ) ci, fi = O(1) for µ ⇠ ⇤b, x ⇠ 1



              is a calculable function, that encodes IR physics at order i

ci is a low-energy constant (LEC): encodes UV physics at order i. Must 
be fit to data

Complications: multiple light scales, multiple functions at a given order, 
skipped orders, ….

A GENERIC EFT
Suppose we are interested in a quantity as a function of a momentum, p, 
that is small compared to some high scale, Λb.

EFT expansion for quantity is g(x) =
kX

i=0

Ai(x)x
i

fi(x, µ)

x =
p

⇤b

Ai(x) = ci(µ) + fi(x, µ) ci, fi = O(1) for µ ⇠ ⇤b, x ⇠ 1



TOY MODEL

y(x) =
kX

i=0

cix
i + �(x) + ✏; �(x) =

k
maxX

i=k+1

cix
i



TOY MODEL
One light scale, non-analytic pieces absent

y(x) =
kX

i=0

cix
i + �(x) + ✏; �(x) =

k
maxX

i=k+1

cix
i



TOY MODEL
One light scale, non-analytic pieces absent

Truncation error: what is the theoretical uncertainty associated with 
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Parameter estimation for LECs: given data on y over a range of x how 
best to determine the {ci}?

Fit range: manage trade-off between more data (decreased statistical error) and 
importance of Nk+1LO (increased truncation error)

Overfitting (too many terms given data) and underfitting (too few terms to describe it)
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THEORISTS ANONYMOUS

Admit that you have a problem: your theory has uncertainties

Acknowledge the existence of a higher power

Seek to understand its impact on our theory

Make a searching and fearless inventory of errors

Acknowledge your mistakes

Make amends for those mistakes

Help others who must deal with the same issues
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Posterior

Likelihood

Normalization

Prior

Probability as 
degree of belief

pr(A|B, I) =
pr(B|A, I)pr(A|I)

pr(B|I)

Marginalization: pr(x|data, I) =
Z

dy pr(x, y|data, I)

Allows us to integrate out “nuisance” (e.g. higher-order) parameters

pr(x|data, I) = pr(data|x, I)pr(x|I)
pr(data|I)

http://physics.stackexchange.com


OUTLINE

Introduction: EFT and Bayes 

Truncation errors in χEFT

Checking the residuals: error plots

Evidence ratio

Summary

R. J. Furnstahl, D. R. Phillips and S. Wesolowski, J. Phys. G 42, 034028 (2015)

R. J. Furnstahl, N. Klco, D. R. Phillips and S. Wesolowski,  Phys. Rev. C 92, 024005 (2015)

S. Wesolowski, N. Klco, R. J. Furnstahl, D. R. Phillips and A. Thapaliya, J. Phys. G. 43, 074001 (2016)
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Expansion in mπ/(MΔ-MN)≃MΔ-MN/Λ𝞆SB≃0.4

For proton electric polarizability, χEFT⇒

What is the theoretical uncertainty of this result, Δ2?

Rewrite as

We cannot know the result for c3 before we compute it

Two questions: 

What is expectation for c3 before we know c0, c1, c2?

In fact {cn}={1,-0.46,0.75}.  What then is expectation for c3?

One possibility: c3=max{c0,c1,c2}
Epelbaum, Krebs, Meissner (2014)

cf. McGovern, Griesshammer, Phillips (2013); many others. 
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PROBABILITY FOR EFT COEFFICIENTS

General EFT series for observable to order k: 

Compute conditional probability distribution: pr(ck+1|c0,…,ck,I)

I=information about 𝜒EFT, e.g. naturalness

“Prior A”: 

Uniformly distributed coefficients up to maximum, maximum distributed 
uniformly in its logarithm. ϵ→0+ at end

Prior expectations will guide result, but they are not be all and end all

Maximum of coefficients informed by known coefficients

Furnstahl, Klco, DP, Wesolowski, PRC, 2015

after Cacciari and Houdeau, JHEP, 2011

X = X0

kX

i=0

cix
i

pr(cn|c̄) =
1

2c̄
✓(c̄� |cn|); pr(c̄) = � 1

2 ln(✏)c̄
✓

✓
1

✏
� c̄

◆
✓(c̄� ✏)
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BAYES→RESULT

Bayes theorem: 

Marginalization: 

This is generic, but the integrals are simple in the case of  “Prior A”

pr(c̄|c0, c1, . . . , ck) =
pr(c0, c1, . . . , ck|c̄)pr(c̄)

pr(c0, c1, . . . , ck)

= Npr(c̄)⇧k
n=0pr(cn|c̄)

pr(ck+1|c0, c1, . . . , ck) =
Z 1

0
dc̄ pr(ck+1|c̄)pr(c̄|c0, c1, . . . ck)

pr(c̄|c0, c1, . . . , ck) /
⇢

0 if c̄ < max{c0, . . . , ck}
1/c̄k+2

if c̄ > max{c0, . . . , ck}

pr(ck+1

|c
0

, c
1

, . . . , ck) /
(

1 if ck+1

< c
max⇣

c
max

ck+1

⌘k+2

if ck+1

> c
max
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THE CANONICAL PROCEDURE
pr(Δk) α X0 xk+1 pr(ck+1)

68%, 95% DOB intervals from integration of probability distribution

Main feature is reduction by factor of x for each order; but tails also 
become steeper as more information on coefficients acquired

Not Gaussian!

[-cmax X0 xk+1,cmax X0 xk+1] is a                     DoB interval

x=0.33; cmax=1

k + 1

k + 2
⇤ 100%



I DON’T LIKE THAT PRIOR!
Modify Set A to restrict cbar to a finite range, e.g. A[0.25,4]

Set B: give cbar a log-normal prior: 

Set C:

Same formulas as before can be invoked. Now numerical.

You don’t like these? Pick your own and follow the rules… 

First omitted term approximation

pr(c̄) =
1p
2⇡c̄�

e�(log c̄)2/2�2

pr(cn|c̄) = 1p
2⇡c̄

e�c2n/2c̄
2

; pr(c̄) / 1
c̄ ✓(c̄� c̄<)✓(c̄> � c̄)

pr(ck+1|c0, c1, . . . , ck) =
Z 1

0
dc̄ pr(ck+1|c̄)pr(c̄|c0, c1, . . . ck)

pr(c̄|c0, c1, . . . , ck) = Npr(c̄)⇧k
n=0pr(cn|c̄)
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EKM’S NN SCATTERING ANALYSIS

NN cross section at Tlab=50, 
96, 143, 200 MeV

Potential regulated by local 
function, parameterized by R

EKM identify Λb=600 MeV 
for smaller R values 

Here: R=0.9 fm data

Results at LO, NLO, N2LO, 
N3LO, N4LO (k=0, 2, 3, 4, 5)

One outlier. Fitting 
procedure?
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kX
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cn(prel)
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⇤b

◆n

Epelbaum, Krebs, Meissner, PRC, 2015

x =
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⇤b

χEFT: 𝓛(N,π)→V(k)→δ
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CONSISTENCY?

Now we consider predictions at 
each order, with their error bars,  
as data and test them to see if the 
procedure is consistent 

Fix a given DOB interval, compute 
actual success ratio and compare

Look at this over EKM predictions 
at four different orders and four 
different energies

Interpret in terms of rescaling of 
Λb by a factor λ

No evidence for significant rescaling of Λb

after: Bagnaschi, Cacciari, Guffanti, Jenniches, 2015

Furnstahl, Klco, DP, Wesolowski, PRC, 2015
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Treat 19 coefficients as data and test for naturalness. 

Approach 1: coefficients should be normally distributed around a mean μ 
with a variance σ2.
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Treat 19 coefficients as data and test for naturalness. 

Approach 1: coefficients should be normally distributed around a mean μ 
with a variance σ2.

Approach 2:  see if 𝜒2 has size expected, assuming μ=0 and a particular σ. 

Forte, Isgro, Vita, PLB, 2014

�2 =
NOX

i=1

kX

n=0

 
|c(i)n |�n � µ

�

!2

Examine 𝜒2 as a function of rescaling parameter λ (we also included a 
Jeffreys prior for λ).

Approach 1 (σ2=1):

Approach 2 (σ2=1): λ=1.09 gives 𝜒2=19. λ=1.01→1.15 consistent.

� = 1.01+0.18
�0.19

No evidence for significant rescaling of Λb



CAVEATS
Naturalness of ci’s in x-expansion for NN cross section assumed.  Justified 
for perturbative process, but justification not so clear for NN

mπ not included in x (anticipate this is only a small effect)

We looked at results only for one R; at larger Rs the regulator effects 
dominate and:

The distribution {cn} is qualitatively different;

Λb  is identified as lower by EKM. Cutoff artefact, not true EFT breakdown 
scale

We took EKM’s LECs as given. LECs themselves have statistical 
errors, but we did not incorporate those in our analysis

LECs also have truncation errors, which should be included in their 
quoted errors



SUMMARY: PART 1

EFTs are well set up for uncertainty quantification, since the parametric 
form of higher-order terms is, in principle, known.

A Bayesian analysis of truncation error makes explicit assumptions about 
the pattern of EFT LECs, allowing rigorous consequences to be derived.

“Set Aϵ” prior justifies the standard EFT error estimation procedure; 
truncation errors quite stable under choice of other (reasonable) priors.

Analysis of residuals allows us to test if the EFT is working “as advertised”



UNCERTAINTY QUANTIFICATION IN 𝜒EFT
Chiral EFT predictions for p-d spin observables 

with theory errors from cutoff variation
This talk: truncation errors

Standard technique in few-nucleon 
𝜒EFT calculations had been to vary 

cutoff in reasonable range.

Epelbaum, Hammer,Meissner,RMP, 2009
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Size of error depends on how smart 
you are choosing regulator function;
Depends on range of cutoffs chosen;
Error does not necessarily decrease 
order-by-order;
Only captures errors from even 
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Statistical interpretation is not clear.
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UNCERTAINTY QUANTIFICATION IN 𝜒EFT

PROBLEMS WITH 
CUTOFF VARIATION

Chiral EFT predictions for p-d spin observables 
with theory errors from cutoff variation

Size of error depends on how smart 
you are choosing regulator function;
Depends on range of cutoffs chosen;
Error does not necessarily decrease 
order-by-order;
Only captures errors from even 
orders in the EFT;
Statistical interpretation is not clear.

This talk: truncation errors
Standard technique in few-nucleon 
𝜒EFT calculations had been to vary 

cutoff in reasonable range.

Cutoff variation is a regulator artefact which may or may 
not reflect full size of theory uncertainty

Epelbaum, Hammer,Meissner,RMP, 2009



REPRESENTATIVE EXAMPLES

Set C differs from Set A in that entire distribution of {cn} matters

Set Aϵ and Set Cϵ DOB intervals closest for most uniform {cn}

Choice of prior matters less and less at higher orders. At and beyond k=2 
different choice of priors affect 68% DOB interval by at most 10-15%

Updating refines knowledge of coefficients: Bayesian convergence

Bigger effect on 95% DOB interval

x=0.33


