

Baryon Spectroscopy: Data Consistency and Model Discrimination

D.G. Ireland

INT Program INT-16-2a, Bayesian Methods in Nuclear Physics, June 13 - July 8, 2016

Introduction

Why Spectroscopy?

A spectrum reveals the underlying nature of the physical system.

Baryon Summary Table

Figure 1: Particle Data Group listing 2014 [1]

	p	$1/2^{+}$	****	∆(1232)	$3/2^{+}$	****	Σ^+	$1/2^{+}$	****	<i>≡</i> 0	$1/2^{+}$	****	Λ_c^+	$1/2^{+}$	****
	n	$1/2^{+}$	****	$\Delta(1600)$	$3/2^{+}$	***	Σ^0	$1/2^{+}$	****	Ξ-	$1/2^{+}$	****	$\Lambda_{c}(2595)^{+}$	$1/2^{-}$	***
	N(1440)	$1/2^{+}$	****	$\Delta(1620)$	$1/2^{-}$	****	Σ^{-}	$1/2^{+}$	****	$\Xi(1530)$	$3/2^{+}$	****	$\Lambda_{c}(2625)^{+}$	$3/2^{-}$	***
	N(1520)	$3/2^{-}$	****	$\Delta(1700)$	$3/2^{-}$	****	Σ(1385)	$3/2^{+}$	****	$\Xi(1620)$		*	$\Lambda_{c}(2765)^{+}$		*
	N(1535)	$1/2^{-}$	****	$\Delta(1750)$	$1/2^{+}$	*	Σ(1480)		*	$\Xi(1690)$		***	$\Lambda_{c}(2880)^{+}$	$5/2^{+}$	***
	N(1650)	$1/2^{-}$	****	$\Delta(1900)$	$1/2^{-}$	**	Σ(1560)		**	$\Xi(1820)$	$3/2^{-}$	***	$\Lambda_{c}(2940)^{+}$		***
	N(1675)	$5/2^{-}$	****	$\Delta(1905)$	$5/2^{+}$	****	Σ(1580)	$3/2^{-}$	*	$\Xi(1950)$	-	***	$\Sigma_{c}(2455)$	$1/2^{+}$	****
	N(1680)	$5/2^{+}$	****	$\Delta(1910)$	$1/2^{+}$	****	$\Sigma(1620)$	$1/2^{-}$	*	Ξ(2030)	$\geq \frac{5}{2}$?	***	$\Sigma_{c}(2520)$	$3/2^{+}$	***
	N(1685)		*	$\Delta(1920)$	$3/2^{+}$	***	$\Sigma(1660)$	$1/2^{+}$	***	Ξ(2120)	-	*	$\Sigma_{c}(2800)$		***
	N(1700)	$3/2^{-}$	***	$\Delta(1930)$	$5/2^{-}$	***	$\Sigma(1670)$	$3/2^{-}$	****	Ξ(2250)		**	Ξ_c^+	$1/2^{+}$	***
	N(1710)	$1/2^{+}$	***	$\Delta(1940)$	$3/2^{-}$	**	$\Sigma(1690)$		**	Ξ(2370)		**	Ξ ⁰	$1/2^{+}$	***
	N(1720)	$3/2^{+}$	****	$\Delta(1950)$	$7/2^{+}$	****	Σ(1730)	$3/2^{+}$	*	Ξ(2500)		*	$\Xi_{c}^{\prime+}$	$1/2^{+}$	***
	N(1860)	$5/2^{+}$	**	$\Delta(2000)$	$5/2^{+}$	**	$\Sigma(1750)$	$1/2^{-}$	***				='0	$1/2^{+}$	***
	N(1875)	$3/2^{-}$	***	$\Delta(2150)$	$1/2^{-}$	*	$\Sigma(1770)$	$1/2^{+}$	*	Ω^{-}	$3/2^{+}$	****	$\Xi_{c}(2645)$	$3/2^{+}$	***
	N(1880)	$1/2^{+}$	**	$\Delta(2200)$	$7/2^{-}$	*	$\Sigma(1775)$	$5/2^{-}$	****	$\Omega(2250)^{-}$		***	$\Xi_{c}(2790)$	$1/2^{-}$	***
	N(1895)	$1/2^{-}$	**	$\Delta(2300)$	9/2+	**	$\Sigma(1840)$	$3/2^{+}$	*	$\Omega(2380)^{-}$		**	$\Xi_{c}(2815)$	3/2-	***
	N(1900)	$3/2^{+}$	***	$\Delta(2350)$	$5/2^{-}$	*	$\Sigma(1880)$	$1/2^{+}$	**	$\Omega(2470)^{-}$		**	$\Xi_{c}(2930)$	- / -	*
	N(1990)	$7/2^{+}$	**	<i>∆</i> (2390)	$7/2^{+}$	*	Σ(1900)	$1/2^{-}$	*				$\Xi_{c}(2980)$		***
	N(2000)	$5/2^{+}$	**	<i>∆</i> (2400)	9/2-	**	Σ(1915)	$5/2^{+}$	****				$\Xi_{c}(3055)$		**
	N(2040)	$3/2^{+}$	*	<i>∆</i> (2420)	$11/2^+$	****	Σ(1940)	$3/2^{+}$	*				$\Xi_{c}(3080)$		***
	N(2060)	5/2-	**	$\Delta(2750)$	$13/2^{-}$	**	Σ(1940)	$3/2^{-}$	***				$\Xi_{c}(3123)$		*
	N(2100)	$1/2^{+}$	*	$\Delta(2950)$	$15/2^+$	**	Σ(2000)	$1/2^{-}$	*				Ω^0	$1/2^{+}$	***
	N(2120)	$3/2^{-}$	**				Σ(2030)	$7/2^{+}$	****				$\Omega_{c}(2770)^{0}$	$3/2^{+}$	***
	N(2190)	7/2-	****	Λ	$1/2^{+}$	****	Σ(2070)	$5/2^{+}$	*					-/-	
	N(2220)	9/2+	****	Л(1405)	$1/2^{-}$	****	Σ(2080)	$3/2^{+}$	**				<u>=</u> +		*
	N(2250)	9/2-	****	A(1520)	3/2-	****	Σ(2100)	$7/2^{-}$	*				cc		
	N(2300)	$1/2^{+}$	**	A(1600)	$1/2^{+}$	***	Σ(2250)		***				Λ_{b}^{0}	$1/2^{+}$	***
	N(2570)	$5/2^{-}$	**	A(1670)	$1/2^{-}$	****	Σ(2455)		**				$\Lambda_{b}(5912)^{0}$	$1/2^{-}$	***
ļ	N(2600)	$11/2^{-}$	***	A(1690)	3/2-	****	Σ(2620)		**				$\Lambda_{b}(5920)^{0}$	3/2-	***
	N(2700)	$13/2^{+}$	**	A(1710)	$1/2^{+}$	*	Σ(3000)		*				Σ_b	$1/2^{+}$	***
				A(1800)	$1/2^{-}$	***	Σ(3170)		*				Σ_{h}^{*}	$3/2^{+}$	***

4

Baryon Spectrum (LQCD)

Figure 2: Lattice QCD calculation of baryon spectrum. From [2]

• Both lattice- and quark model calculations predict more states than observed

Resonance Hunting

Figure 3: Most resonance information is from partial wave analysis (PWA) of πN scattering

Resonance decays to other channels

Figure 4: Some resonances predicted to decay into strange channels [3].

7

Meson Photoproduction

Figure 5: Comparison of photoproduction channels

Kaon Photoproduction

Figure 6: Energy dependence of cross section

Kaon Photoproduction

Figure 7: Possible production scenario

$\vec{\gamma} p \rightarrow \textit{K} \Lambda$ Kinematics

Figure 8: Taken from [4]. Kinematic variables are *W* (hadronic mass) and $\theta_{c.m.}$ (scattering angle).

The transversity basis

Transversity amplitudes b_j (j = 1, 2, 3, 4): quantization axis perpendicular to reaction plane and the linear photon polarizations J_x and J_y

 $\begin{aligned} b_1 &= y \langle +|J_y| + \rangle_y, \\ b_2 &= y \langle -|J_y| - \rangle_y, \\ b_3 &= y \langle +|J_x| - \rangle_y, \\ b_4 &= y \langle -|J_x| + \rangle_y. \end{aligned}$

Normalized transversity amplitudes (NTA) a_j (j = 1, 2, 3, 4)

$$a_j \equiv \frac{b_j}{\sqrt{|b_1|^2 + |b_2|^2 + |b_3|^2 + |b_4|^2}},$$

The a_j are functions of W (hadronic mass) and $\theta_{c.m.}$ (scattering angle)

Type	Observable	Transversity representation	Helicity representation
S	σ	$ a_1 ^2 + a_2 ^2 + a_3 ^2 + a_4 ^2$	$ h_1 ^2 + h_2 ^2 + h_3 ^2 + h_4 ^2$
	Σ	$ a_1 ^2 + a_2 ^2 - a_3 ^2 - a_4 ^2$	$2\Re(h_1h_4^* - h_2h_3^*)$
	P	$ a_1 ^2 - a_2 ^2 + a_3 ^2 - a_4 ^2$	$2\Im(h_1h_3^* + h_2h_4^*)$
	T	$ a_1 ^2 - a_2 ^2 - a_3 ^2 + a_4 ^2$	$2\Im(h_1h_3^* + h_2h_4^*)$
BT	E	$2\Re(a_1a_3^* + a_2a_4^*)$	$ h_1 ^2 - h_2 ^2 + h_3 ^2 - h_4 ^2$
	F	$2\Im(a_1a_3^* - a_2a_4^*)$	$2\Re(h_1h_2^* + h_3h_4^*)$
	G	$2\Im(a_1a_3^* + a_2a_4^*)$	$-2\Im(h_1h_4^* + h_2h_3^*)$
	H	$-2\Re(a_1a_3^* - a_2a_4^*)$	$-2\Im(h_1h_3^* - h_2h_4^*)$
BR	C_x	$-2\Im(a_1a_4^* - a_2a_3^*)$	$2\Re(h_1h_3^*+h_2h_4^*)$
	C_z	$2\Re(a_1a_4^* + a_2a_3^*)$	$ h_1 ^2 + h_2 ^2 - h_3 ^2 - h_4 ^2$
	O_x	$2\Re(a_1a_4^* - a_2a_3^*)$	$-2\Im(h_1h_2^* - h_3h_4^*)$
	O_z	$2\Im(a_1a_4^* + a_2a_3^*)$	$2\Im(h_1h_4^* - h_2h_3^*)$
TR	T_x	$2\Re(a_1a_2^* - a_3a_4^*)$	$-2\Re(h_1h_4^* + h_2h_3^*)$
	T_z	$2\Im(a_1a_2^* - a_3a_4^*)$	$-2\Re(h_1h_2^* - h_3h_4^*)$
	L_x	$-2\Im(a_1a_2^*+a_3a_4^*)$	$2\Re(h_1h_3^* - h_2h_4^*)$
	L_z	$2\Re(a_1a_2^* + a_3a_4^*)$	$ h_1 ^2 - h_2 ^2 - h_3 ^2 + h_4 ^2$

13

$$\begin{split} \sigma_{Total} &= \sigma_0 \{ 1 - P_L^{\gamma} P_T^T P_y^R \sin(\phi) \cos(2\phi) + \Sigma (-P_L^{\gamma} \cos(2\phi) + P_T^T P_y^R \sin(\phi)) \\ &+ T (P_T^T \sin(\phi) - P_L^{\gamma} P_y^R \cos(2\phi)) + P (P_y^R - P_L^{\gamma} P_T^T \sin(\phi) \cos(2\phi)) \\ &+ E (-P_C^{\gamma} P_L^T + P_L^{\gamma} P_T^T P_y^R \cos(\phi) \sin(2\phi)) + F (P_C^{\gamma} P_T^T \cos(\phi) + P_L^{\gamma} P_L^T P_y^R \sin(2\phi)) \\ &- G (P_L^{\gamma} P_L^T \sin(2\phi) + P_C^{\gamma} P_T^T P_y^R \cos(\phi)) - H (P_L^{\gamma} P_T^T \cos(\phi) \sin(2\phi) - P_C^{\gamma} P_L^T P_y^R) \\ &- C_x (P_C^{\gamma} P_x^R - P_L^{\gamma} P_T^T P_z^R \sin(\phi) \sin(2\phi)) - C_z (P_C^{\gamma} P_z^R + P_L^{\gamma} P_T^T P_x^R \sin(\phi) \sin(2\phi)) \\ &- O_x (P_L^{\gamma} P_x^R \sin(2\phi) + P_C^{\gamma} P_T^T P_z^R \sin(\phi)) - O_z (P_L^{\gamma} P_z^R \sin(2\phi) - P_C^{\gamma} P_T^T P_x^R \sin(\phi)) \\ &+ L_x (P_L^T P_x^R \cos(\phi) + P_L^{\gamma} P_T^T P_z^R \cos(2\phi)) + L_z (P_L^T P_z^R \cos(\phi) + P_L^{\gamma} P_x^T \cos(2\phi)) \\ &+ T_x (P_T^T P_x^R \cos(\phi) - P_L^{\gamma} P_L^T P_z^R \cos(2\phi)) + T_z (P_T^T P_z^R \cos(\phi) + P_L^{\gamma} P_x^T \cos(2\phi)) \} \end{split}$$

Figure 10: Cross section as a function of beam $(P_{C,L}^{\gamma})$, target $(P_{L,T}^{T})$ and recoil $(P_{X,Y,Z}^{R})$ polarization

Usual process:

Usual process:

 Progress by fitting observables (cross sections, asymmetries) for several channels

Usual process:

- Progress by fitting observables (cross sections, asymmetries) for several channels
- o(10000) data points in total

Usual process:

- Progress by fitting observables (cross sections, asymmetries) for several channels
- o(10000) data points in total
- χ^2 minimization, occasionally event-by-event maximum likelihood

Usual process:

- Progress by fitting observables (cross sections, asymmetries) for several channels
- o(10000) data points in total
- χ^2 minimization, occasionally event-by-event maximum likelihood
- Different model frameworks (i.e. different theory groups) and different model content (choice of resonances, etc.)

Usual process:

- Progress by fitting observables (cross sections, asymmetries) for several channels
- o(10000) data points in total
- χ^2 minimization, occasionally event-by-event maximum likelihood
- Different model frameworks (i.e. different theory groups) and different model content (choice of resonances, etc.)
- Amplitude analysis ideally

Usual process:

- Progress by fitting observables (cross sections, asymmetries) for several channels
- o(10000) data points in total
- χ^2 minimization, occasionally event-by-event maximum likelihood
- Different model frameworks (i.e. different theory groups) and different model content (choice of resonances, etc.)
- Amplitude analysis ideally

Issues:

How accurate do measurements require to be?

Usual process:

- Progress by fitting observables (cross sections, asymmetries) for several channels
- o(10000) data points in total
- χ^2 minimization, occasionally event-by-event maximum likelihood
- Different model frameworks (i.e. different theory groups) and different model content (choice of resonances, etc.)
- Amplitude analysis ideally

- How accurate do measurements require to be?
- · How do we deal with measurements from different experiments?

Distinguishing Objects

- Resolve two objects
- Actual angular "distance"
- Instrumental resolution (aperture limit)
- Rayleigh Criterion: 1st diffraction minimum of object 1 ≤ distance to centre of object 2

Figure 11: Airy disk near Rayleigh Criterion.

Distinguishing Objects

Figure 12: Mapping between Amplitudes (*X*) and Observables (*Y*).

Model Discrimination from Cross Sections

$$\mathcal{A}[A,B] = \left| \frac{\frac{d\sigma}{d\Omega}(A) - \frac{d\sigma}{d\Omega}(B)}{\frac{d\sigma}{d\Omega}(A) + \frac{d\sigma}{d\Omega}(B)} \right|$$

- Measure for difference between the c.s. predictions
- Example: BnGa2014-02 vs. RPR-2011 predictions for $\gamma p \rightarrow K^+ \Lambda$
- Experimental resolution: $\Delta \sigma = \left(\Delta \frac{d\sigma}{d\Omega}\right) / \frac{d\sigma}{d\Omega}$
- $\overline{\mathcal{A}}(\mathsf{th}) \approx \overline{\Delta \sigma}(\mathsf{expt})$
- ArXiv: [5]

Model discrimination: distance in amplitude space

Measure to discriminate between two models for $p(\gamma, K^+)\Lambda$ in amplitude space?

• 4D-vector representation for NTA

$$\vec{\mathcal{M}}_{1}(s,t) = (a_{1} \ a_{2} \ a_{3} \ a_{4})^{T}$$

vectors on a 3-sphere in \mathbb{C}^4 (unit 7-sphere in $\mathbb{R}^8)$

• Distance between two models

$$\mathcal{D}\left[\vec{\mathcal{M}}_{1},\vec{\mathcal{M}}_{2}
ight]=\operatorname{arccos}\operatorname{Re}\left(\vec{\mathcal{M}}_{1}^{\dagger}\cdot\vec{\mathcal{M}}_{2}
ight)$$

• Dependence on arbitrary phase: $\vec{\mathcal{M}}_2(\alpha'_4 = 0)$ and vary α_4 in $\vec{\mathcal{M}}_1(\alpha_4 = 0)$ such that $\mathcal{D}\left[\vec{\mathcal{M}}_1, \vec{\mathcal{M}}_2\right]$ is minimized

Example Comparison

Figure 13: Distance measure in amplitude space for BnGa versus RPR-2011

Model discrimination: distance in amplitude space

- Blue line: random samples in NTA amplitude space
- D[RPR-2011,RPR2011*]: Resolution required to hunt a resonance (D₁₃(1900))
- D[RPR-2011,Regge]: Resolution required to determine "the" background
- D[RPR-2011,KM]: Resolution required to discriminate between RPR-2011 and Kaon-MAID

- 1. Bootstrap: M sets of data $\{A_i^j \pm \delta A_i^j, i = 1, ..., N\}, j = 1, ..., M$
- 2. χ^2 fit to extract amplitudes for each set of synthetic data
- 3. Histogram solutions in amplitude space

- 1. Bootstrap: M sets of data $\{A_i^j \pm \delta A_i^j, i = 1, ..., N\}, j = 1, ..., M$
- 2. χ^2 fit to extract amplitudes for each set of synthetic data
- 3. Histogram solutions in amplitude space

Red: accuracy = 0.1; Blue: accuracy = 0.01

(i) "mathematically complete set": $\{A_i^{\exp}\}_1 = \{\frac{d\sigma}{d\Omega}, \Sigma, T, P, C_x, O_x, E, F\}$

- 1. Bootstrap: M sets of data $\{A_i^j \pm \delta A_i^j, i = 1, ..., N\}, j = 1, ..., M$
- 2. χ^2 fit to extract amplitudes for each set of synthetic data
- 3. Histogram solutions in amplitude space

(i) "mathematically complete set": $\{A_i^{\exp}\}_1 = \{\frac{d\sigma}{d\Omega}, \Sigma, T, P, C_x, O_x, E, F\}$ (ii) $\{A_i^{\exp}\}_2 = \{A_i^{\exp}\}_1 + \{C_z, O_z, G\}$

- 1. Bootstrap: M sets of data $\{A_i^j \pm \delta A_i^j, i = 1, ..., N\}, j = 1, ..., M$
- 2. χ^2 fit to extract amplitudes for each set of synthetic data
- 3. Histogram solutions in amplitude space

(i) "mathematically complete set": $\{A_i^{\exp}\}_1 = \{\frac{d\sigma}{d\Omega}, \Sigma, T, P, C_x, O_x, E, F\}$ (ii) $\{A_i^{\exp}\}_2 = \{A_i^{\exp}\}_1 + \{C_z, O_z, G\}$ (iii) $\{A_i^{\exp}\}_3 = \{A_i^{\exp}\}_2 + \{H\}$

1. Bootstrap: M sets of data $\{A_i^j \pm \delta A_i^j, i = 1, ..., N\}, j = 1, ..., M$

- 2. χ^2 fit to extract amplitudes for each set of synthetic data
- 3. Histogram solutions in amplitude space

(i) "mathematically complete set": $\{A_i^{\exp}\}_1 = \{\frac{d\sigma}{d\Omega}, \Sigma, T, P, C_x, O_x, E, F\}$ (ii) $\{A_i^{\exp}\}_2 = \{A_i^{\exp}\}_1 + \{C_z, O_z, G\}$ (iii) $\{A_i^{\exp}\}_3 = \{A_i^{\exp}\}_2 + \{H\}$ (iv) $\{A_i^{\exp}\}_4 = \{A_i^{\exp}\}_3 + \{T_x, T_z, L_x, L_z\}$

Compare bootstrap method:

To MCMC (nested sampling):

Resolving power of $p(\gamma, K^+)\Lambda$ polarization data?

The darker the color, the better the reaction amplitudes are determined by the data

All data in grids:
1. ΔW = 20 MeV

2. $\Delta \cos \theta_{c.m.} = 0.1$.

- 2241 single polarization observables (Σ, P, T)
- 452 double polarization observables (beam-recoil, target-recoil, beam-target)

Key Points:

Key Points:

• Introduced distance measure between models in amplitude space.

Key Points:

- Introduced distance measure between models in amplitude space.
- Experimental data must lead to PDFs in amplitude space that have smaller dispersions than characteristic distances between models.

Key Points:

- Introduced distance measure between models in amplitude space.
- Experimental data must lead to PDFs in amplitude space that have smaller dispersions than characteristic distances between models.
- The power of new measurements can be analysed using synthetic data from models, plus realistic experimental uncertainties.

Key Points:

- Introduced distance measure between models in amplitude space.
- Experimental data must lead to PDFs in amplitude space that have smaller dispersions than characteristic distances between models.
- The power of new measurements can be analysed using synthetic data from models, plus realistic experimental uncertainties.
- Bootstrap and MCMC (Nested Sampling) give similar distributions.

Key Points:

- Introduced distance measure between models in amplitude space.
- Experimental data must lead to PDFs in amplitude space that have smaller dispersions than characteristic distances between models.
- The power of new measurements can be analysed using synthetic data from models, plus realistic experimental uncertainties.
- Bootstrap and MCMC (Nested Sampling) give similar distributions.

Questions:

• How to extend this for distributions over kinematic variables?

Fierz Identity Comparison: $\gamma + p \rightarrow K + \Lambda$

For $\gamma + N \rightarrow \text{p.s.} \text{ meson} + \text{baryon}$

$$O_x^2 + O_z^2 + C_x^2 + C_z^2 + \Sigma^2 - T^2 + P^2 = 1$$

Figure 14: Open circles - $C_x^2 + C_z^2$ [4]; Filled - $1 - \Sigma^2 + T^2 - P^2 - O_x^2 - O_z^2$ [6]

The constraints among observables, e.g.:

 $O_x^2 + O_z^2 + C_x^2 + C_z^2 + \Sigma^2 - T^2 + P^2 = 1$

stem from the constraint among amplitudes:

$$|a_1|^2 + |a_2|^2 + |a_3|^2 + |a_4|^2 = 1$$

i.e. surface of a unit 7-sphere in \mathbb{R}^8

The constraints among observables, e.g.:

$$O_x^2 + O_z^2 + C_x^2 + C_z^2 + \Sigma^2 - T^2 + P^2 = 1$$

stem from the constraint among amplitudes:

$$|a_1|^2 + |a_2|^2 + |a_3|^2 + |a_4|^2 = 1$$

i.e. surface of a unit 7-sphere in \mathbb{R}^8

- Can we map PDFs in observable space to PDF in amplitude space?
- If so, can we project amplitude PDF back into a joint observable PDF?

Two amplitudes, four observables:

$$\frac{d\sigma}{d\Omega} = |f|^2 + |g|^2$$
$$A = |f|^2 - |g|^2$$
$$R = -2 \operatorname{Re} (fg^*)$$
$$P = 2 \operatorname{Im} (fg^*)$$

Normalize:

$$|f|^2 + |g|^2 = 1$$

Constraint:

$$A^2 + R^2 + P^2 = 1$$

Figure 15: $\pi^- p$ (left) and $\pi^+ p$ (right) polarization observables

- Generate "true" synthetic data
- Generate statistical uncertainty
- Sample from $\mathcal{N}(\mu, \sigma)$
- Add systematic error

Observables	А	R	Р
"True" values	0.35	0.09	0.93
"Smeared"	0.10 ± 0.45	0.14 ± 0.14	0.93 ± 0.06
Systematic Error	0.04	0.06	-0.09

Unconstrained PDF

- Use emcee
- Sample from 3D Gaussian
- Mean and standard deviation from smeared data
- Assume uncorrelated measurements
- Corner plot with true values indicated

Observables	А	R	Р
"True" values	0.35	0.09	0.93
Unconstrained MCMC	0.10 ± 0.44	0.14 ± 0.14	0.93 ± 0.06

Constrained PDF

- Use emcee
- Sample from amplitude space
- Calculate likelihood from 3D Gaussian
- Corner plot with true values indicated

Observables	А	R	Р
"True" values	0.35	0.09	0.93
Unconstrained MCMC	0.04 ± 0.25	0.14 ± 0.14	0.95 ± 0.04

Next steps

π -N Scattering Roadmap

- Generate large sample of synthetic data
- For each data set:
 - · select different experimental uncertainty
 - select different systematic uncertainty
- Analyse all sets statistically
- Apply to measured data

Further work

- Apply procedure to pseudoscalar meson photoproduction
- Other reactions?

Question: How to cope with different bins?

Key Points:

Key Points:

• Independent polarization measurements lead to observables that are projections of the same amplitudes

Key Points:

- Independent polarization measurements lead to observables that are projections of the same amplitudes
- Map observable PDFs into amplitude space PDFs and combine.

Key Points:

- Independent polarization measurements lead to observables that are projections of the same amplitudes
- Map observable PDFs into amplitude space PDFs and combine.
- Inverse map of amplitude PDF to observable space

Key Points:

- Independent polarization measurements lead to observables that are projections of the same amplitudes
- Map observable PDFs into amplitude space PDFs and combine.
- Inverse map of amplitude PDF to observable space
- Needs to be extended to pseudoscalar meson photoproduction (4 amplitudes), and other reactions?

Key Points:

- Independent polarization measurements lead to observables that are projections of the same amplitudes
- Map observable PDFs into amplitude space PDFs and combine.
- Inverse map of amplitude PDF to observable space
- Needs to be extended to pseudoscalar meson photoproduction (4 amplitudes), and other reactions?

Questions:

· Can this be used to detect inconsistent data?

Key Points:

- Independent polarization measurements lead to observables that are projections of the same amplitudes
- Map observable PDFs into amplitude space PDFs and combine.
- Inverse map of amplitude PDF to observable space
- Needs to be extended to pseudoscalar meson photoproduction (4 amplitudes), and other reactions?

- Can this be used to detect inconsistent data?
- How to deal with kinematic bins that partially overlap?

Conclusion

Summary

Model Discrimination

• We are still not sure of the spectrum of baryons

Model Discrimination

• We are still not sure of the spectrum of baryons

Model Discrimination

• We need an analogue of a Rayleigh Criterion

• We are still not sure of the spectrum of baryons

Model Discrimination

• We need an analogue of a Rayleigh Criterion

Data Consistency

• {Work in progress}: Create joint observable PDFs

• We are still not sure of the spectrum of baryons

Model Discrimination

• We need an analogue of a Rayleigh Criterion

- {Work in progress}: Create joint observable PDFs
- Clean or process data for model inference

[In addition to members of the Glasgow group]

- CLAS Collaboration: Meson Photoproduction measurements
- J. Nys and J. Ryckebusch (University of Gent, Belgium): Model Discrimination

Backup Slides

References I

K. A. Olive and P. D. Group, Chinese Phys. C 38, 090001 (2014).

- R. G. Edwards, J. J. Dudek, D. G. Richards, and S. J. Wallace, Phys. Rev. D 84, 074508 (2011).
- S. Capstick and W. Roberts,
 Phys. Rev. D 58, 074011 (1998).
- R. Bradford et al.,

Phys. Rev. C 75, 035205 (2007).

- J. Nys, J. Ryckebusch, D. G. Ireland, and D. I. Glazier, (2016), 1603.02001.
- CLAS Collaboration, C. A. Paterson *et al.*,
 Phys. Rev. C 93, 065201 (2016).