Probing Neutron Star Interiors with Gravitational Waves

Katerina Chatziioannou Montana State University

with Kent Yagi, Antoine Klein, Neil Cornish, and Nico Yunes

INT, 2016

Can you spot the Gravitational Wave?

S

Cornish

Exciting Times for Gravitational Wave Astrophysics!

Ρ

LIGO

- Gravitational Waves and Data Analysis
- Neutron Star Compact Binaries
- Model Selection
- Results

Gravitational Waves

Definition: Wave-like perturbation of the gravitational field $\Box h_{\mu\nu} = T_{\mu\nu}$ **Generation:** Accelerating masses (changing quadrupole and higher multipole moments) $h_{ij} \sim \frac{1}{R} \frac{d^2 Q_{ij}}{dt^2}$ **Amplitude:** Small $h \sim \frac{G}{c^4} \frac{mu^2}{R} \sim 10^{-22}$ **Propagation:** Light speed, weakly interacting Spectr

***um:** Kepler 3rd Law:
$$f \sim \sqrt{\frac{m}{r_{12}^3}} \sim \frac{1}{m}$$
, $E_{rad} \sim \% m$

Example: for GW150914, $E_{\rm GW} \sim 3M_{\odot} \sim 10^3 E_{SN} \sim 0.6 E_{\rm GRB}$

Gravitational Wave Detectors

Gravitational Wave Data Analysis

Fit the data with a theoretical model for the GW signal

Bayesian Probability Theory

Degree of belief interpretation of probability

Initial Understanding + New Observations = Updated Understanding

$$p(\vec{x})$$
 $p(d|\vec{x})$ $p(\vec{x}|d)$

Prior + Likelihood = Posterior

Bayes' Theorem

$$p(\vec{x}|d, M) = \frac{p(\vec{x}|M)p(d|\vec{x}, M)}{p(d|M)}$$

Evidence

$$p(d|M) = \int p(\vec{x}|M)p(d|\vec{x}, M)d\vec{x}$$

Probability of model M $p(M|d) \sim p(M)p(d|M)$

Odds ratio

Quasicircular Compact Binary Inspirals

NS/NS:	[20 mins, 10,000 cycles, (10-a few k)Hz]	~400km
BH/NS:	[(3-7) mins, (1,000-5,000) cycles, (10-merger)Hz]	~(500-700)km
BH/BH:	[secs - mins, (100-700) cycles, (10-merger)Hz]	~(600-1000)km

Compact Binary System

 $\vec{x} = (m_1, m_2, \vec{S_1}, \vec{S_2}, D_L, \theta_N, \phi_N, \theta_L, \phi_L, t_c, \phi_c)$

Coalescing Neutron Stars and Nuclear Physics

Hotokezaka et al.

Ρ

Neutron Star Inspirals

Tidal deformability $Q_{ij} = -\lambda \mathcal{E}_{ij}$

Calder

Tidal Deformability

$\vec{x} = (m_1, m_2, \vec{S}_1, \vec{S}_2, D_L, \theta_N, \phi_N, \theta_L, \phi_L, t_c, \phi_c)$

$+\{\lambda_i(m_i, \text{EoS}), Q_i(m_i, \text{EoS})\}$

=19 parameters

Tidal Deformability

We can measure the tidal deformability* with a few bright sources

Read et al. (2009) Del Pozzo et al. (2013) Wade et al. (2014) Agathos et al. (2015) Lackey and Wade (2015)

Equation of State

EoS	Method/Model	Composition
AP4	variational	n, p, e, μ
GCR	variational	n
$_{\rm SV}$	\mathbf{SHF}	n, p, e, μ
SGI, SkI4	\mathbf{SHF}	n, p, e, μ
$\text{DBHF}^{(2)}(A)$	BHF	n, p, e, μ
MPa	BHF	n, p, e, μ
G4, GA-FSU 2.1	\mathbf{RMF}	n, p, e, μ
SGI-YBZ6-S $\Lambda\Lambda$ 3, SkI4-YBZ6-S $\Lambda\Lambda$ 3	SHF	n, p, e, μ , H
NIY5KK*	BHF	n, p, e, μ , H
MPaH	BHF	n, p, e, μ , H
H4	\mathbf{RMF}	n, p, e, μ , H
SGI178	\mathbf{SHF}	n, p, e, μ , K
SV222	\mathbf{SHF}	n, p, e, μ , K
GA-FSU2.1-180	\mathbf{RMF}	n, p, e, μ , K
ALF4, ALF5	variational	n, p, e, μ , π , Q
GCR-ALF	variational	n, Q
SQM3	MIT bag	Q (u, d, s)

Tidal Deformability

We can measure the tidal deformability* with a few bright sources

Read et al. (2009) Del Pozzo et al. (2013) Wade et al. (2014) Agathos et al. (2015) Lackey and Wade (2015)

Equations of State

EoS	Method/Model	Composition
AP4	variational	n, p, e, μ
GCR	variational	n
$_{\rm SV}$	\mathbf{SHF}	n, p, e, μ
SGI, SkI4	\mathbf{SHF}	n, p, e, μ
$\text{DBHF}^{(2)}(A)$	BHF	n, p, e, μ
MPa	BHF	n, p, e, μ
G4, GA-FSU 2.1	\mathbf{RMF}	n, p, e, μ
SGI-YBZ6-SAA3, SkI4-YBZ6-SAA3	SHF	n, p, e, μ , H
NIY5KK*	BHF	n, p, e, μ , H
MPaH	BHF	n, p, e, μ , H
${ m H4}$	RMF	n, p, e, μ , H
SGI178	SHF	n, p, e, μ , K
SV222	SHF	n, p, e, μ , K
GA-FSU2.1-180	\mathbf{RMF}	n, p, e, μ , K
ALF4, ALF5	variational	n, p, e, μ , π , Q
GCR-ALF	variational	n, Q
SQM3	MIT bag	Q (u, d, s)

Can GWs Distinguish NS Binaries with Different Internal Composition ?

Model Selection

We need to calculate the evidence and the odds ratio

$$\mathcal{O}_{ij} = \frac{p(M_i)}{p(M_j)} \frac{p(d|M_i)}{p(d|M_j)}$$

How much we believe in each model <u>before</u> acquiring the data. Based on our previous experience, observational evidence, and theoretical understanding of the Universe.

Which of two competing model fits the data at hand better.

S

S

$$BF = \frac{p(d|M_i)}{p(d|M_j)}$$

When is the BF 'large enough'?

BF	Interpretation
<1	Negative
<3	Barely worth mentioning
<10	Strong
<100	Very Strong
>100	Desicive

Jeffreys scale of BF interpretation

The Evidence (or the ratio)

- Laplace Approximation
- Schwarz-Bayes Information Criterion
- Reversible Jump MCMC
- Thermodynamic Integration
- Nested Sampling
- Savage-Dickey Density Ratio

Model Parameters

$\vec{x} = (m_1, m_2, \vec{S}_1, \vec{S}_2, D_L, \theta_N, \phi_N, \theta_L, \phi_L, t_c, \phi_c)$

 $+{EoS}$

15 continuous parameters, and 1 discrete

Reversible Jump Markov Chain Monte Carlo

Bayes Factor = $\frac{\# \text{ of iterations in model 1}}{\# \text{ of iterations in model 2}}$

Errors (with RJMCMC)

Bayes Factor =
$$\frac{\# \text{ of iterations in model } 1}{\# \text{ of iterations in model } 2}$$

For well-mixed chains

$$\operatorname{Var}(BF) = BF^2 \left(\frac{N_1 - N_{12}}{N_1 N_{12}} + \frac{N_2 - N_{21}}{N_2 N_{21}} \right)$$

Prior

 m_1 Uniform in $[0.1, 3.2]M_{\odot}$ m_2 e_z^D Uniform in \vec{S}_2 \vec{S}_1 $\hat{L}(heta_L,\phi_L)$ direction and magnitude in $[0, m_i^2]$ \sqrt{S} \vec{S}_2 m_2 m_1 Uniform in D_L θ_N volume L ${ \theta_N \over \phi_N }$ Uniform in $_{\mathbb{P}}^{D}_{y}$ the sky $egin{array}{l} heta_L \ \phi_L \end{array}$ ϕ_N Uniform in e_x^D direction

Likelihood: the Noise Model

$$p(d|h) = p(d - R[h]) = p(n)$$

Correlated Gaussian noise

$$p(n_1...n_N) = \frac{1}{\sqrt{\det(2\pi C)}} e^{-\frac{1}{2}n_i C_{ij}^{-1} n_j}$$

Stationary noise

$$C_{f_i f_j} \sim \delta_{ij} S(f_i)$$

Likelihood:the Noise Model

Easier to evaluate

$$n_i C_{ij}^{-1} n_j = (n|n) \sim \int \frac{\tilde{n}(f)\tilde{n}^*(f)}{S(f)} df$$

Our noise model

$$p(d|\vec{x}) \sim e^{-\frac{(d-h(\vec{x})|d-h(\vec{x}))}{2}}$$

Noise

Building Models

Models: Inspiral GW

$$\vec{x} = (m_1, m_2, \vec{S}_1, \vec{S}_2, D_L, \theta_N, \phi_N, \theta_L, \phi_L, t_c, \phi_c) + \{\text{EoS}\}$$

• GW described by \vec{x} ,

 $(m_1, m_2) \le M_{\max}(\text{EoS})$

• No GW,

otherwise

Reasonably fast to evaluate

Prior

Provides access to the entire prior volume

(essential to pass the constant likelihood test)

<u>Jiggle</u>

Search around the current position

Fisher

Jump along the eigendirections (scaled by the eigenvalues) of the *Fisher* Information Matrix

 $F_{ij} = (h_{,i}|h_{,j})$

<u>Langevin</u>

jump along the likelihood gradient

Differential Evolution

(technically it is not memoryless)

Model jumps

Pilot runs

<u>Sky jumps</u>

Customized

S

Finding the Highest Peak in Gallatin Range

MCMC

Multi-Modal Distributions

 $p(d|\vec{x}) \to p(d|\vec{x})^{1/T}$

Kirkpatrick, Gelatt, Vecchi (1983) Swendsen, Wang (1986)

Parallel Tempering

Our Analysis

E-G	$N_{-1} = 1/N_{-1}$	O
EoS	Method/Model	Composition
AP4	variational	n, p, e, μ
GCR	variational	\mathbf{n}
SV	\mathbf{SHF}	n, p, e, μ
SGI, SkI4	\mathbf{SHF}	n, p, e, μ
$\text{DBHF}^{(2)}(A)$	BHF	n, p, e, μ
MPa	BHF	n, p, e, μ
G4, GA-FSU 2.1	RMF	n, p, e, μ
SGI-YBZ6-SAA3, SkI4-YBZ6-SAA3	SHF	n, p, e, μ , H
$NlY5KK^*$	BHF	n, p, e, μ , H
MPaH	BHF	n, p, e, μ , H
${ m H4}$	\mathbf{RMF}	n, p, e, μ , H
SGI178	\mathbf{SHF}	n, p, e, μ , K
SV222	\mathbf{SHF}	n, p, e, μ , K
GA-FSU2.1-180	RMF	n, p, e, μ , K
ALF4, ALF5	variational	n, p, e, μ , π , Q
GCR-ALF	variational	n, Q
SQM3	MIT bag	Q (u, d, s)

If an EoS with kaons fits the data better than an otherwise identical EoS without kaons, then we have detected kaons in a NS interior

Bayes Factors

Ρ

	Strange Quark Stars	Hybrid Quark Stars	Kaons	Hyperons
aLIGO	Yes!	Maybe	Unlikely	Unlikely
SNR	20	30-40	50-60	50-60
mass	$(1.2, 1.5) M_{\odot}$	$1.4 M_{\odot}$	$2 M_{\odot}$	$2 M_{\odot}$

Mass Matters

Systematic Errors: our models might be wrong

General Relativity might be wrong Perturbative models not accurate enough Models not accurate astrophysically Unkown noise contribution Detector Calibration

Statistical Errors: finite signal strength Width of the Posterior Noise Realization Marginalization Further meaningful comparisons Inspiral phase: improve modeling Merger phase: modeling

Efficient trans-model jumps Exploration of disfavored models Thermodynamic Integration Merger phase: unmodeled search

The Edge of the Prior

Occam Penalty

A model that requires more parameters to fit the data is penalized

But what if it's the denominator that changes between the various models?

 $\delta \theta$

 $\Delta \theta$

Toy Model

We get N data from a signal d(f) = f

Two competing models $\begin{array}{c} h_1 = af \qquad a \in (0,2) \\ h_2 = af^{1.5} \quad a \in (0,2\kappa) \end{array}$

Likelihood

$$L_i = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\sum_{i=1}^{N} \frac{[d(f) - h_i(f)]^2}{2\sigma^2}\right\}$$

S

Same Dimensionality, Different Prior Volume

