Probing Neutron Star Interiors with Gravitational Waves

Katerina Chatziioannou Montana State University

with Kent Yagi, Antoine Klein, Neil Cornish, and Nico Yunes

INT, 2016

Can you spot the Gravitational Wave?

S Cornish Cornish

Exciting Times for Gravitational Wave Astrophysics!

- Gravitational Waves and Data Analysis
- Neutron Star Compact Binaries
- Model Selection
- Results

Gravitational Waves

P

Definition: Wave-like perturbation of the gravitational field $\Box h_{\mu\nu}=T_{\mu\nu}$ **Generation:** Accelerating masses (changing quadrupole and higher multipole moments) d^2Q_{ij} 1 $h_{ij} \sim$ *dt*² *R* **Amplitude:** Small mu^2 *G* $\sim 10^{-22}$ $h \sim$ c^4 *R* **Propagation:** Light speed, weakly interacting r *m*

[Lousto, RIT Group]
\n
$$
t=87 M
$$

\nLousto, RIT Group]
\n15-10-15
\n15-10-15
\n15-10-15
\n15-10-5
\n5X

Spectrum: Kepler 3rd Law: $f \sim \sqrt{\frac{R}{r_{12}^3}} \sim \frac{1}{m}$, $E_{rad} \sim \%m$ r_{12}^3 \sim 1 *m*

Example: for GW150914, $E_{\rm GW} \sim 3 M_{\odot} \sim 10^3 E_{SN} \sim 0.6 E_{\rm GRB}$

Gravitational Wave Detectors

Gravitational Wave Data Analysis

Fit the data with a theoretical model for the GW signal

Bayesian Probability Theory

Degree of belief interpretation of probability

Initial Understanding + New Observations = Updated Understanding

$$
p(\vec{x}) \qquad \qquad p(d|\vec{x}) \qquad \qquad p(\vec{x}|d)
$$

Prior + Likelihood = Posterior

Bayes' Theorem

Evidence

$$
p(\vec{x}|d, M) = \frac{p(\vec{x}|M)p(d|\vec{x}, M)}{p(d|M)}
$$

 $p(d|M) = \int$ $p(\vec{x}|M)p(d|\vec{x},M)d\vec{x}$

 $p(M|d) \sim p(M)p(d|M)$ Probability of model M

Quasicircular Compact Binary Inspirals

Compact Binary System

 $\vec{x} = (m_1, m_2, S)$ $\bar{\bar{S}}$ \mathcal{L}_1, S \bar{S} $\phi_L, D_L, \theta_N, \phi_N, \theta_L, \phi_L, t_c, \phi_c)$

Coalescing Neutron Stars and Nuclear Physics

Hotokezaka et al.

P

Neutron Star Inspirals

P

Tidal deformability $Q_{ij} = -\lambda \mathcal{E}_{ij}$

Tidal Deformability

$\vec{x} = (m_1, m_2, S)$ $\bar{\bar{S}}$ \mathcal{L}_1, S \bar{S} $\phi_L, D_L, \theta_N, \phi_N, \theta_L, \phi_L, t_c, \phi_c)$

$+$ *{* $\lambda_i(m_i, \text{EoS})$ *,* $Q_i(m_i, \text{EoS})$ }

=19 parameters

Tidal Deformability

We can measure the tidal deformability* with a few bright sources

Read et al. (2009) Del Pozzo et al. (2013) Wade et al. (2014) Agathos et al. (2015) Lackey and Wade (2015)

Equation of State

Tidal Deformability

P

We can measure the tidal deformability* with a few bright sources

Read et al. (2009) Del Pozzo et al. (2013) Wade et al. (2014) Agathos et al. (2015) Lackey and Wade (2015)

Equations of State

Can GWs Distinguish NS Binaries with Different Internal Composition? We need to calculate the evidence and the odds ratio

$$
O_{ij} = \frac{p(M_i)}{p(M_j)} \frac{p(d|M_i)}{p(d|M_j)}
$$

How much we believe in each model before acquiring the data. Based on our previous experience, observational evidence, and theoretical understanding of the Universe.

Which of two competing model fits the data at hand better.

S

S

$$
BF = \frac{p(d|M_i)}{p(d|M_j)}
$$

When is the BF 'large enough'?

Jeffreys scale of BF interpretation

The Evidence (or the ratio)

- Laplace Approximation
- Schwarz-Bayes Information Criterion
- Reversible Jump MCMC
- Thermodynamic Integration
- Nested Sampling
- Savage-Dickey Density Ratio

Model Parameters

$\vec{x} = (m_1, m_2, S)$ $\bar{\bar{S}}$ \mathcal{L}_1, S \bar{S} $\phi_L, D_L, \theta_N, \phi_N, \theta_L, \phi_L, t_c, \phi_c)$

+*{*EoS*}*

15 *continuous* parameters, and 1 *discrete*

Reversible Jump Markov Chain Monte Carlo

Bayes Factor = $\frac{\# \text{ of iterations in model 1}}{400}$ $\#$ of iterations in model 2

Errors (with RJMCMC)

Bayes Factor =
$$
\frac{\text{# of iterations in model 1}}{\text{# of iterations in model 2}}
$$

For well-mixed chains

$$
Var(BF) = BF^{2} \left(\frac{N_{1} - N_{12}}{N_{1}N_{12}} + \frac{N_{2} - N_{21}}{N_{2}N_{21}} \right)
$$

Prior

e Dz e_y^D e_x^D ϕ_N θ_N $\hat{L}(\theta_L, \phi_L)$ ∇^2 $\vec{S_2}$ m_1 \overline{m}_2 *D L* Uniform in the sky Uniform in volume Uniform in direction Uniform in $[0.1, 3.2]M_{\odot}$ *m* 1 *m* 2 $\vec{S_2}$ \vec{S}_1 D_L θ_N $\vec{\phi_N}$ θ_L ϕ_L Uniform in direction and magnitude in [0*, m* 2*i*]

Likelihood: the Noise Model

$$
p(d|h) = p(d - R[h]) = p(n)
$$

Correlated *Gaussian* noise

$$
p(n_1...n_N) = \frac{1}{\sqrt{\det(2\pi C)}}e^{-\frac{1}{2}n_iC_{ij}^{-1}n_j}
$$

Stationary noise

$$
C_{f_i f_j} \sim \delta_{ij} S(f_i)
$$

Likelihood:the Noise Model

Easier to evaluate

$$
n_i C_{ij}^{-1} n_j = (n|n) \sim \int \frac{\tilde{n}(f)\tilde{n}^*(f)}{S(f)} df
$$

Our noise model

$$
p(d|\vec{x}) \sim e^{-\frac{(d-h(\vec{x})|d-h(\vec{x}))}{2}}
$$

Noise

Building Models

Models: Inspiral GW

$$
\vec{x} = (m_1, m_2, \vec{S}_1, \vec{S}_2, D_L, \theta_N, \phi_N, \theta_L, \phi_L, t_c, \phi_c) + \text{EoS}
$$

• GW described by \vec{x} , $(m_1, m_2) \leq M_{\text{max}}(\text{EoS})$

• No GW, and the contract otherwise

Reasonably fast to evaluate

Prior

Provides access to the entire prior volume

> *(essential to pass the constant likelihood test)*

Jiggle

Search around the current position

Fisher

Jump along the eigendirections (scaled by the eigenvalues) of the **Fisher Information Matrix**

Langevin

jump along the likelihood gradient

Differential Evolution

(technically it is not memoryless)

Model jumps

Pilot runs

Sky jumps

Customized

S

Finding the Highest Peak in Gallatin Range

MCMC

Multi-Modal Distributions

 $p(d|\vec{x}) \rightarrow p(d|\vec{x})^{1/T}$

S

Kirkpatrick, Gelatt, Vecchi (1983) Swendsen, Wang (1986)

Parallel Tempering

Our Analysis

P

If an EoS **with kaons** fits the data better than an otherwise identical EoS **without kaons**, then we have **detected** kaons in a NS interior

Bayes Factors

P

Mass Matters

Systematic Errors: our models might be wrong

Perturbative models not accurate enough Models not accurate astrophysically Unkown noise contribution General Relativity might be wrong Detector Calibration

Statistical Errors: finite signal strength Width of the Posterior Noise Realization Marginalization

Further meaningful comparisons Inspiral phase: improve modeling Merger phase: modeling

Merger phase: unmodeled search Efficient trans-model jumps Exploration of disfavored models Thermodynamic Integration

The Edge of the Prior

Occam Penalty

A model that requires more parameters to fit the data is penalized

But what if it's the denominator that changes between the various models?

 $\delta\theta$ $\Delta\theta$ *Toy Model*

We get N data from a signal $d(f) = f$

Two competing models $h_1 = af \t a \in (0, 2)$ $h_2 = af^{1.5}$ $a \in (0, 2\kappa)$

Likelihood

$$
L_i = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\sum_{i=1}^{N} \frac{[d(f) - h_i(f)]^2}{2\sigma^2}\right\}
$$

S

Same Dimensionality, Different Prior Volume

S