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Can you spot the Gravitational Wave?

CornishS



Exciting Times for Gravitational Wave Astrophysics!

LIGOP



From now on…

• Gravitational Waves and Data Analysis 

• Neutron Star Compact Binaries 

• Model Selection 

• Results
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Gravitational Waves
[Lousto, RIT Group]Definition: Wave-like perturbation of 

the gravitational field

Generation: Accelerating masses 
(changing quadrupole and 
higher multipole moments)

Propagation:

Spectrum: Kepler 3rd Law:                                     ,  

Light speed, weakly 
interacting

Example: for GW150914,

Amplitude: Small
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Gravitational Wave Detectors
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Gravitational Wave Data Analysis

Fit the data with a theoretical model for the GW signal

d

4) Is this just noise?

1) Get data

2) Select a model

3) Calculate the residual

Likelihood

r = d�R[h0(~x)]

h

0(~x)

p(r) = p(n) = p(d|h0(~x))

data detector  
response 

noise

d = R[h(~x)] + n
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Bayesian Probability Theory

Degree of belief interpretation of probability 

Initial Understanding + New Observations = Updated Understanding

p(~x)
p(d|~x) p(~x|d)

Prior             +        Likelihood        =          Posterior

Bayes’ Theorem

S
Evidence

p(~x|d,M) =
p(~x|M)p(d|~x,M)

p(d|M)

p(d|M) =

Z
p(~x|M)p(d|~x,M)d~x



p(M |d) ⇠ p(M)p(d|M)

Oij =
p(Mi|d)
p(Mj |d)Odds ratio

=
p(Mi)p(d|Mi)

p(Mj)p(d|Mj)
Bayes
Factor

Bayesian Model Selection

Probability of model M

S

(the evidence 
from before)



Quasicircular Compact Binary Inspirals

[20 mins, 10,000 cycles, (10-a few k)Hz]NS/NS:

Ohme

BH/NS:

BH/BH:

[(3-7) mins, (1,000-5,000) cycles, (10-merger)Hz]

[secs - mins, (100-700) cycles, (10-merger)Hz]

~400km

~(500-700)km

~(600-1000)km
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Compact Binary System
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Coalescing Neutron Stars and Nuclear Physics

Hotokezaka et al.

AP4MS1
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Neutron Star Inspirals

Calder

Tidal deformability

Qij = ��Eij
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Tidal Deformability

+{�i(mi,EoS), Qi(mi,EoS)}

=19 parameters

P
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Tidal Deformability

We can measure the tidal deformability*  
with a few bright sources

Read et al. (2009) 
Del Pozzo et al. (2013) 

Wade et al. (2014) 
Agathos et al. (2015) 

Lackey and Wade (2015)
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Equation of State

P



Tidal Deformability
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Equations of State

Can GWs Distinguish NS Binaries  
with Different Internal Composition ?S



Model Selection

S

We need to calculate the evidence and the odds ratio

Oij =
p(Mi)

p(Mj)

p(d|Mi)

p(d|Mj)

How much we  
believe in each model 

before acquiring the data. 
Based on our previous  

experience, observational 
evidence, and theoretical 

understanding of the Universe.

Which of two competing  
model fits the data at  

hand better.



Bayes Factor

S

BF =
p(d|Mi)

p(d|Mj)

When is the BF ‘large enough’?

BF Interpretation

<1 Negative

<3 Barely worth mentioning

<10 Strong

<100 Very Strong

>100 Desicive

Jeffreys scale 
of BF 

interpretation
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The Evidence (or the ratio)

• Laplace Approximation 
• Schwarz-Bayes Information Criterion

• Thermodynamic Integration 
• Nested Sampling 
• Savage-Dickey Density Ratio

• Reversible Jump MCMC



Model Parameters

+{EoS}

15 continuous parameters, and 1 discrete

S

~x = (m1,m2,
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S1,
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Reversible Jump Markov Chain Monte Carlo

1

2

Bayes Factor =

# of iterations in model 1

# of iterations in model 2
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Errors (with RJMCMC)

For well-mixed chains

Var(BF) = BF2
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Prior
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Likelihood: the Noise Model

p(n1...nN ) =
1p

det(2⇡C)
e�

1
2niC

�1
ij nj

S

Correlated Gaussian noise

Stationary noise

p(d|h) = p(d�R[h]) = p(n)

Cfifj ⇠ �ijS(fi)



Likelihood:the Noise Model

niC
�1
ij nj = (n|n) ⇠

Z
ñ(f)ñ⇤(f)

S(f)
df
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Easier to evaluate

Our noise model

p(d|~x) ⇠ e

� (d�h(~x)|d�h(~x))
2



Noise 
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Building Models

(Blanchet, LRR)

Gµ⌫ =
8⇡G

c4
Tµ⌫
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Models: Inspiral GW 

Reasonably fast to evaluate  

+{EoS}

• GW described by    , (m
1

,m
2

)  M
max

(EoS)

otherwise• No GW,

~x = (m1,m2,
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~x
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Proposal Distribution

Prior

Jiggle

Provides access to the  
entire prior volume

Search around the  
current position

(essential to pass 
the constant  

likelihood test)

~✓ + ~✏
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Proposal Distribution

Fisher

Jump along the  
eigendirections (scaled by  

the eigenvalues) of the  
Fisher Information Matrix

Fij = (h,i|h,j)
1 1.5 2 2.5 3 3.5 4

m1(MO.)
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χ m

Langevin

jump along the  
likelihood gradient
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Proposal Distribution

Differential Evolution

(technically it is  
not memoryless)

Braak (2005)

Model jumps

Pilot runs
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Proposal Distribution

Sky jumps

Customized
LIGO
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Finding the Highest Peak in Gallatin Range

Cornish

Electric Peak: 3,343 m
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MCMC

Cornish



S

Multi-Modal Distributions

p(d|~x) ! p(d|~x)1/T

primary mode

secondary mode
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Exchanges

Wide	 exploration

Limited	 exploration

Good	 solutions

exchange	 

Kirkpatrick, Gelatt, Vecchi (1983) 
Swendsen, Wang (1986)
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Parallel Tempering

Cornish



Our Analysis

P

If an EoS with kaons fits the data better than an  
otherwise identical EoS without kaons, then we 

have detected kaons in a NS interior



Bayes Factors
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Results

Strange Quark 
Stars

Hybrid 
Quark Stars Kaons Hyperons

aLIGO Yes! Maybe Unlikely Unlikely

SNR 20 30-40 50-60 50-60

mass (1.2, 1.5)M� 2M� 2M�1.4M�

P
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Errors

Systematic Errors: our models might be wrong

Statistical Errors: finite signal strength

Perturbative models not accurate enough 
Models not accurate astrophysically
Unkown noise contribution

General Relativity might be wrong

Width of the Posterior
Noise Realization
Marginalization

Detector Calibration



Further meaningful comparisons

Further work

P

S

Thank you!
Merger phase: unmodeled search

Inspiral phase: improve modeling
Merger phase: modeling

Efficient trans-model jumps
Exploration of disfavored models
Thermodynamic Integration



The Edge of the Prior

S

It is possible 
for the wrong 
model to be 
preferred. 

Or for the correct 
model to be preferred 

less and less 
as the signal strength 

increases
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Occam Penalty

A model that requires more parameters  
to fit the data is penalized

�✓

�✓

But what if it’s the denominator  
that changes between the  

various models?
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Toy Model

We get N data from a signal d(f) = f

Two competing models
h1 = af

h2 = af1.5

Likelihood

Li =
1p
2⇡�

exp

(
�

NX
[d(f)� hi(f)]2

2�2

)

a 2 (0, 2)

a 2 (0, 2)
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Same Dimensionality, Different Prior Volume

h1 = af

h2 = af1.5

a 2 (0, 2)

a 2 (0, 2)


