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Model comparison approaches we will discuss:

1. Akaike Information Criterion (AIC)
2. Deviance Information Criterion (DIC)
3. Bayesian Information Criterion (BIC)
4. Bayes Factors
5. Watanabe-Akaike Information Criterion (WAIC)
6. Mixture Models

This is NOT a comprehensive list of model comparison methods!



Akaike Information Criterion (AIC)

AIC = −2 log L(θ̂MLE ) + 2k,

where
L(θ) is the likelihood function of parameter vector θ

θ̂MLE is the maximum likelihood estimate of θ,
k is # of parameters, i.e., the dimension of θ.

Notes on AIC:
I Balances the model’s quality of fit (analogous to χ2 goodness of fit)

and parsimony of the model
I Not a measure of whether the model is true, only a relative measure

when comparing to AICs for alternative models
I Cannot make use of prior information



Deviance Information Criterion (DIC)
Can be thought of as a Bayesian version of AIC =
−2 log L(θ̂MLE ) + 2k, with two changes:
1. Replace θ̂MLE with θ̂Bayes = E (θ̂|Y ) (the posterior mean)
2. Replace the number of parameters k with a bias correction

based on data:

p = 2
(
log L(θ̂Bayes)− Eθ|Y log L(θ)

)
This results in

DIC = −2 log L(θ̂Bayes) + 2p

Notes on DIC:
I More natural than AIC from Bayesian point of view
I Unlike AIC, does not require maximizing the likelihood and is easy

to calculate using MCMC samples from the posterior
I Requires the mean to be a good summary of the posterior (not the

case if the distribution is heavily skewed or bimodal)



Bayes Factors (BF)
Suppose there are two competing models M1 and M2, which
apriori we believe to be equally likely. Then we can compute the
posterior odds of M1:

p(M1|Y )
p(M2|Y ) = p(M1)

p(M2) ×
p(Y |M1)
p(Y |M2) = p(Y |M1)

p(Y |M2)
def= BF ,

that is, BF is just the ratio of the marginal density of the data
under model 1 to that under model 2, and the more BF exceeds 1,
the more evidence in favor of M1 over M2. Furthermore,

BF = p(Y |M1)
p(Y |M2) =

∫
p(Y |θ1,M1)p(θ1|M1)dθ1∫
p(Y |θ2,M2)p(θ2|M2)dθ2

Notes on BF:
I Works well when the set of candidate models is truly discrete
I Marginal distribution of the data under each model must be proper

(otherwise, the ratio is not well defined)



Bayesian Information Criterion (BIC)

Computing Bayes factors requires computing the marginal density
of the data under a given model:

p(Y |M) =
∫

p(Y |θ,M)p(θ|M)dθ

This integral can be difficult or intractable and is often
approximated using the Laplace approximation (Taylor expansion
around the MLE), which can be shown to be

log p(Y |M) ≈ log p(Y |M, θ̂MLE )− k/2 log N
= log L(θ̂MLE )− k/2 log N

(where N = sample size). Multiplying the result by -2 gives rise to
BIC:

BIC = −2 log L(θ̂MLE ) + k log N



BIC cont’d
Notes on BIC:

I Model with minimum BIC is the model with the largest approximate
marginal density

I Very similar to AIC, but places much higher penalty on complexity
than AIC, particularly for large N

I As N →∞, the probability that BIC will pick the correct model
approaches 1 (asymptotic consistency), unlike AIC, which will favor
models that are too complex

I For smaller N, however, it often picks models that are too simple
(due to heavy penalty on complexity)

I If all models are assumed to be equally likely,
p(Mi |Y ) ∝ P(Y |Mi) ≈ e− 1

2 BICi , we can use BIC to estimate
p(Mi |Y ):

p(Mi |Y ) ≈ e− 1
2 BICi∑m

j=1 e− 1
2 BICj



Watanabe-Akaike Information Criterion (WAIC)

I Gelman et al. 2013 advocate using cross-validation rather
than the criteria discussed above

I However, cross-validation can be computationally expensive
I WAIC is a cheaper approximation to cross-validation



Mixture Models

Given two candidate models M1 and M2 with parameters θ1 and
θ2, respectively, model the data as their mixture:

Y ∼ δ · p(Y |M1,θ1) + (1− δ) · p(Y |M2,θ2)

with 0 ≤ δ ≤ 1.

The value of δ is the probability that the data are generated
according to model M1.

Thus, the objective here is to obtain the posterior distribution of δ
via MCMC (or can use the EM algorithm if want to get its MLE).

See, for example, Kamary et al. (2014).



Bayesian Model Averaging

Rather than select one model, it may be appropriate to compute
the weighted average of several models’ predictions with weights
equal to individual model’s posterior probability.

Can be computationally difficult, but several approaches to simplify
the computation have been proposed over the years.
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