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Cast of thousands have participated in the 
experiments discussed  

•  Mike Grosskopf 

•  Dave Higdon 

•  Center for Radiative Shock Hydrodynamics 

•  Center for Exascale Radiation Transport 
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Outline 

•  Computer model examples 
 
•  Bayesian inference 

•  Bayesian approach to inverse problem 

•  Markov chain Monte Carlo (MCMC) 

•  Model calibration with limited model evaluations 
     … and Gaussian process emulation 

•  Model calibration with discrepancy 
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Before we get started… 

•  Afternoons 

•  … and this afternoon 



 
                          Department of Statistics and Actuarial Science 

statisticsandbeerday.wordpress.com 
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Many processes are investigated using 
computational models 

•  Many scientific applications use mathematical models to 
describe physical systems  

•  The computer models frequently: 

1.  require solutions to PDEs or use finite element analysis 
2.  have high dimensional inputs 
3.  have outputs which are complex functions of the input factors 
4.  require a large amounts of computing time 
5.  have features from some of the above  
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•  Understanding the response of glaciers to climate is important 
globally for making accurate projections of sea level change 

•  Changes in glaciers can be the product of changes to the 
surface mass balance (accumulation and ablation)  

•  Have computer model to describe, say, ablation (output) given 
the season’s weather trajectory (input) 

•  Have observations collected twice annually 

Glacier evolution 
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Dark energy investigation 
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Center for Radiative shock Hydrodynamics 
(CRASH) 

A radiative shock is a wave in 
which both hydrodynamic and 
radiation transport physics play a 
significant role in the shock’s 
propagation and structure 
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Have several outputs & inputs 

•  Outputs (   ) 
–  Shock location 
–  Shock breakout 

time 
–  Wall shock location 
–  Axial centroid of Xe 
–  Area of dense Xe 

Shock location 

y ✓

We measured and 
computed 

Shocks at 13 ns  

Goal:  
 
1.  build a predicative 

model using 
observations and 
physics model  

 
2.  constrain calibration 

parameters 
 

•  Calibration parameters (   ) 
–  Electron flux limiter 
–  Laser scale factor 

•  Inputs (X ) 
–  Observation time 
–  Laser energy 
–  Be disk thickness 
–  Xe gas pressure 

 



 
                          Department of Statistics and Actuarial Science 

Center for Exascale Radiation Transport  
(CERT)  

•  Focus on development of computational techniques for 
efficiently simulating thermal radiation propagation using 
exascale computers  

•  Development of predictive science techniques to quantify 
uncertainty in simulated results 

•  Radiation propagation plays a major role in high-energy density 
laboratory physics experiments 

•  Have experiments and have computational model 
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Have a really good computational model, but … 

•  For this application, the Boltzmann equation 
(linearized) should exactly represent the 
mean of the physical process if the impurities 
in the graphite are known 

•  Problem is that it is too computationally 
intensive to do this for the system at a level 
of fidelity that they would like 

•  Have observations from CERT model and 
experiments 

•  Would like to characterize brick impurities 
and “validate” model graphite 

“brick” 
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Common thread: combining simulations, field 
observations for prediction, calibration and 

uncertainty quantification 
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Calibration: finding input parameter settings 
consistent with observations 

Prediction of new observations with uncertainty 

1 ns, 3.8 kJ laser irradiates Be disk 
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Bayesian inference 

•  The goal is to learn about the unknowns (say,   ) from the observables 

•  We have some idea about the unknowns captured in our prior distributions 
(       ) 

•  We also have some idea about how the observables depend on the unknowns 
given by the data generating mechanism (likelihood), 

•  Inference is done via the posterior distribution: 

•  Note the denominator is a constant, so  

 

θ

⇡ (✓)

⇡ (✓|y) = f(y|✓)⇡(✓)R
f(y|✓)⇡(✓)d✓

f(y|✓)

⇡ (✓|y) / f(y|✓)⇥ ⇡(✓)
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Very general look at Bayes rule 

 

•  posterior pdf              describes uncertainty in    given data  
•  prior pdf for    is required 
•  inference proceeds through the samples from posterior distribution  

⇡ (✓)/ ⇥⇡ (✓|y) f (y|✓)

⇡ (✓|y)
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Example: Mean of a Gaussian with known variance 

•    
 
•    
 
•  Observations:   
 

•    

y1, y2, . . . , yn

⇡(✓|y) / exp

✓
� 1

2�2
(✓ � µ)2

◆
exp

 
� 1

2�2

nX

i=1

(yi � ✓)2
!

✓|y ⇠ N(⌫, �2)

⌫ =
n
�2 ȳ +

1
�2µ

n
�2 + 1

�2
� =

✓
n

�2
+

1

�2

◆�1

y|✓ ⇠ N(✓,�2)

✓ ⇠ N(µ, �2)

Likelihood 

Prior distribution 

Posterior distribution 
(without the 
normalizing 
constant) 

y = ⇥ + �•    Model: 
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Basic inverse problem (calibration) 
(Will take a Bayesian approach) 

•  Have a computer model that is a function of inputs, t and x 

•  The computer model represents the mean of a physical system 

•  Have noisy observations from the field that have been 
observed at t =   and, possibly different values of x 

•  Unfortunately,   is not known to the experimenters 

θ

θ
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Basic inverse problem  
 

•  Two types of inputs: 
–  Design inputs (x): inputs that can be measured or adjusted in the 

field 

–  Calibration inputs: inputs that are needed to run the model, may 
govern the behaviour of the physical system, but whose value is not 
known in the experiments 

 
•  Goal: estimate the calibration parameters,  , using field 

observations and computational model 

 

θ



 
                          Department of Statistics and Actuarial Science 

Statistical formulation 

•   Model for field observations:  
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Likelihood 

•  Probability distribution of the data given the model parameters 
(assume the variance is known for this example) 

f(yf |x, ✓) / exp

✓
�1

2�2
(yf � ⌘(x, ✓))T (yf � ⌘(x, ✓))

◆
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General Bayesian approach 

•  Collect data from a process with probability density f ( ) (likelihood)… joint 
distribution of the obseervations given unknown parameters 

•  Summarize our belief about parameters with a distribution (prior distribution) 
 

•  Update our belief in parameters using Bayes’ rule (posterior distribution) 

•  The Bayesian approach uses probability to describe what is known about 
random variables and also parameters  

•    
 
•    

⇡ (✓|yf , x) =
f(yf |x, ✓)⇡(✓)R
f(yf |x, ✓)⇡(✓)d✓

Denominator (normalizing constant) 
usually hard to find 

/ ⇥
⇡ (✓|yf , x) f(yf |x, ✓) ⇡ (✓)
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Bayes rule for this problem 

 

•  very general approach for inference 
•  posterior pdf                   describes uncertainty in    given data  
•  prior pdf for    is required 
•  inference proceeds through the samples from posterior distribution  

⇡ (✓)/ ⇥f (yf |x, ✓)⇡ (✓|yf , x)

⇡ (✓|yf , x)



 
                          Department of Statistics and Actuarial Science 

Exploring the posterior distribution 

•  Use Markov chain Monte Carlo (MCMC) to build a Markov 
chain with limit distribution  

•  Realizations are a draw from posterior distribution  
•  Need not be normalized 

Nick Metropolis MANIAC I 2-d pdf MCMC sample 
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Metropolis-Hastings recipe for MCMC 

0.    Initialize chain at  
1.  Given current realization of    , generate     from a symmetric 

distribution 
2.  Compute the acceptance probability 
3.  Set                 with probability   , otherwise  
4.  Iterate steps 1-3  

✓0

✓t ✓⇤

✓t+1 = ✓⇤ ↵ ✓t+1 = ✓t

Notice that the normalizing 
constants cancel 
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Comment on Metropolis-Hastings 

•  Metropolis-Hastings proposal distribution in step 1?  
–  Symmetric distribution centered at last accepted value  
     e.g.,                                       or   

–  Wide variance: explores the parameter space but rarely accepts proposals  

–  Small variance: accepts almost every proposed value (about as good as the 
last accepted value) but is takes a long time to explore the posterior 
distribution 

•  Normal random walk proposal distribution and Normal-ish target 
density, the optimal proposal width has acceptance rate of 44% for 1-d 

•  About 25% for larger than 4-d 

✓⇤ ⇠ U(✓t � c, ✓t + c) ✓⇤ ⇠ N(✓t,�2)
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Metropolis sampling for the inverse problem 

•  Chain                             is a draw from 
 
•  By the law of large numbers the distribution of our sample will 

converge to the target posterior distribution eventually 

•  Use Monte Carlo realizations to estimate expectations,  
     variances, prediction uncertainty, etc. 

✓0, ✓1, . . . , ✓4000 ⇡ (✓|yf , x)
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Can we trust our answer? 

•  MCMC uses similar diagnostic principles as optimization 

•  Write out a list of potential things you need to try to make sure 
optimization worked 

–  Run multiple chains and see if they converge to the same distribution 
–  Find and discard burn-in, keep only the recurrent part of the Markov Chain  
–  Tuning MCMC proposal distribution for better success 

•  Myriad of diagnostics to assess chains 
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Sample parameter(s) 
from  

 

Prediction strategy at new input, x* 

Evaluate 
 
 

•  Can use predictive posterior distribution to get point estimates and 
prediction intervals 

⇡ (✓|yf , x)
⌘(x⇤

, ✓)
Sample noise 

 
 

✏ ⇠ N(0,�2)

Make prediction 
 
 

yf (x
⇤) = ⌘(x⇤

, ✓) + ✏
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Limited simulator evaluations 

•  Frequently, the simulator is too slow to embed in the MCMC 

•  Instead, will use a limited number of runs of the computer 
model (computer experiment) to build a surrogate model 

•  Will model      and    simultaneously 

•  Model       using a Gaussian process model (GP) 

⌘( ) ✓

⌘( )
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Basic inverse problem – Hard to evaluate 
computer model 

•  Where,                         
–       system response 
–       simulator response at input t 
–       calibration parameter(s)   
–       random error 
θ

Have data from 2 separate 
sources – field observations 
and computer model outputs 
  
Problem is to estimate the 
calibration parameters 
 
Perhaps make predictions 

yf
ys

✏

Process mean was embedded 
in the previous solution 

ys(x, t) = ⌘(x, t)

yf (x, ✓) = ⌘(x, ✓) + ✏

Kennedy and O’Hagan, 2001 
Higdon et al., 2008 
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Aside: Use Gaussian processes for emulating 
computer model output 

•  GP’s have proven effective for emulating computer model 
output (Sacks et al., 1989)  

•  Emulating computer model output 
–  output varies smoothly with input changes  
–  output is noise free 
–  passes through the observed response 
–  GP’s outperform other modeling approaches in this arena 
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Aside: Why a statistical emulator? 

•  Can only run the code a limited number of times  
–  where to run the code 
–  how many times do you run the code  

•  Want to predict output with uncertainty at un-observed 
inputs… need foundation for statistical inference 
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Aside: Statistical formulation for GP emulation of 
computer models 

•  Computer model:  

•  Function is expensive so, get to observe a sample of n runs 
from the computer model 

•  Specify a set of inputs where we will run the code 
 
•  Run the code and get the outputs 
 
 

⌘ : Rd ! R

yT = (y1, y2, . . . , yn)

Usually scale inputs to unit cube 

x1,x2, . . . ,xn
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Aside: Statistical formulation for GP emulation of 
computer models 

•  Will view the computer code as a single realization of a 
Gaussian process : 

where, 

 
 
 
 
•  For n data points, will have the covariance matrix,  
 

 

y(x) = µ+ z(x)

E (z(x)) = 0

V ar (z(x)) = �2

Corr (z(x), z(x0)) =
dY

i=1

e

��i(xi�x

0
i)

2

⌃ = �2R

z(x) ⇠ N(0,�2)

y ⇠ N(µ1n,⌃)
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Aside: Realizations of a GP for a fixed model 
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Aside: The parameters have meaning 

•  The mean,   , is the mean over all realizations 

•  Making the variance,    , larger re-scales the vertical axis 

•  If           , the function does not vary with respect to this input 

•  When    is big, the function will be wigglier (a technical term?)  

•  Response where the inputs are close together will be more 
highly correlated that inputs that are far apart 

µ

�2

�i = 0

�i
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Aside: Can emulate computer model with 
uncertainty 

True function, emulated mean 
function and 95% prediction intervals 

Y(
x)

 

True function and observations 

Y(
x)

 

Y(
x)
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Basic inverse problem – Hard to evaluate 
computer model 

•  Where,                         
–       system response 
–       simulator response at input t 
–       calibration parameter(s)   
–       random error 
θ

Have data from 2 separate 
sources – field observations 
and computer model outputs 
  
Problem is to estimate the 
calibration parameters 
 
Perhaps make predictions 

yf
ys

✏

Process mean was embedded 
in the previous solution 

ys(x, t) = ⌘(x, t)

yf (x, ✓) = ⌘(x, ✓) + ✏

Kennedy and O’Hagan, 2001 
Higdon et al., 2008 
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•  View computational model as a 
draw of a random process 

•  Denote vectors of simulation 
trials as and field 
measurements as 

          and      respectively 

•  Suppose that these are n and  
m -vectors respectively 

•  Can combine sources of 
information using a single GP 

Hierarchical model is used to combine simulations 
and observations 

ys yf 0

@
ys

yf

1

A ⇠ MVN (µ,⌃⌘ + ⌃✏)

ys(x, t) = ⌘(x, t)

yf (x, ✓) = ⌘(x, ✓) + ✏

Independent Gaussian process 
models 

⌃⌘ + ⌃✏ = ⌃⌘ +

✓
0 0
0 �2

✏ In

◆
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Use a Bayesian specification for model 
parameters 

•  Parameters to be estimated:   ,    ,   ,      and 

•  Need to specify prior distributions for each 

•  Usually inverse gamma priors for variances and expert 
knowledge for calibrations parameters 

•  Often use exponential priors for correlation parameters 

•  Use MCMC to draw samples from joint posterior distribution 

 

µ ��2
✏ �2

⌘ ✓
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Prediction strategy 

•  Can use posterior predictive distribution to get point estimates and 
prediction intervals 

•  Attempts to get full accounting of uncertainty 

Sample parameter(s) 
from  

 

Emulate 
 
 

⌘(x⇤
, ✓)

Sample noise 
 
 

Make prediction 
 
 

yf (x
⇤) = ⌘(x⇤

, ✓) + ✏

⇡

�
µ,�

2
⌘,�,�

2
✏ , ✓

��
x, yf )

✏ ⇠ N(0,�2
✏ )
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Model calibration – Idea 

a)   Model runs b) Data and prior 
uncertainty              

c) Posterior mean for 
  

⌘(x, t)

d) Calibrated simulator prediction e) Calibrated prediction 
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•  Have observations from CERT model and experiments 

•  Experiment data: 
–  6 experiments (different bricks) 
–  Responses: Ratio of counts with/counts without graphite 

•  CERT Model runs 
–  64 simulations of the computational model with inputs chosen using maximin 

Latin-hypercube design 
–  Inputs: Axial position and Impurity Concentration 
–  Response: Ratio of count rates (with/without) graphite 

•  Goal: Characterize impurities in the graphite… what does this mean? 

Example 
Center for Exascale Radiation Transport  

(CERT)  
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Idea: without data 
Ra

tio
 

Ra
tio

 

Ra
tio

 

Possible impurities correspond to 
possible ratios 

Courtesy of Mike Grosskopf 
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Idea: with data 

Ra
tio

 

Ra
tio

 

Field data 

Field data help constrain 
impurity concentration 



 
                          Department of Statistics and Actuarial Science 

Our interest was in posterior distribution for the 
calibration parameters 

Source Position 
 Parent Distribution

C
ou
nt
s

0.0 0.2 0.4 0.6 0.8 1.0

0
20
0

40
0

60
0

80
0

Impurity Concentration 
 Parent Distribution

0.0 0.2 0.4 0.6 0.8

0
50
0

10
00

15
00

20
00
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Mathematical models are a computer 
implementation of what we know 

•  So, we have mathematical models to represent physical systems 

•  What are they? 
–  They are an implementation of our knowledge about the system at 

hand 

•  Problem: We may not know everything about the system 

•  Problem: Even if we know about everything, we not be able to 
compute what we want to compute 
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What happens if the model is not quite right 

•  The computer model gives us insight into the system 

•  Does it help us predict the system response? 

•  If not, how can a statistical formulation help us? 
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Model calibration – Statistical formulation 

•  Where,                         
–      model or system inputs;  
–      system response 
–      simulator response 
–      calibration parameters   
–      random error 

x

θ

yf (x, ✓) = ⌘(x, ✓) + �(x) + ✏

ys(x, t) = ⌘(x, t)

✏

yf
ys

Have data from 2 separate 
sources – field observations 
and computer model outputs 
  
Also have a model for 
systematic discrepancy, 

�(x)

Kennedy and O’Hagan, 2001 
Higdon et al., 2008 
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Model calibration – Statistical formulation 

yf (x, ✓) = ⌘(x, ✓) + �(x) + ✏

ys(x, t) = ⌘(x, t)

Gaussian process models 
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Have Gaussian process model for the discrepancy 

•  GP’s are the same for the simulator and error terms as 
specified previously 

•  For the discrepancy, will also specify a GP (though this is not 
always a great idea) 

•  For all the field observations:  
  

E (�(x)) = 0

V ar (�(x)) = �2
�

Corr (�(x), �(x0)) =
dY

i=1

e

��i(xi�x

0
i)

2

�(X) ⇠ N(0,�2
�R�) ⌘ N(0,⌃�)
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•  View computational model as a 
draw of a random process 
(again!!) 

•  Denote vectors of simulation 
trials as and field 
measurements as 

          and      respectively 

•  Suppose that these are n and  
m -vectors respectively 

•  Can combine sources of 
information using a single GP 

Hierarchical model is used to combine simulations 
and observations with discrepancy 

ys yf

yf (x, ✓) = ⌘(x, ✓) + �(x) + ✏

ys(x, t) = ⌘(x, t)

0

@
ys

yf

1

A ⇠ MVN (µ,⌃⌘ + ⌃� + ⌃✏)
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Calibration idea: Discrepancy model  
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 (f) calibrated prediction
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h = vertical distance = 1
2
× g× t2

Simple'case'study:'dropping'balls'from'
a'tower'

•  Can'get'field'data'from'tossing'
objects'off'of'floors'1=6.'

•  Have'computaBonal'model'
which'predicts'drop'Bmes'
given'ball'radius,'density,'and'
floor.'

•  ComputaBonal'model'has'
parameter'for'air'fricBon'which'
depends'on'cross'secBon,'
density'and'velocity.'

•  Have'baseball,'basketball,'golf'
ball,'tennis,'light'&'heavy'
bowling'balls.'

•  Want'to'predict'soHball'drop'
Bme'from'10th'floor'(100m).'

•  Also'want'to'understand'the'
value'of'various'types'of'
potenBal'experiments'&'
simulaBons'for'the'soHball'
predicBon'at'100m.'

Slide'1'

radius'

de
ns
it
y'

physics'design'space'

golf'

baseball'

tennis'

soHball'

basketball'

light'bowling'

bowling'

Basic ball drop example 

d 2h
dt2

= g
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bowling ball
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softball

Basic ball drop example 
Simple'case'study:'dropping'balls'from'

a'tower'
•  Can'get'field'data'from'tossing'

objects'off'of'floors'1=6.'

•  Have'computaBonal'model'
which'predicts'drop'Bmes'
given'ball'radius,'density,'and'
floor.'

•  ComputaBonal'model'has'
parameter'for'air'fricBon'which'
depends'on'cross'secBon,'
density'and'velocity.'

•  Have'baseball,'basketball,'golf'
ball,'tennis,'light'&'heavy'
bowling'balls.'

•  Want'to'predict'soHball'drop'
Bme'from'10th'floor'(100m).'

•  Also'want'to'understand'the'
value'of'various'types'of'
potenBal'experiments'&'
simulaBons'for'the'soHball'
predicBon'at'100m.'

Slide'1'

radius'

de
ns
it
y'

physics'design'space'

golf'

baseball'

tennis'

soHball'

basketball'

light'bowling'

bowling'

use bg = 9.8
m

s2
d 2h
dt2

= g
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Basic ball drop example with discrepancy 

Simple'case'study:'dropping'balls'from'
a'tower'

•  Can'get'field'data'from'tossing'
objects'off'of'floors'1=6.'

•  Have'computaBonal'model'
which'predicts'drop'Bmes'
given'ball'radius,'density,'and'
floor.'

•  ComputaBonal'model'has'
parameter'for'air'fricBon'which'
depends'on'cross'secBon,'
density'and'velocity.'

•  Have'baseball,'basketball,'golf'
ball,'tennis,'light'&'heavy'
bowling'balls.'

•  Want'to'predict'soHball'drop'
Bme'from'10th'floor'(100m).'

•  Also'want'to'understand'the'
value'of'various'types'of'
potenBal'experiments'&'
simulaBons'for'the'soHball'
predicBon'at'100m.'
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d2h

dt2
= g
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drop time = simulated drop time + α(ρ,R) × drop height 
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g (m/s2)
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Thanks for your time



 
                          Department of Statistics and Actuarial Science 

References 

•  Higdon, D., Gattiker, J., Williams, B. and Rightley, M. (2008). “Computer model calibration using high 
dimensional output”, Journal of the American Statistical Association, 103, 570–583. 

•  Kennedy, M. and O'Hagan, A. (2001), “Bayesian calibration of computer models (with discussion)”. Journal 
of the Royal Statistical Society, Series B. 63, 425-464. 

•  Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P (1989), “Design and analysis of computer experiments,” 
Statistical Science, 4, 409-435. 


