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Phases of QCD matter: 
• heat & compress QCD matter: 
‣collide heavy atomic nuclei 

• numerical simulations:  
‣solve partition function (Lattice)
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• 1000+ scientists from 105+ institutions 
• dimensions: 26m long, 16m high, 16m wide 
• weight: 10,000 tons 

two more experiments w/ Heavy-Ions: 
• CMS, ATLAS

ALICE experiment @ CERN:

• 1000s of tracks 
• task: reconstruction of final state to 

characterize matter created in collision 

typical Pb+Pb collision @ LHC: 
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• Initial State:
- fluctuates event-by-event
- classical color-field dynamics
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- rapid change-over from glue-field dominated 

initial state to thermalized QGP
- time scale: 0.15 to 2 fm/c in duration
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• QGP and hydrodynamic expansion:
- proceeds via 3D viscous RFD
- EoS from Lattice QCD

• hadronic phase & freeze-out
- interacting hadron gas
- separation of chemical and 

kinetic freeze-out
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Principal Challenges of Probing the QGP with Heavy-Ion Collisions: 
• time-scale of the collision process: 10-24 seconds! [too short to resolve] 
• characteristic length scale: 10-15 meters! [too small to resolve] 
• confinement: quarks & gluons form bound states, experiments don’t observe them directly 

‣computational models are need to connect the experiments to QGP properties!
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microscopic transport models based  
on the Boltzmann Equation: 
• transport of a system of microscopic particles 
• all interactions are based on binary scattering

hybrid transport models: 
• combine microscopic & macroscopic degrees 

of freedom 
• current state of the art for RHIC modeling
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diffusive transport models based  
on the Langevin Equation: 
• transport of a system of microscopic particles in 

a thermal medium 
• interactions contain a drag term related to the 

properties of the medium and a noise term 
representing random collisions
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(viscous) relativistic fluid dynamics: 
• transport of macroscopic degrees of freedom  
• based on conservation laws:

(plus an additional 9 eqns. for dissipative flows)
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Each transport model relies on roughly a dozen physics parameters to describe the 
time-evolution of the collision and its final state. These physics parameters act as a 
representation of the information we wish to extract from RHIC & LHC. 
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assuming matter to be quasi-particulate in nature:

• viscosity decreases with increasing cross section (forget molasses!) 
• for viscous RFD, the microscopic origin of viscosity is not relevant!
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assuming matter to be quasi-particulate in nature:

• viscosity decreases with increasing cross section (forget molasses!) 
• for viscous RFD, the microscopic origin of viscosity is not relevant!

The determination of the QCD transport coefficients is one of the key 
goals of the US relativistic heavy-ion effort!



Collision Geometry: Elliptic Flow
• two nuclei collide rarely head-on, 

but mostly with an offset:

only matter in the overlap area 
gets compressed and heated up
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elliptic flow (v2): 
• gradients of almond-shape surface will lead to 

preferential emission in the reaction plane 
•  asymmetry out- vs. in-plane emission is quantified by 

2nd Fourier coefficient of angular distribution: v2 

Ø vRFD: good agreement with data for very small η/s



Temperature Dependence of η/s

what can ordinary matter, e.g. 
He or H2O teach us about η/s?

He

H2O

• η/s has minimum & 
discontinuity at TC
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what can ordinary matter, e.g. 
He or H2O teach us about η/s?

He

H2O

• η/s has minimum & 
discontinuity at TC

AdS/CFT
vRFD

temperature dependence of η/s in QCD can be 
estimated in low- and high-temperature limit: 
• low temperature: chiral pions 
• high temperature: QGP in HTL approximation

terra incognita

L.P. Csernai, J.I. Kapusta & L. McLerran: Phys. Rev. Lett. 97: 152303 (2006) 
M. Prakash, M. Prakash, R. Venugopalan & G. Welke: Phys. Rept. 227, 321 (1993)  
P. Arnold, G.D. Moore & L.D. Yaffe: JHEP 05: 051 (2003)

pQCD/HTL



The Challenge of a rigorous Model to 
Data Comparison

experimental data:
π/K/P spectra
yields vs. centrality & beam
elliptic flow
HBT
charge correlations & BFs
density correlations

Model Parameter:
eqn. of state

shear viscosity
initial state

pre-equilibrium dynamics
thermalization time

quark/hadron chemistry
particlization/freeze-out
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The Challenge of a rigorous Model to 
Data Comparison

experimental data:
π/K/P spectra
yields vs. centrality & beam
elliptic flow
HBT
charge correlations & BFs
density correlations

Model Parameter:
eqn. of state

shear viscosity
initial state

pre-equilibrium dynamics
thermalization time

quark/hadron chemistry
particlization/freeze-out

• large number of interconnected parameters w/ non-factorizable data dependencies 
• data have correlated uncertainties 
• develop novel optimization techniques: Bayesian Statistics and MCMC methods
• transport models require too much CPU: need new techniques based on emulators
• general problem, not restricted to RHIC Physics

→collaboration with Statistical Sciences
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calibrated posterior distribution of ΛCDM 
model parameters with Planck data 

comparison of Planck 2015 temperature power 
spectrum with the ΛCDM cosmological model:

high precision Planck data on the 
CMB has allowed for the verification 
of the standard cosmological model 
and the most accurate determination 
of cosmological parameters to date
• Is Heavy-Ion Physics capable of 

this type of Precision Science?
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comparison of Planck 2015 temperature power 
spectrum with the ΛCDM cosmological model:

high precision Planck data on the 
CMB has allowed for the verification 
of the standard cosmological model 
and the most accurate determination 
of cosmological parameters to date
• Is Heavy-Ion Physics capable of 

this type of Precision Science?calibrated posterior distribution of hybrid vRFD+micro 
model parameters with LHC data
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we are entering the era of 
precision extraction of QGP 
properties via comparison of high 
quality data with comprehensive 
computational models

Yes!


