#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme interactions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

# Fitting Energy Density Functionals for low-energy nuclear structure

K. Bennaceur

INT Program: Bayesian Methods in Nuclear Physics June 13 - July 8, 2016



▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ●

### People involved

- IPNL (Lyon): M. Bender, D. Davesne, R. Jodon, J. Meyer
- IRFU (Saclay): T. Duguet
- ULB (Bruxelles): P.H. Heenen, V. Hellemans
- University of York: J. Dobaczewski, A. Pastore
- University of Surrey: F. Raimondi, A. Idini

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme interactions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

### Mean-field models

Stationary Schrödinger equation for A particles  $\hat{H}\Psi = (\hat{T} + \hat{V}_2 + \hat{V}_3 + ...)\Psi = E_0\Psi$ 

■ Mean-field approximation, Hartree-Fock(-Bogolyubov)

$$E = \langle \Phi | \hat{H}_{\text{eff}} | \Phi \rangle \simeq E_0 = \langle \Psi | \hat{H} | \Psi \rangle$$

Effective interaction 
$$\hat{H}_{\text{eff}} = \hat{T} + \hat{V}_{\text{eff}}$$
  
 $\hat{V}_{\text{eff}} = \hat{V}_{\text{eff}}(\mathbf{p}), \quad \mathbf{p} \in \mathbb{R}^n, \quad n \lesssim 10$ 

Details don't matter but:

- HF(B) equations are non linear and are solved iteratively
- Can be very time consuming when many symmetries are broken
- Fit often done using only spherical nuclei or, at least, time even systems

Will the interaction give meaningful results when symmetries are broken ?

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のくで

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

### Resolution of the HF(B) equations



Fitting EDFs for nuclear structure

K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

Figure : Picture by J. Dechargé, from "Approches de champ moyen et au-delà", J.-F. Berger, École Joliot-Curie: "Les noyaux en pleine forme", 1991.

Calculations have to give finite numbers at the end...

Parameters must be usable for nuclei not in the fit

### Skyrme effective interactions

**Two-body term (with**  $x \equiv \mathbf{r}, s, q) \simeq SV$  interaction

$$V_{2}(x_{1}, x_{2}; x_{3}, x_{4}) = \left[ t_{0} \left( \boldsymbol{\delta}^{s} + x_{0} \mathbf{P}^{s} \right) + \frac{1}{2} t_{1} \left( \boldsymbol{\delta}^{s} + x_{1} \mathbf{P}^{s} \right) \left( \hat{\mathbf{k}}_{12}^{*2} + \hat{\mathbf{k}}_{34}^{2} \right) + t_{2} \left( \boldsymbol{\delta}^{s} + x_{2} \mathbf{P}^{s} \right) \hat{\mathbf{k}}_{12}^{*} \cdot \hat{\mathbf{k}}_{34} + \mathrm{i} W_{0} \boldsymbol{\delta}^{s} \left( \hat{\boldsymbol{\sigma}}_{13} + \hat{\boldsymbol{\sigma}}_{24} \right) \cdot \left( \hat{\mathbf{k}}_{12}^{*} \times \hat{\mathbf{k}}_{34} \right) \right] \\ \times \delta(\mathbf{r}_{1} - \mathbf{r}_{3}) \delta(\mathbf{r}_{2} - \mathbf{r}_{4}) \delta(\mathbf{r}_{1} - \mathbf{r}_{2})$$

**\blacksquare** Two-body density dependent term  $\simeq$  SLy interactions

$$V_{3}(x_{1}, x_{2}; x_{3}, x_{4}) = \frac{1}{6} t_{3} \left( \boldsymbol{\delta}^{s} + x_{3} \mathbf{P}^{s} \right) \rho_{0}^{\alpha}(\mathbf{r}_{1}) \delta(\mathbf{r}_{1} - \mathbf{r}_{3}) \delta(\mathbf{r}_{2} - \mathbf{r}_{4}) \delta(\mathbf{r}_{1} - \mathbf{r}_{2})$$

 $\Rightarrow$  9 parameters to fit

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme interactions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

▲ロト ▲御ト ▲ヨト ▲ヨト 三ヨー わらぐ

### How to fit the parameters of an effective interaction ?

### It's simple !

- Choose a set relevant observables
- Use constraints to write a penalty function  $\chi^2$
- Minimize it...
- ... and, most likely, this will not lead to any useful result

### Why?

- Some parameters may be poorly constrained
- Some constraints may be impossible to satisfy simultaneously
- Problems (which you would not even think<sup>1</sup>) can occur

### So you need to modify the $\chi^2$

 $\Rightarrow$  You don't know the  $\chi^2$  before you start to minimize it...

"Good judgement is the result of experience and experience the result of bad judgement." – Mark Twain

Who seems to be very popular in this workshop...

#### Fitting EDFs for nuclear structure

### K. Bennaceur

#### Introduction

## Fit of Skyrme interactions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

<sup>&</sup>lt;sup>1</sup> in your worst nightmares

What the  $\chi^2$  is made of?

$$\label{eq:penalty function: } \chi^2 = \chi^2_{\rm inm} + \chi^2_{\rm surf.} + \chi^2_{\rm neut.} + \chi^2_{\rm nuclei} + ~?$$
 with

■ Infinite nuclear matter properties

$$\chi^2_{\rm inm} = \left(\frac{\rho^{\rm calc.}_{\rm sat} - \rho_{\rm sat}}{\Delta \rho_{\rm sat}}\right)^2 + \dots$$

Surface properties

$$\chi^2_{\rm surf.} = \left(\frac{a_s^{\rm calc.} - a_s}{\Delta a_s}\right)^2$$

 Neutrons matter: several points obtained from "exact" calculations (*ab initio* calculations)

 Nuclei: Binding energies, charge radii of doubly magic nuclei, single particle energies, ... Fitting EDFs for nuclear structure

K. Bennaceur

#### Introduction

#### Fit of Skyrme interactions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

### Minimization and post-fit analysis

- Minimization: Nealder Mead, conjugated gradients, Pounders, ...
- Post-fit analysis: covariance matrix, correlations between parameters, statistical error bars
- But one usually assumes that
  - the  $\chi^2$  is smooth
  - ... or, at least, is defined everywhere

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

### Fit of Skyrme interactions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

#### ▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ●

### The $\chi^2$ is not always smooth... (1)

#### Fitting EDFs for nuclear structure

#### K. Bennaceur



Problems with the  $\chi^2$ 

0.7



・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

The  $\chi^2$  is not always smooth... (2)

Pairing is a critical phenomenon...



If  $\Delta$  is zero, how to find the direction where it becomes finite ?

#### Fitting EDFs for nuclear structure

K. Bennaceur

Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

### The $\chi^2$ is not always even defined!

Instabilities often experienced with the skyrme functionals

- Ferromagnetic instabilities: (spin polarization)  $n \uparrow, p \uparrow$
- Isospin instabilities: neutron-proton segregation
- Both:  $n \uparrow, p \downarrow$

Example: isospin instability in <sup>48</sup>Ca



T. Lesinski, K.B., T. Duguet, J. Meyer, PRC 74, 044315 (2006).  $C_1^{\Delta\rho}$  is just a combination of some parameters

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

### Linear response – Stability criterium

Response of the system to a perturbation given by

$$\begin{split} \mathcal{Q}^{(\alpha)} = & \sum_{a} e^{i\mathbf{q}\cdot\mathbf{r}_{a}} \,\, \Theta_{a}^{(\alpha)}, \\ \Theta_{a}^{\rm ss} = & \mathbf{1}_{a}, \quad \Theta_{a}^{\rm vs} = & \boldsymbol{\sigma}_{a}, \quad \Theta_{a}^{\rm sv} = \vec{\tau}_{a}, \quad \Theta_{a}^{\rm vv} = & \boldsymbol{\sigma}_{a}\vec{\tau}_{a} \end{split}$$

Response functions are given by

$$\chi^{(\alpha)}(\omega, \mathbf{q}) = \frac{1}{\Omega} \sum_{n} |\langle n | \mathcal{Q}^{(\alpha)} | 0 \rangle|^2 \left( \frac{1}{\omega - E_{n_0} + i\eta} - \frac{1}{\omega + E_{n_0} - i\eta} \right)$$

(Cf. C. Garcia-Recio et al., Ann. of Phys. 214 (1992) 293-340)



- Predicts instabilities in finite size systems
- Easy to implement
- Negligible computation time

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

Introduction

Fit of Skyrme interactions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

### Linear response as a tool for diagnosis



- T. Lesinski, K.B., T. Duguet, J. Meyer, PRC 74, 044315 (2006);
- D. Davesne, M. Martini, K.B., J. Meyer, Phys. Rev. C80, 024314 (2009), erratum: Phys. Rev. C 84, 059904(E) (2011) → (∂) + (∂) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥) + (≥

Fitting EDFs for nuclear structure

### Linear response as a tool for diagnosis



Fitting EDFs for

nuclear structure

- T. Lesinski, K.B., T. Duguet, J. Meyer, PRC 74, 044315 (2006);

### Attempt to define a stability criterium<sup>2</sup>

Study in the scalar-isoscalar channel (S = 0, T = 1) based on 9 different functionals



#### Fitting EDFs for nuclear structure

#### K. Bennaceur

Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

■ The lowest density for which the response has a pole,  $\rho_{\min}$ , must be so that

$$\rho_{\min} > 1.2 \times \rho_{sat}$$

- Other channels ?
- What if the criterium is too conservative ?

<sup>&</sup>lt;sup>2</sup>V. Hellemans, A. Pastore, T. Duguet, K.B., D. Davesne, J. Meyer,

M. Bender, P.-H. Heenen, PRC 88, 064323  $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$ 

### Calculations on harmonic oscillator basis

 $\blacksquare$  "Chaotic" behavior with the oscillator parameter  $b_0$  and the size of the basis N



#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

Calculations using the code HFBTHO

▲ロト ▲母 ト ▲目 ト ▲目 ト ● のへの

### Fit of new interactions...

Stability must be enforced during the fit of the parameters !



Figure : Adapted from the picture by J. Dechargé, from "Approches de champ moyen et au-delà", J.-F. Berger, École Joliot-Curie, 1991.

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### ntroduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new interactions

Conclusion

### New generation of Skyrme interaction: SLyMR1

For some reasons, we decided to replace the density dep. term

$$V_{\rm dd} = \frac{t_3}{6} \left( 1 + x_3 \hat{P}^{\sigma} \right) \rho_0^{\alpha} \delta(\mathbf{r})$$

$$\begin{split} V_{3\mathrm{b}} &= u_0 \,\delta(\mathbf{r}_{13}) \delta(\mathbf{r}_{23}) \\ &+ \frac{u_1}{2} \,\left( 1 + y_1 \,\hat{P}_{12}^{\sigma} \right) \left[ \mathbf{k}_{12}^{\prime 2} \,\delta(\mathbf{r}_{13}) \delta(\mathbf{r}_{23}) + \delta(\mathbf{r}_{13}) \delta(\mathbf{r}_{23}) \,\mathbf{k}_{12}^2 \right] \\ &+ u_2 \,\left[ 1 + y_{21} \,\hat{P}_{12}^{\sigma} + y_{22} \left( \hat{P}_{13}^{\sigma} + \hat{P}_{23}^{\sigma} \right) \right] \mathbf{k}_{12}^{\prime} \cdot \delta(\mathbf{r}_{13}) \delta(\mathbf{r}_{23}) \mathbf{k}_{12} \\ V_{4\mathrm{b}} &= v_0 \,\delta(\mathbf{r}_{14}) \delta(\mathbf{r}_{24}) \delta(\mathbf{r}_{34}) \end{split}$$



More terms with gradients, more chance to encounter instabilities

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### ntroduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new interactions

Conclusion

### SLyMR1: the most constrained interaction ever

- 2- and 3-body terms + 4-body contact term (no  $\rho_0^{\alpha}$  term)
- Used for the normal and pairing fields
- Infinite nuclear matter
  - $\bullet \rho_{\text{sat}}, E/A, K_{\infty}, m^*/m, J, L$
  - Neutron matter equation of state
  - Constraints in spin channels and on the effective mass
- (Double magic) nuclei
  - Binding energy
  - Charge radii
  - Energy difference between 2 spin-orbit partners (in  $^{208}$ Pb)
- Spherical semi-magic nuclei (<sup>44</sup>Ca and <sup>120</sup>Sn)
  - Binding energy
  - Spectral gaps
- Linear response code fully functional

 $\rho_{\rm crit,min} \ge 0.26 \text{ fm}^{-3}$  in symmetric and neutron matter

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

ntroduction

Fit of Skyrme interactions

Problems with the  $\chi^2$ 

Fit of new interactions

Conclusion

### First version: $SLyMR1_{\beta}$

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme interactions

Problems with the  $\chi^2$ 

### Fit of new interactions

Conclusion

| par.     | unit                | $p_i$    | $\Delta p_i$ | $\Delta p_i/p_i$ |
|----------|---------------------|----------|--------------|------------------|
| $t_0$    | $MeV  fm^3$         | -1229.79 | 94.95        | 7.7~%            |
| $t_1$    | ${ m MeV}{ m fm}^5$ | 838.80   | 223.25       | 26.6~%           |
| $t_2$    | ${ m MeV}{ m fm}^5$ | -1333.04 | 604.87       | 45.4~%           |
| $u_0$    | ${ m MeV}{ m fm}^6$ | 4017.82  | 1485.84      | 37.0~%           |
| $u_1$    | ${ m MeVfm^8}$      | -3820.19 | 2293.79      | 60.0~%           |
| $u_2$    | ${ m MeVfm^8}$      | 14578.51 | 5322.63      | 36.5~%           |
| $x_0$    |                     | 0.1695   | 0.2290       | 135.1~%          |
| $x_1$    |                     | 0.6598   | 0.2686       | 40.7~%           |
| $x_2$    |                     | -1.1512  | 0.0999       | 8.7~%            |
| $y_1$    |                     | 1.2941   | 1.0130       | 78.3~%           |
| $y_{21}$ |                     | -1.1201  | 0.0634       | $5.7 \ \%$       |
| $y_{22}$ |                     | -0.0813  | 0.0212       | 26.1~%           |
| $W_0$    | ${ m MeV}{ m fm}^5$ | 97.780   | 18.337       | 18.8~%           |
| $v_0$    | ${ m MeVfm^9}$      | -9371.16 | 33266.54     | 355.0~%          |

### SLyMR1 $_{\beta}$ : correlations

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

Introduction

Fit of Skyrme interactions

Problems with the  $\chi^2$ 

Fit of new interactions

Conclusion

Extra material

|                                                           | $ ho_{ m sat}$          | E/A                | $K_{\infty}$           | $m^*/m$                       | J                                                                      | $\langle V \rangle_{pp}$                       |
|-----------------------------------------------------------|-------------------------|--------------------|------------------------|-------------------------------|------------------------------------------------------------------------|------------------------------------------------|
|                                                           | $0.154 \ {\rm fm}^{-3}$ | $-16.12~{\rm MeV}$ | $279~{\rm MeV}$        | 0.56                          | $33.7 \ \mathrm{MeV}$                                                  | $-2.75 { m MeV}$                               |
| ${ ho_{ m sat}\over E/A} K_{\infty} \ m^*/m \ J \ V_{pp}$ | 1.00                    | -0.24<br>1.00      | -0.33<br>-0.43<br>1.00 | -0.00<br>0.18<br>0.29<br>1.00 | $\begin{array}{c} 0.03 \\ -0.49 \\ -0.19 \\ -0.17 \\ 1.00 \end{array}$ | -0.01<br>0.17<br>0.13<br>0.19<br>-0.33<br>1.00 |

Bad features

 $K_{\infty} \searrow \Leftrightarrow m^*/m \searrow$ 

 $m^*/m\searrow \Leftrightarrow \langle V\rangle_{pp}\nearrow$ 

**m^\*/m** and  $\langle V \rangle_{pp}$  are strongly correlated but the correlation coefficient is rather small (?)

Going from  $m^*/m = 0.56$  to 0.7 is a change of 25 %

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ●

### Several problems with $SLyMR1_{\beta}$

- Four-body term poorly constrained
- Other ones not relevant for the present discussion
- $\Rightarrow$  Improved penalty function: SLyMR1
  - Slightly different constraints
  - 4-body term **disregarded**

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### ntroduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new interactions

Conclusion

Extra material

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ●

### Parameters

| par.     | unit           | $p_i$    | $\Delta p_i$ | $\Delta p_i/p_i$ |           |
|----------|----------------|----------|--------------|------------------|-----------|
| $t_0$    | ${ m MeVfm^3}$ | -1249.47 | 94.95        | 7.4~%            | (7.7 %)   |
| $t_1$    | $MeV  fm^5$    | 943.83   | 223.25       | 18.4~%           | (26.6 %)  |
| $t_2$    | $MeV  fm^5$    | -1141.47 | 604.87       | 52.3~%           | (45.4 %)  |
| $u_0$    | $MeV  fm^6$    | 3436.76  | 1485.84      | 37.7~%           | (37.0 %)  |
| $u_1$    | ${ m MeVfm^8}$ | -4471.94 | 2293.79      | 14.9~%           | (60.0 %)  |
| $u_2$    | $MeV  fm^8$    | 13596.13 | 5322.63      | 34.1 %           | (36.5 %)  |
| $x_0$    |                | 0.2182   | 0.2290       | 102.3~%          | (135.1%)  |
| $x_1$    |                | 0.6306   | 0.2686       | 33.7~%           | (40.7 %)  |
| $x_2$    |                | -1.1598  | 0.0999       | 7.8~%            | (8.7 %)   |
| $y_1$    |                | 0.9880   | 1.0130       | 78.7~%           | (78.3 %)  |
| $y_{21}$ |                | -1.1253  | 0.0634       | 5.1 %            | (5.7 %)   |
| $y_{22}$ |                | -0.0793  | 0.0212       | 26.3~%           | (26.1 %)  |
| $W_0$    | $MeV  fm^5$    | 124.647  | 18.337       | 18.7 %           | (18.8 %)  |
| $v_0$    | ${ m MeVfm^9}$ |          |              |                  | (355.0 %) |

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new interactions

Conclusion

### SLyMR1: binding energies



#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### introduction

Fit of Skyrme interactions

Problems with the  $\chi^2$ 

Fit of new interactions

Conclusion

Extra material

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

### SLyMR1: gaps

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

Fit of new interactions



・ロト ・ 日 ト ・ モ ト ・ モ ト э

+

82

- The construction of a penalty function is a dynamical process
- Constraints which are not simply related with observables are not trivial to handle
- What does the covariance matrix tell us when the problem is non linear ?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

■ What about systematic errors ?

#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Very exotic  $\rm ^{60}Ca$  nucleus using Gogny D1N interaction



#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

Very exotic  $\rm ^{60}Ca$  nucleus using Gogny D1N interaction



#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

Very exotic  $\rm ^{60}Ca$  nucleus using Gogny D1N interaction



#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

Very exotic  $\rm ^{60}Ca$  nucleus using Gogny D1N interaction



#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

Very exotic  $\rm ^{60}Ca$  nucleus using Gogny D1N interaction



#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

Very exotic  $\rm ^{60}Ca$  nucleus using Gogny D1N interaction



#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

Very exotic  $\rm ^{60}Ca$  nucleus using Gogny D1N interaction



#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

Very exotic  $\rm ^{60}Ca$  nucleus using Gogny D1N interaction



#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

Very exotic  $\rm ^{60}Ca$  nucleus using Gogny D1N interaction



#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material

Very exotic  $\rm ^{60}Ca$  nucleus using Gogny D1N interaction



#### Fitting EDFs for nuclear structure

#### K. Bennaceur

#### Introduction

Fit of Skyrme nteractions

Problems with the  $\chi^2$ 

Fit of new nteractions

Conclusion

Extra material