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Probing QCD matter

Colliding heavy nuclei at relativistic
energies
⇓

Momentarily heating nuclear matter
to extreme temperatures

⇓
Deconfinement: Quark-gluon plasma
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Relativistic Heavy Ion Collider (RHIC)

• Located at Brookhaven National
Laboratory (NY)

• In operation since year 2000
• Au+Au and p+p collisions
• Collision energy

√
sNN varies

from 7.7 GeV up to 200 GeV.
• Currently 2 active detectors:
STAR and PHENIX

Image: https://hep-project-dphep-portal.web.cern.ch
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RHIC beam energy scan
• Different collision energies probe
different areas of the phase
diagram of nuclear matter

• Baryochemical potential µB,
related to the conservation of
net-baryon number, becomes
increasingly important at lower
energies (nuclear stopping)

• µB ≈ 0 at 200 GeV and above;
good for investigating
temperature dependence of
physical properties of the formed
medium, such as viscosity (see J.
Bernhard’s talk from first week)

628 G. Odyniec

the boundary between Quark-Gluon Plasma (QGP) and the hadronic phases
would be a major breakthrough and it would surely place RHIC results in
all text books around the world.

The main question of interest is, of course, whether this critical point
exists at all, and if it does, whether it can be found experimentally. So
far, theory is not able to provide much detailed information about the QCD
phase diagram. Only the “edges” of the QCD phase diagram are believed to
be somewhat understood: the latest lattice QCD calculations [1] predict a
cross over phase transition from a hadronic gas to a QGP phase at baryon
chemical potential µB ∼ 0 and critical temperature Tc ∼ 150–170MeV (top-
left in Fig. 1), while several QCD based calculations [2] show that at lower T
and high baryon chemical potential (right in Fig. 1) a first order phase
transition may take place. The point in the QCD phase diagram, where the
first order phase transition ends would be the QCD CP. Considering both
arguments, one concludes that there must be a critical point at intermediate
T and µB. Even though the position of the critical point as well as the
location of the phase boundaries are not yet known, various QCD lattice
calculations suggest that the most probable location of CP would be in the
µB interval between 150 and 500MeV (a significant uncertainty in these
estimates comes from the fact that systematic errors of lattice calculations
are neither understood nor constrained).
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Fig. 1. A cartoon of the RHIC BES program coverage of the QCD Phase Dia-
gram. White (yellow) trajectories represent schematics of the collision evolution
at different energies of the BES program. The circle (red) symbolizes the critical
point. Picture: G. Odyniec, Acta Phys. Polon. B 43, 627 (2012).

J. Auvinen (Duke University) Bayesian analysis in heavy ion collision simulations Jun 20, 2016 3 / 35



Introduction Hybrid model Statistical analysis Results Summary

RHIC beam energy scan
• Collision energy dependence of
the physical parameters of the
model ⇒ µB dependence

• Phase A: Find best-fitting model
parameters for several collision
energies independently

• If energy dependence observed
in the best-fit parameters

⇓

Phase B: parametrize the
dependence and find the best fit
over all collision energies
simultaneously

628 G. Odyniec

the boundary between Quark-Gluon Plasma (QGP) and the hadronic phases
would be a major breakthrough and it would surely place RHIC results in
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transition may take place. The point in the QCD phase diagram, where the
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Describing a heavy ion collision

Colliding beams at z-axis: Picture: F.D. Aaron, et al, JHEP 1001, 109 (2010).

z 

t

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out

Milne coordinates:
• Proper time τ0 =

√
t2 − z2

• spatial rapidity η̃ = 1
2 log t+z

t−z

Kinematics:
• Momentum rapidity y = 1

2 log E+pz
E−pz

• Pseudorapidity η = 1
2 log |~p|+pz|~p|−pz

(beam at η = ±∞)
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Collision centrality

Spectators

Participants

b

before collision after collision

R. Snellings, arXiv:1102.3010

Centrality classes quantify the estimated overlap of the colliding nuclei

• 0% - 5%: Head-on collision
• 20% - 30%: midcentral
• 60% - 80%: Peripheral
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Elliptic flow v2

Spatial anisotropy in initial state
⇓

Pressure gradients
⇓

Momentum anisotropy at final state:

E d3N
d3p

= d2N
2πpT dpT dy

(
1 + 2

∞∑
n=1

vn cos[n(φ−ΨRP )]

)

x
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x
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y
p
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P. Sorensen, arXiv:0905.0174

Flow observables vn imply collective behavior in the system
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Elliptic flow v2
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L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 86, 054908 (2012).
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Hybrid model
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Transport + hydrodynamics hybrid model

Source: S.A.Bass

Transport
• Microscopic description
(point particles)

• Non-equilibrium evolution based
on the Boltzmann equation

pµ∂µfi(x, p) = Ci

• System consists of either
quarks+gluons or hadrons

Hydrodynamics
• Macroscopic description
(energy/particle densities)

• Local equilibrium is assumed
• System evolves according to
conservation laws

∂µT
µν = 0, ∂µNµ = 0

• Transition from quark-gluon
matter to hadronic matter
described by the equation of
state
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Transport + hydrodynamics hybrid model
Karpenko, Huovinen, Petersen, Bleicher, Phys.Rev.C, 91, 064901 (2015)

Initial state described by UrQMD1 hadron transport

• Start the hydrodynamical evolution at time τ0 when the two nuclei
have passed through each other

• Convert energy, momentum and baryon number of each particle into
3D Gaussian distributions:

∆P i = CP exp
(
−∆x2+∆y2

Rtrans2
− ∆η̃2

Rlong
2γ

2
η̃τ0

2
)

∆NB = CNB exp
(
−∆x2+∆y2

Rtrans2
− ∆η̃2

Rlong
2γ
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2
)
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Karpenko et al., PRC91, 064901

• Add all Gaussians and map the resulting densities onto the hydro grid
1S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998), M. Bleicher et al., J. Phys. G 25, 1859 (1999).
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Transport + hydrodynamics hybrid model

Hydrodynamical evolution
Karpenko et al., Comput. Phys. Commun. 185, 3016 (2014)

• (3+1)D viscous hydrodynamics with constant ratio of shear viscosity
over entropy density η/s (bulk viscosity ignored)

∂;νT
µν = 0, Tµν = (ε+ p)uµuν − pgµν + πµν ,

∂;νj
ν = 0, jµ = nuµ

〈uα∂;απ
µν〉 = −1

5
T
πµν − πµνNS

η/s
− 4

3
πµν∂;αu

α,

πµνNS = η

[
(∆µα∂;αu

ν + ∆να∂;αu
µ)− 2

3
∆µν∂;αu

α

]
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Transport + hydrodynamics hybrid model

Freeze-out Procedure
• Transition from hydro to transport (“particlization”) when energy
density ε is smaller than critical value εC

• Construct 4-dimensional hypersurface σ with constant ε
“Cornelius” hypersurface finder, P. Huovinen and H. Petersen, arXiv:1206.3371.

• Particle distributions sampled according to the Cooper-Frye formula
p0Ni(x)

d3p
= dσµp

µfi(p · u(x), T (x), µi(x))

• Rescatterings and final decays calculated in hadron transport
(UrQMD)
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Bayesian analysis
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The modeling problem

Model parameters (input): ~x = (x1, ..., xn)
(τ0, Rtrans, Rlong, η/s, εC)

⇓
Model output ~y = (y1, ..., ym) ⇔ Experimental values ~y exp

(Nch, 〈pT 〉, v2,...)

Goal: Find the “true” values of the input parameters, for which ~x∗ ⇒ ~y exp.
Determine the level of uncertainty associated with the proposed values
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Bayes’ theorem

Given a set X = {~xk}Nk=1 of points in parameter space and a
corresponding set Y = {~yk}Nk=1 of points in observable space,

P (~x∗|X,Y, ~y exp) ∝ P (X,Y, ~y exp|~x∗)P (~x∗)

• P (~x∗|X,Y, ~y exp) is the posterior probability distribution of ~x∗ for
given (X,Y, ~y exp)

• P (~x∗) is the prior probability distribution (simplest case: ranges of
parameter values)

• P (X,Y, ~y exp|~x∗) is the likelihood of (X,Y, ~y exp) for given ~x∗

(to be determined with statistical analysis)
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Likelihood function

P (X,Y, ~y exp|~x∗) = exp
(
−1

2(~y∗ − ~y exp)TΣ−1(~y∗ − ~y exp)
)
,

where
• Σ is the covariance matrix.
In this study Σ = diag(σ2

uc~y
exp), with σuc as a global estimate of

relative uncertainty. Two values σuc = 0.05 and σuc = 0.3 tested, to
check the sensitivity of results

• ~y∗ is model output for the input parameter point ~x∗

However:
1 hybrid simulation run requires ≈ 5 hours, 50 events produced
≈ 100 000 events needed ⇒ 2 000 runs
⇒ O(104) CPU hours for one evaluation of ~y∗!
⇒ Need a way to predict model output for arbitrary input parameter point
⇒ Model emulation using Gaussian processes
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Gaussian process
http://dan.iel.fm/george

Assumption: Set Ya of values of observable ya, corresponding to set X of
points in parameter space, has a multivariate normal distribution:

Ya ∼ N (µ,Σ)

where µ = µ(X) = {µ(x1), ..., µ(xN )} is the mean and

Σ = σ(X,X) =

σ(~x1, ~x1) · · · σ(~x1, ~xN )
...

. . .
...

σ(~xN , ~x1) · · · σ(~xN , ~xN )


is the covariance matrix with covariance function σ(~x, ~x′).
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Covariance function

Choice: Squared-exponential covariance function with a noise term

σ(~x, ~x′) = θ0 exp

(
−

n∑
i=1

(xi − x′i)2

2θ2
i

)
+ θnoiseδ~x~x′

The hyperparameters ~θ = (θ0, θ1, ...θn, θnoise) are not known a priori and
must be estimated from the given data

⇒ emulator training: Maximise the marginal likelihood (aka “evidence”)

logP (Y |X, ~θ) = −1

2
Y TΣ−1(X, ~θ)Y︸ ︷︷ ︸

data fit

−1

2
log |Σ(X, ~θ)|︸ ︷︷ ︸

complexity penalty

−N
2

log(2π)︸ ︷︷ ︸
normalization
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Principal component analysis
m observables ⇒ m Gaussian processes

However, m can be up to O(100) at top RHIC energies and at the LHC!
Number of emulators can be reduced with principal component analysis:

• Construct orthogonal linear combinations of
observables (= principal components) by
performing an eigenvalue decomposition on
the covariance matrix

• Eigenvalue λi represents the variance
explained by principal component pi

• Select the number of principal components
which together explain desired fraction of
total variance; often only a few PCs are
needed to explain 99% of the variance
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Singular value decomposition

N simulation points, m observables ⇒ N x m data matrix Y
• Singular value decomposition:

Y = USV T

• S is a diagonal matrix containing the singular values

• U and V T are orthogonal matrices containing the
left- and right-singular vectors, respectively

Wikipedia

• Eigenvalue decomposition of Y becomes
Y TY = V S2V T

⇒ Singular values in S are square roots of eigenvalues of Y
⇒ Right singular vectors in V T are eigenvectors of Y
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Box-Cox transformation
Many times data is skewed; distribution peaks at values smaller or larger
than mean
May affect the quality of principal component analysis

Try to fix the skew with Box-Cox transformation y → y(λ):
G.E.P. Box and D.R. Cox, Journal of the Royal Statistical Society B, 26, 211 (1964)

y(λ) =

{
(yλ − 1)/λ : λ 6= 0
log y : λ = 0

• y dimensionless ⇒ Scale with experimental
values y exp first

• Assumes y > 0; shift if necessary
• Check against normal distribution after
transformation (probability plot, QQ plot)

N(π+), (0-5)% centrality
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Markov Chain Monte Carlo
“emcee”: D. Foreman-Mackey et al., Publ. Astron. Soc. Pacific 125, 306 (2013), arXiv:1202.3665

The posterior distribution is sampled with Markov Chain Monte Carlo
(MCMC) method

• Random walk in parameter space, where each step is accepted or
rejected based on a relative likelihood (calculated in terms of principal
components)

• Converges to posterior distribution as number of steps N →∞
• Acceptance fraction af of steps measures the quality of random walk

• af ∼ 0 ⇒ walker "stuck“
• af ∼ 1 ⇒ purely random walk
• aim for 0.2-0.5

• Autocorrelation time = Number of steps between independent samples
“Burn-in” takes a few autocorrelations,
gathering enough samples ∼ O(10) autocorrelations
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Analysis procedure

Scale with experimental values ⇒ Unitless quantities of the order (O(1))
⇓

Verify normal distribution of observables
(apply a transformation if necessary)

⇓
Apply weights
Center the data

⇓
Principal component analysis ⇒ Determine required number of Gaussian

processes
⇓

Train the emulator(s)
⇓

Calibrate on experimental data by running MCMC
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Model results
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Investigated parameter ranges

Sample points evenly over whole parameter space using Latin hypercube
method

• Shear viscosity over entropy
density η/s: 0.001 - 0.4

• Transport-to-hydro transition
time τ0: 0.4 - 3.1 fm

• Transverse Gaussian smearing of
particles Rtrans: 0.2 - 2.2 fm

• Longitudinal Gaussian smearing
of particles Rlong: 0.2 - 2.2 fm

• Hydro-to-transport transition
energy density εC : 0.15 - 0.75
GeV/fm3
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Investigated observables

• Charged particles at midrapidity
Nch

• Charged particle pseudorapidity
distribution dNch/dη

• Number of π,K, p,Ω at
midrapidity

• Mean transverse momentum
〈pT 〉 for π,K, p

• Transverse momentum spectra
dN/dpT for π,K, p

• Charged particle elliptic flow
v2{EP}
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Results at 62.4 GeV, σuc = 0.05, weighted
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Results at 62.4 GeV, σuc = 0.05
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Results at 62.4 GeV, σuc = 0.30
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Introduction Hybrid model Statistical analysis Results Summary

Results at 39 GeV, σuc = 0.05, weighted
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Introduction Hybrid model Statistical analysis Results Summary

Results at 39 GeV, σuc = 0.05
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Introduction Hybrid model Statistical analysis Results Summary

Results at 39 GeV, σuc = 0.30
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Introduction Hybrid model Statistical analysis Results Summary

Results at 19.6 GeV, σuc = 0.05, weighted
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Introduction Hybrid model Statistical analysis Results Summary

Results at 19.6 GeV, σuc = 0.05
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Introduction Hybrid model Statistical analysis Results Summary

Results at 19.6 GeV, σuc = 0.30
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Introduction Hybrid model Statistical analysis Results Summary

Parameter dependence on collision energy
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Introduction Hybrid model Statistical analysis Results Summary

Summary
• Bayesian analysis provides a rigorous method for simultaneous
estimation of both the best-fit values and the associated uncertainties
for the parameters of heavy ion collision models

• Gaussian processes allow the emulation of complex models, making it
possible to investigate multidimensional parameter spaces within
reasonable computational effort

• Findings from the analysis of a transport+hydro+transport hybrid
model:

• Based on median values, η/s and transverse smearing factor Rtrans have
an increasing trend towards lower energies, while hydro-to-transport
switching energy density εC is roughly constant with preferred value in
the interval ≈ 0.2− 0.4 GeV/fm3 (mainly constrained by N(Ω))

• Hydro starting time τ0 is either constant or increasing towards lower
energies, while the longitudinal smearing factor Rlong is either constant
or decreasing at low energies. The two parameters are correlated and
very sensitive to analysis parameters (weighting, uncertainty in
likelihood)
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