

Constraining the input parameters of a transport+hydrodynamics model of heavy ion collisions in RHIC beam energy scan range with the help of Gaussian emulators

Jussi Auvinen (Duke U.)

in collaboration with Iu. Karpenko, J. Bernhard and S. A. Bass

INT, Seattle June 20, 2015

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-39-0) Jun 20, 2016 0 / 35

[Introduction](#page-2-0)

[Hybrid model](#page-10-0)

[Statistical analysis](#page-15-0)

[Results](#page-26-0)

[Summary](#page-39-0)

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 0 / 35

Probing QCD matter

Colliding heavy nuclei at relativistic energies ⇓ Momentarily heating nuclear matter to extreme temperatures ⇓ Deconfinement: Quark-gluon plasma

Relativistic Heavy Ion Collider (RHIC)

- Located at Brookhaven National Laboratory (NY)
- In operation since year 2000
- Au+Au and $p+p$ collisions
- Collision energy $\sqrt{s_{NN}}$ varies from 7.7 GeV up to 200 GeV.
- Currently 2 active detectors: STAR and PHENIX

Image: https://hep-project-dphep-portal.web.cern.ch

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 2 / 35

[Introduction](#page-2-0) [Hybrid model](#page-10-0) [Statistical analysis](#page-15-0) [Results](#page-26-0) [Summary](#page-39-0) The Statistical analysis The point as Results and the critical point as well as the critical point as well as the critical point as th locat[io](#page-16-0)[n](#page-34-0)[o](#page-35-0)[f](#page-20-0) [t](#page-21-0)[h](#page-22-0)[e](#page-38-0) [p](#page-25-0)hase boundar[ie](#page-27-0)[s](#page-28-0) [a](#page-30-0)[r](#page-31-0)e no[t](#page-36-0) [y](#page-37-0)et known[, v](#page-39-0)arious yet known, various yet known, various yet known, v

RHIC beam energy scan e stam energy sean

- Different collision energies probe different areas of the phase diagram of nuclear matter
- Baryochemical potential μ_B , related to the conservation of net-baryon number, becomes increasingly important at lower energies (nuclear stopping)
- $\mu_B \approx 0$ at 200 GeV and above; good for investigating temperature dependence of physical properties of the formed medium, such as viscosity (see J. Bernhard's talk from first week) $\frac{1}{2}$ (carried of the RHIC BES program coverage of the $\frac{1}{2}$ \mathcal{S} ram. Whenever sent schematics represent schematics of the collision evolution evolu

Picture: G. Odyniec, Acta Phys. Polon. B 43, 627 (2012).

[Introduction](#page-2-0) [Hybrid model](#page-10-0) [Statistical analysis](#page-15-0) [Results](#page-26-0) [Summary](#page-39-0) The Statistical analysis The point as Results and the critical point as well as the critical point as well as the critical point as th locat[io](#page-16-0)[n](#page-34-0)[o](#page-35-0)[f](#page-20-0) [t](#page-21-0)[h](#page-22-0)[e](#page-38-0) [p](#page-25-0)hase boundar[ie](#page-27-0)[s](#page-28-0) [a](#page-30-0)[r](#page-31-0)e no[t](#page-36-0) [y](#page-37-0)et known[, v](#page-39-0)arious yet known, various yet known, various yet known, v

RHIC beam energy scan e stam the β stam strategies calculations of β

- Collision energy dependence of the physical parameters of the model \Rightarrow μ_B dependence
- Phase A: Find best-fitting model parameters for several collision energies independently
- If energy dependence observed in the best-fit parameters

⇓

Phase B: parametrize the dependence and find the best fit over all collision energies simultaneously

Picture: G. Odyniec, Acta Phys. Polon. B 43, 627 (2012).

Describing a heavy ion collision

Kinematics:

- Milne coordinates:
	- Proper time $\tau_0 =$ √ $t^2 - z^2$
	- spatial rapidity $\tilde{\eta} = \frac{1}{2}$ $rac{1}{2} \log \frac{t+z}{t-z}$

• Momentum rapidity $y=\frac{1}{2}$ $\frac{1}{2} \log \frac{E+p_z}{E-p_z}$

\n- Pseudorapidity
$$
\eta = \frac{1}{2} \log \frac{|\vec{p}| + p_z}{|\vec{p}| - p_z}
$$
 (beam at $\eta = \pm \infty$)
\n

Centrality classes quantify the estimated overlap of the colliding nuclei

- 0% 5%: Head-on collision
- 20% 30%: midcentral
- \bullet 60% 80%: Peripheral

P. Sorensen, arXiv:0905.0174

Flow observables v_n imply collective behavior in the system

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 7 / 35

L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 86, 054908 (2012).

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 8 / 35

Hybrid model

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 8 / 35

$Transport + hydrodynamics hybrid model$

Source: S.A.Bass

Transport

- Microscopic description (point particles)
- Non-equilibrium evolution based on the Boltzmann equation

 $p^{\mu} \partial_{\mu} f_i(x, p) = C_i$

• System consists of either quarks+gluons or hadrons

Hydrodynamics

- Macroscopic description (energy/particle densities)
- Local equilibrium is assumed
- System evolves according to conservation laws

 $\partial_{\mu}T^{\mu\nu}=0, \ \partial_{\mu}N^{\mu}=0$

• Transition from quark-gluon matter to hadronic matter described by the equation of

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 9 / 35

state

$Transport + hydrodynamics hybrid model$

Karpenko, Huovinen, Petersen, Bleicher, Phys.Rev.C, 91, 064901 (2015)

Initial state described by $UrQMD¹$ hadron transport

- Start the hydrodynamical evolution at time τ_0 when the two nuclei have passed through each other
- Convert energy, momentum and baryon number of each particle into 3D Gaussian distributions: 8 energy density [GeV/fm³] 25

Karpenko et al., PRC91, 064901

• Add all Gaussians and map the resulting densities onto the hydro grid

1 S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998), M. Bleicher et al., J. Phys. G 25, 1859 (1999).

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 10 / 35

$Transport + hydrodynamics hybrid model$

Hydrodynamical evolution

Karpenko et al., Comput. Phys. Commun. 185, 3016 (2014)

 \bullet $(3+1)$ D viscous hydrodynamics with constant ratio of shear viscosity over entropy density η/s (bulk viscosity ignored)

$$
\partial_{;\nu}T^{\mu\nu} = 0, \quad T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu} + \pi^{\mu\nu},
$$

$$
\partial_{;\nu}j^{\nu} = 0, \quad j^{\mu} = nu^{\mu}
$$

$$
\langle u^{\alpha} \partial_{;\alpha} \pi^{\mu\nu} \rangle = -\frac{1}{5} T \frac{\pi^{\mu\nu} - \pi_{NS}^{\mu\nu}}{\eta/s} - \frac{4}{3} \pi^{\mu\nu} \partial_{;\alpha} u^{\alpha},
$$

$$
\pi_{NS}^{\mu\nu} = \eta \left[(\Delta^{\mu\alpha} \partial_{;\alpha} u^{\nu} + \Delta^{\nu\alpha} \partial_{;\alpha} u^{\mu}) - \frac{2}{3} \Delta^{\mu\nu} \partial_{;\alpha} u^{\alpha} \right]
$$

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 11 / 35

$Transport + hydrodynamics hybrid model$

Freeze-out Procedure

- Transition from hydro to transport ("particlization") when energy density ϵ is smaller than critical value ϵ_C
- Construct 4-dimensional hypersurface σ with constant ϵ

"Cornelius" hypersurface finder, P. Huovinen and H. Petersen, arXiv:1206.3371.

- Particle distributions sampled according to the Cooper-Frye formula $p^0\frac{N_i(x)}{d^3n}$ $\frac{d\mathcal{U}_i(x)}{d^3p} = d\sigma_\mu p^\mu f_i(p \cdot u(x), T(x), \mu_i(x))$
- Rescatterings and final decays calculated in hadron transport (UrQMD)

Bayesian analysis

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 12 / 35

The modeling problem

Model parameters (input):
$$
\vec{x} = (x_1, ..., x_n)
$$

\n
$$
(\tau_0, R_{\text{trans}}, R_{\text{long}}, \eta/s, \epsilon_C)
$$
\n
$$
\Downarrow
$$
\nModel output $\vec{y} = (y_1, ..., y_m) \Leftrightarrow \text{Experimental values } \vec{y}^{\text{exp}}$
\n
$$
(N_{\text{ch}}, \langle p_T \rangle, v_2, ...)
$$

Goal: Find the "true" values of the input parameters, for which $\vec{x}^* \Rightarrow \vec{y}^{\text{exp}}$. Determine the level of uncertainty associated with the proposed values

Bayes' theorem

Given a set $X = \{ \vec{x}_k \}_{k=1}^N$ of points in parameter space and a corresponding set $Y=\{\vec{y}_k\}_{k=1}^N$ of points in observable space,

 $P(\vec{x}^* | X, Y, \vec{y}^{\text{exp}}) \propto P(X, Y, \vec{y}^{\text{exp}} | \vec{x}^*) P(\vec{x}^*)$

- $P(\vec{x}^* | X, Y, \vec{y}^{\text{exp}})$ is the posterior probability distribution of \vec{x}^* for given $(X, Y, \vec{y}^{\text{exp}})$
- $P(\vec{x}^*)$ is the *prior* probability distribution (simplest case: ranges of parameter values)
- $P(X, Y, \vec{y}^{\text{exp}} | \vec{x}^*)$ is the likelihood of $(X, Y, \vec{y}^{\text{exp}})$ for given \vec{x}^* (to be determined with statistical analysis)

Likelihood function

$$
P(X,Y,\vec{y}^{\text{exp}}|\vec{x}^*) = \exp\left(-\tfrac{1}{2}(\vec{y}^*-\vec{y}^{\text{exp}})^T\Sigma^{-1}(\vec{y}^*-\vec{y}^{\text{exp}})\right),
$$

where

 \bullet Σ is the covariance matrix.

In this study $\Sigma = \mathsf{diag}(\sigma_{\mathsf{uc}}^2 \vec{y}^{\mathsf{exp}})$, with σ_{uc} as a global estimate of relative uncertainty. Two values $\sigma_{\text{uc}} = 0.05$ and $\sigma_{\text{uc}} = 0.3$ tested, to check the sensitivity of results

• \vec{y}^* is model output for the input parameter point \vec{x}^*

However:

- 1 hybrid simulation run requires \approx 5 hours, 50 events produced
- \approx 100 000 events needed \Rightarrow 2 000 runs
- $\Rightarrow {\cal O}(10^4)$ CPU hours for one evaluation of $\vec{y}^*!$
- \Rightarrow Need a way to predict model output for arbitrary input parameter point
- \Rightarrow Model emulation using Gaussian processes

Gaussian process

http://dan.iel.fm/george

Assumption: Set Y_a of values of observable y_a , corresponding to set X of points in parameter space, has a multivariate normal distribution:

 $Y_a \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

where $\mu = \mu(X) = {\mu(x_1), ..., \mu(x_N)}$ is the mean and

$$
\mathbf{\Sigma} = \sigma(X, X) = \begin{pmatrix} \sigma(\vec{x}_1, \vec{x}_1) & \cdots & \sigma(\vec{x}_1, \vec{x}_N) \\ \vdots & \ddots & \vdots \\ \sigma(\vec{x}_N, \vec{x}_1) & \cdots & \sigma(\vec{x}_N, \vec{x}_N) \end{pmatrix}
$$

is the covariance matrix with covariance function $\sigma(\vec{x}, \vec{x}^\prime).$

Covariance function

Choice: Squared-exponential covariance function with a noise term

$$
\sigma(\vec{x},\vec{x}') = \theta_0 \exp\left(-\sum_{i=1}^n \frac{(x_i - x_i')^2}{2\theta_i^2}\right) + \theta_{\text{noise}} \delta_{\vec{x}\vec{x}'}
$$

The *hyperparameters* $\vec{\theta} = (\theta_0, \theta_1, \dots, \theta_n, \theta_{noise})$ are not known a priori and must be estimated from the given data

 \Rightarrow emulator training: Maximise the marginal likelihood (aka "evidence")

$$
\log P(Y|X,\vec{\theta}) = -\frac{1}{2}Y^T\Sigma^{-1}(X,\vec{\theta})Y - \frac{1}{2}\log|\Sigma(X,\vec{\theta})| - \frac{N}{2}\log(2\pi)
$$
\ndata fit
\ncomplexity penalty

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 17 / 35

Principal component analysis

m observables \Rightarrow m Gaussian processes

However, m can be up to $\mathcal{O}(100)$ at top RHIC energies and at the LHC! Number of emulators can be reduced with principal component analysis:

- Construct orthogonal linear combinations of observables $(=$ principal components) by performing an eigenvalue decomposition on the covariance matrix
- Eigenvalue λ_i represents the variance explained by principal component p_i
- Select the number of principal components which together explain desired fraction of total variance; often only a few PCs are needed to explain 99% of the variance

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 18 / 35

Singular value decomposition

N simulation points, m observables \Rightarrow N x m data matrix Y

• Singular value decomposition:

$$
Y = USV^T
$$

- S is a diagonal matrix containing the singular values
- \bullet $\; U$ and V^T are orthogonal matrices containing the left- and right-singular vectors, respectively

Wikipedia

• Eigenvalue decomposition of Y becomes

$$
Y^T Y = V S^2 V^T
$$

 \Rightarrow Singular values in S are square roots of eigenvalues of Y \Rightarrow Right singular vectors in V^T are eigenvectors of Y

Box-Cox transformation

Many times data is skewed; distribution peaks at values smaller or larger than mean May affect the quality of principal component analysis

Try to fix the skew with Box-Cox transformation $y\to y^{(\lambda)}$:

G.E.P. Box and D.R. Cox, Journal of the Royal Statistical Society B, 26, 211 (1964)

$$
y^{(\lambda)} = \begin{cases} (y^{\lambda} - 1)/\lambda & \text{: } \lambda \neq 0 \\ \log y & \text{: } \lambda = 0 \end{cases}
$$

- y dimensionless \Rightarrow Scale with experimental values y^{exp} first
- Assumes $y > 0$; shift if necessary
- Check against normal distribution after transformation (probability plot, QQ plot)

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 20 / 35

 $N(\pi^+)$, (0-5)% centrality

Markov Chain Monte Carlo

"emcee": D. Foreman-Mackey et al., Publ. Astron. Soc. Pacific 125, 306 (2013), arXiv:1202.3665

The posterior distribution is sampled with Markov Chain Monte Carlo (MCMC) method

- Random walk in parameter space, where each step is accepted or rejected based on a relative likelihood (calculated in terms of principal components)
- Converges to posterior distribution as number of steps $N \to \infty$
- Acceptance fraction a_f of steps measures the quality of random walk
	- $a_f \sim 0 \Rightarrow$ walker "stuck"
	- $a_f \sim 1$ \Rightarrow purely random walk
	- \bullet aim for 0.2-0.5
- Autocorrelation time $=$ Number of steps between independent samples "Burn-in" takes a few autocorrelations, gathering enough samples $\sim \mathcal{O}(10)$ autocorrelations

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 22 / 35

Model results

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 22 / 35

Investigated parameter ranges

Sample points evenly over whole parameter space using Latin hypercube method

- Shear viscosity over entropy density η/s : 0.001 - 0.4
- Transport-to-hydro transition time τ_0 : 0.4 - 3.1 fm
- Transverse Gaussian smearing of particles R_{trans} : 0.2 - 2.2 fm
- Longitudinal Gaussian smearing of particles R_{long} : 0.2 - 2.2 fm
- Hydro-to-transport transition energy density ϵ_C : 0.15 - 0.75 $GeV/fm³$

Investigated observables

- • Charged particles at midrapidity N_{ch}
- Charged particle pseudorapidity distribution dN_{ch}/dn
- Number of π , K , p , Ω at midrapidity
- Mean transverse momentum $\langle p_T \rangle$ for π, K, p
- Transverse momentum spectra dN/dp_T for π, K, p
- Charged particle elliptic flow v_2 {EP}

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 24 / 35

Results at 62.4 GeV, $\sigma_{\text{uc}} = 0.05$, weighted

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 25 / 35

Results at 62.4 GeV, $\sigma_{\text{uc}} = 0.05$

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 26 / 35

Results at 62.4 GeV, $\sigma_{\text{uc}} = 0.30$

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 27 / 35

Results at 39 GeV, $\sigma_{\text{uc}} = 0.05$, weighted

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 28 / 35

Results at 39 GeV, $\sigma_{\text{uc}} = 0.05$

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 29 / 35

Results at 39 GeV, $\sigma_{\text{uc}} = 0.30$

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 30 / 35

Results at 19.6 GeV, $\sigma_{\text{uc}} = 0.05$, weighted

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 31 / 35

Results at 19.6 GeV, $\sigma_{\text{uc}} = 0.05$

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 32 / 35

Results at 19.6 GeV, $\sigma_{\text{uc}} = 0.30$

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 33 / 35

Parameter dependence on collision energy

J. Auvinen (Duke University) [Bayesian analysis in heavy ion collision simulations](#page-0-0) Jun 20, 2016 34 / 35

Summary

- • Bayesian analysis provides a rigorous method for simultaneous estimation of both the best-fit values and the associated uncertainties for the parameters of heavy ion collision models
- Gaussian processes allow the emulation of complex models, making it possible to investigate multidimensional parameter spaces within reasonable computational effort
- Findings from the analysis of a transport+hydro+transport hybrid model:
	- Based on median values, η/s and transverse smearing factor R_{trans} have an increasing trend towards lower energies, while hydro-to-transport switching energy density ϵ_C is roughly constant with preferred value in the interval $\approx 0.2-0.4$ GeV/fm 3 (mainly constrained by $N(\Omega))$
	- Hydro starting time τ_0 is either constant or increasing towards lower energies, while the longitudinal smearing factor R_{long} is either constant or decreasing at low energies. The two parameters are correlated and very sensitive to analysis parameters (weighting, uncertainty in likelihood)