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“I worry that there is not enough research on approaches to solving  
QCD that could be complementary to Monte Carlo simulations,  
such as the lack of any comparable research built upon light-front QCD.” 
 
“…there needs to be more attention to research on light-front 
QCD as a complement to research on lattice gauge theory.” 
 
 
K.G. Wilson, “The Origins of Lattice Gauge Theory,”  
Nuclear Physics B, Suppl., 140 (2005) p3 



Comparison of No-Core Shell Model (NCSM) with  
Basis Light-Front Quantization (BLFQ) 

NCSM BLFQ 

Select kinematics & Derive 2-, 3-, 4- body Hamiltonian Non-relativistic 
& EFT, meson 
exch, . .  

Relativistic 
& QED, 
QCD, . . .  

Adopt a single-particle basis convenient for symmetries 3D HO, HF, 
nat. orb., . . . 

2D HO+ 
DLCQ, . . . 

Enumerate Fock-space basis subject to symmetry constraints 
 

Slater Deter. Slater Deter. & 
Permanents 

Renormalize & evaluate many-particle H in that basis 
 

SRG, OLS, 
. . .  

SRG, OLS, 
 . . . 

Diagonalize H (Lanczos) Yes Yes 

Iterate previous 2 steps for sector-dependent renormalization - - - - - Yes 

Evaluate observables using eigenvectors of H  wavefunctions Light-Front 
amplitudes 

Repeat previous 4 steps for new values of regulator(s) 
 

λ, Λ λ, Λ, K, mg 

Extrapolate to infinite matrix limit & remove all regulators Yes Yes 

Compare with experiment or predict new experimental results 14C, 14F, . . . Charmonia, . . 
.  



No-Core Configuration Interaction calculations

Barrett, Navrátil, Vary, Ab initio no-core shell model, PPNP69, 131 (2013)

Given a Hamiltonian operator

Ĥ =
∑

i<j

(p⃗i − p⃗j)2

2mA
+
∑

i<j

Vij +
∑

i<j<k

Vijk + . . .

solve the eigenvalue problem for wavefunction of A nucleons

ĤΨ(r1, . . . , rA) = λΨ(r1, . . . , rA)

Expand wavefunction in basis states |Ψ⟩ =
∑

ai|Φi⟩

Diagonalize Hamiltonian matrix Hij = ⟨Φj |Ĥ|Φi⟩

No-Core CI: all A nucleons are treated the same

Complete basis −→ exact result

In practice

truncate basis

study behavior of observables as function of truncation

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015, TRIUMF, Vancouver – p. 2/50

Expand eigenstates in basis states 

No-Core Shell Model (NCSM) - Configuration Interaction (CI) method 



Nuclei represent strongly interacting, self-bound, open systems with multiple scales – 
a computationally hard problem whose solution has potential impacts on other fields 
 
Question:   What controls convergence/uncertainties of observables? 
Answer:     Characteristic infrared (IR) and ultraviolet (UV) scales of the operators. 
 
In a plane-wave basis: 
      λ = lowest momentum scale - can be zero (e.g. Trel, r

2, B(EL), . . . ) 
      Λ = highest momentum scale - can be infinity (e.g. Trel, hard-core VNN) 
 
In a harmonic-oscillator basis with Nmax truncation (Max total # oscillator quanta): 
      
       
 

  

λ≈ !Ω
Nmax

Λ≈ !Ω Nmax

What are examples of the other physically relevant scales in nuclear physics? 
     Interaction scales  (total binding, Fermi momentum, SRCs, one-pion exchange, . . . )  
     Leading dissociation scale (halos, nucleon removal energy, . . .) 
     Collective motion, clustering scales (Q, B(E2), giant modes, . . . ) 
 
 
 



Dirac’s Forms of Relativistic Dynamics [Dirac, Rev.Mod.Phys. ’49]

Front form defines QCD on the light front (LF) x+ , t+ z = 0.

P± , P 0 ± P 3, ~P? , (P 1, P 2), x± , x0 ± x3, ~x? , (x1, x2), Ei = M+i,
E+ = M+�, F i = M�i, Ki = M0i, J i = 1

2

✏ijkM jk.

instant form front form point form

t = x0 x+ , x0 + x3 ⌧ ,
p
t2 � ~x2 � a2

H = P 0 P� , P 0 � P 3 Pµ

~P , ~J ~P?, P+, ~E?, E+, J
z

~J, ~K

~K,P 0 ~F?, P� ~P , P 0

p0 =
p

~p2 +m2 p� = (~p2? +m2)/p+ pµ = mvµ (v2 = 1)
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time variable

quantization
surface

Hamiltonian

kinematical

dynamical

dispersion
relation



Nuclear interaction from chiral perturbation theory

Strong interaction in principle calculable from QCD

Use chiral perturbation theory to obtain effective A-body
interaction from QCD Entem and Machleidt, PRC68, 041001 (2003)

controlled power series expansion in Q/Λχ with Λχ ∼ 1 GeV

natural hierarchy
for many-body forces

VNN ≫ VNNN ≫ VNNNN

in principle
no free parameters

in practice a few
undetermined
parameters

renormalization
necessary

             NN 3N  4N

long (2π)        intermediate (π)     short-range

c1, c3, c4 terms cD term cE term

Leading-order 3N forces in chiral EFT

Progress in Ab Initio Techniques in Nuclear Physics, Feb. 2015, TRIUMF, Vancouver – p. 28/50



QED & QCD	

QCD	

Light Front (LF) Hamiltonian Defined by its	
Elementary Vertices in LF Gauge	



Discretized Light Cone Quantization 	
Pauli	&	Brodsky	c1985	

Basis Light Front Quantization*	

  

� 

φ
 
x ( ) = fα

 
x ( )aα

+ + fα
*  x ( )aα[ ]

α
∑

where aα{ } satisfy usual (anti-) commutation rules.

Furthermore, fα
 
x ( ) are arbitrary except for conditions :

                            fα
 
x ( ) fα '

*  x ( )d3x∫ = δαα '

                            fα
 
x ( ) fα

*  x '( )
α
∑ = δ 3  x −

 
x '( )

=> Wide range of choices for          and our initial choice is 	  

� 

fa
 
x ( )

  

� 

fα
 x ( ) = Neik + x −

Ψn ,m (ρ,ϕ) = Neik + x −

fn ,m (ρ)χ m (ϕ)

Orthonormal:	
	

Complete:	

*J.P.	Vary,	H.	Honkanen,	J.	Li,	P.	Maris,	S.J.	Brodsky,	A.	Harindranath,	G.F.	de	Teramond,		
P.	Sternberg,	E.G.	Ng	and	C.	Yang,	PRC	81,	035205	(2010).	ArXiv:0905:1411	



Set of Transverse 2D HO Modes for n=4	

m=0	 m=1	 m=2	

m=3	 m=4	

J.P. Vary, H. Honkanen, J. Li, P. Maris, S.J. Brodsky, A. Harindranath,  
G.F. de Teramond, P. Sternberg, E.G. Ng and C. Yang, PRC 81, 035205 (2010) 



BLFQ Highlights  
BLFQ introduced: 
J. P. Vary,  H. Honkanen, Jun Li, P. Maris, S. J. Brodsky, A. Harindranath, G. F. de Teramond,  
P. Sternberg, E. G. Ng, C. Yang, Phys. Rev. C 81, 035205 (2010); arXiv: 0905.1411  
 

Successfully applied to QED test cases – electron in a trap: 
H. Honkanen, P. Maris, J.P. Vary, S.J. Brodsky, Phys. Rev. Lett. 106, 061603 (2011);  
arXiv: 1008.0068  
 

Introduced non-peturbative scattering in time-dependent BLFQ (tBLFQ): 
X. Zhao, A. Ilderton, P. Maris and J. P. Vary, Phys. Rev. D 88, 065014 (2013); arXiv: 1303.3237  
 

tBLFQ successfully applied with time and space-dependent external fields: 
X. Zhao, A. Ilderton, P. Maris and J. P. Vary, Phys. Letts. B 726, 856 (2013); arXiv: 1309.5338  
 

Improvements to BLFQ for QED test cases:  trap independence, renormalization, . . . 
X. Zhao, H. Honkanen, P. Maris, J.P. Vary, S.J. Brodsky, Phys. Letts. B 737, 65 (2014);  
arXiv:1402.4195  
 

Positronium at strong coupling: 
P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary, Phys. Rev. D 91, 105009 (2015); arXiv 1404.6234  
 

FFs and GPDs evaluated for positronium at strong coupling: 
L. Adhikari, Y. Li, X. Zhao, P. Maris, J. P. Vary and A. Abd El-Hady, Phys. Rev. C93, 055202 (2016); 
arXiv: 1602.06027  
 

Heavy Quarkonium in Holographic basis: 
Y. Li, P. Maris, X. Zhao and J. P. Vary, Phys. Letts. B 758, 118 (2016); arXiv:1509.07212  
 
 



 

Baryon number                                                bi
i
∑ = B= A

Charge                                                              qi
i
∑ =Q= Z                                

Angular momentum projection (M-scheme)    (mi +
i
∑  si ) = Jz                                   

Mode regulator (3D HO)                               (2ni+  li
i
∑ + 3

2)≤Nmax

Optional Fock-Space Truncation

H→ H +λHCM

                NCSM	
Symmetries & Constraints	

Finite basis 	
  regulators	

  All J ≥ Jz states 	
in one calculation	

Preserve Galilean	
 boost invariance	



 

Baryon number                                                bi
i
∑ = B

Charge                                                              qi
i
∑ =Q                               

Angular momentum projection (M-scheme)    (mi +
i
∑  si ) = Jz                   

Longitudinal momentum (Bjorken sum rule)   xi
i
∑ = ki

Ki
∑ =1                 

Transverse mode regulator (2D HO)                (2ni+  mi
i
∑ +1)≤Nmax

Global Color Singlets (QCD)
Light Front Gauge
Optional Fock-Space Truncation
H→ H +λHCM

                BLFQ	
Symmetries & Constraints	

Finite basis 	
  regulators	

  All J ≥ Jz states 	
in one calculation	

Preserve transverse 
   boost invariance 



Light-Front Regularization and Renormalization Schemes 

1.  Regulators in BLFQ (2-D HO params, K) 
2.  Additional Fock space truncations (if any) 
3.  Counterterms identified/tested* 
4.  Sector-dependent renormalization** 
5.  SRG & OLS in NCSM*** - adapted to BLFQ (future) 

*D. Chakrabarti, A. Harindranath and J.P. Vary,  
Phys. Rev. D 69, 034502 (2004) 
*P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary,  
Phys. Rev. D 91, 105009 (2015) 
 
**V. A. Karmanov, J.-F. Mathiot, and A. V. Smirnov,  
Phys. Rev. D 77, 085028 (2008); Phys. Rev. D 86, 085006 (2012)  
**Y. Li, V.A. Karmanov, P. Maris and J.P. Vary, 
Phys. Letts. B. 748, 278 (2015); arXiv: 1504.05233  
 
***B.R. Barrett, P. Navratil and J.P. Vary, 
Prog. Part. Nucl. Phys. 69, 131 (2013) 



Positronium	



6Li	

M.	A.	Caprio,	P.	Maris	and	J.	P.	Vary,			
Phys.	Rev.	C	86,	034312	(2012);	arXiv:1208.4156		

Y.	Li,	P.W.	Wiecki,	X.	Zhao,	P.	Maris	and	J.P.	Vary,	
Proceedings	NTSE-2013,	136	(2014),	arXiv:	1311.2980		
h\p://www.ntse-2013.khb.ru/Proc/Yli.pdf		

Exact	factorizabon	of	CM	mobon	
Preserves	Galilean	invariance	in	NCSM	and	transverse	boost	invariance	in	BLFQ	

NCSM	example:		6Li	 BLFQ	example:	Positronium	
	

 

H→ H +λCMHCM   with  HCM = 1
2
MΩ2RCM

2

RCM = 3D CM coordinate (NCSM)
RCM = 2D transverse CM coordinate (BLFQ)



Positronium:	
P.	Weicki,	et	al.,		
PRD	91,	105009		
(2015)		



With	this	choice	the	IR	divergence	of	the	instantaneous	graph	is	cancelled	exactly	
by	IR	divergent	part	of	the	effecbve	interacbon.		Henceforward,	these	cancelling	
divergences	are	dropped	from	the	calculabons	=	a	counterterm	prescripbon.	
	
Similarly	a	counterterm	is	idenbfied	and	included	for	the	UV	divergence	in	Heff	.	



X  Pert. theory at α4  

Basis Light-Front Quantization (BLFQ) 
Positronium in QED at Strong Coupling (α = 0.3) 

Systematic removal of regulators (b = HO momentum scale) 

P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary, Phys. Rev. D 91, 105009 (2015)  

X  Pert. theory at α4  

Examine this region 
with greater resolution 

in the next slide 

X  Pert. theory at α4  

Dependence on 3 regulators After eliminating 2 regulators 



Positronium in QED at Strong Coupling 
Covariant Basis Light-Front Quantization (BLFQ)  

1

1

1

1
1

1
1

1
1

1

1
1

1
1

1
1

1

11
1

1
1

11

J
J

J
J

J
J

J

1.97

1.975

1.98

1.985

1.99

1.995

2

2.005

2.01

0 0.005 0.01 0.015 0.02 0.025 0.03

M
as
s/
m
f

µ /mf

11S0

13S1

23P2

2nd degree polynomial fits to solid points
Extrap in K first with K^{-3/2} form, then in 1/Nmax
Red dots for case that changes when 1/Nmax extrapn
   constrained to have non-negative slope at origin
Points at 0.002 would likely decrease if we up-weighted
 the data with smaller slope in the K-extrap'n or we 
 included more data at higher K

α = 0.3

b = 0.1 mf

b = 0.4 mf

P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary, Phys. Rev. D 91, 105009 (2015); & to be published  

X  Pert. theory at α4  

b = 0.1 mf 

b = 0.4 mf 



E↵ective Hamiltonian I [YL et al., Phys.Lett.B 758, 118 (2016)]

As mentioned, we need e↵ective eigensolvers suitable for modern high
performance computing. Can we find a way to reduce the Hilbert space?

I Fock sector truncation, e↵ective Hamiltonian method etc [Wilson ’74]

+ +

H
e↵

= PH
0

P + PHQ 1

1

2

(✏
i

+ ✏
f

)�QH
0

QQHP

However, this is only suitable for QCD at short distance (and QED).

I For long-distance physics, we adopt a confining potential inspired by
light-front holographic QCD [Brodsky ’06, Trawiński ’14]

V (⇣?) = 4⇣2? + const. (⇣? =

p
x(1� x)r?)

I AdS/QCD: first approximation to QCD inspired by AdS/CFT
I soft-wall AdS/QCD produces Regge trajectory [Karch ’06]

I LF holography relates AdS/QCD to LF Schrödinger equation
I successful applications: spectrum, form factors, �-function, ...

Yang Li, Iowa State U, May 20, 2016 6/1 Baryons 2016, Tallahassee, FL

Consider the case of heavy quarkonium: 
charmonium and bottomonium 



Basis Representation [YL et al., Phys.Lett.B 758, 118 (2016)]

The Hamiltonian is analytically solvable without the one-gluon exchange:

I Transverse: 2D HO in holographic variables �
nm

(

~k?/
p
x(1� x))

I Longitudinal: �
`

(x) = x
1

2

↵

(1� x)
1

2

�P (↵,�)

`

(2x� 1)

↵ = 2m
q̄

(m
q

+m

q̄

)/2, � = 2m
q

(m
q

+m

q̄

)/2, P (a,b)

`

(z) Jacobi polynomials

I Mass eigenvalues:
M2

nm`

= (m
q

+m
q̄

)

2

+22(2n+ |m|+ `+3/2) + 

4

(mq+mq̄)
2

`(`+1)

We adopt these functions (soft-wall LFWFs) as the basis:

 
h/qq̄

(

~k?, x, s, s̄) =
X

n,m,l

 

h/qq̄

(n,m, l, s, s̄)�
nm

⇣
~

k?p
x(1�x)

⌘
�
l

(x)

I implement LF holographic QCD for first approximation

I transverse 2D HO functions are scalable in the many-body sector
(factorization of c.m. motion) [Li ’13]

I basis truncation: 2n+ |m|+ 1  N
max

, l  L
max

I quantum number identification (esp. mirror parity) [Soper ’72]

We fix ↵
s

and fit , m
q

to the experimentally measured masses.
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Mass Spectroscopy [YL et al., Phys.Lett.B 758, 118 (2016)]

�c(1S)
J/�(1S)

�c0(1P)

�c1(1P)hc(1P)
�c2(1P)�c(2S) �(2S)

�(3770) X(3872)

�c0(2P)
�c2(2P)

�(4040)

�(4160)

�c(3S)

�c(4S)
31S0

21P1

11D2
13D2

13D3

This Work

PDG

Belle

0-+ 1-- 1+- 0++ 1++ 2++ 2-+1-- 2-- 3--2++ 3--

3.

3.2

3.4

3.6

3.8

4.

4.2

DD threshold

�b(1S)
�(1S)

�b0(1P)
�b1(1P)hb(1P) �b2(1P)�b(2S) �(2S)

�(1D)�b0(2P)
�b1(2P)hb(2P) �b2(2P)

�(3S)

�(4S)

31S0

13D1 11D2 13D3

33P0
31P1 33P1

23D1

33P2

21D2 23D2
13F2

23D3
11F3 13F3 13F4

13G3

�b(3P)

This Work

PDG

0-+ 1-- 1+- 0++ 1++ 2++ 2-+1-- 2-- 3-- 3+-2++ 3++ 4++3--

9.4

9.6

9.8

10.

10.2

10.4

10.6

10.8

BB threshold

charmonium spectrum in GeV bottomonium spectrum in GeV
Masses show weak mJ dependence due to the violation of rotational symmetry. We use boxes to
indicate the spread of masses (dashed bars: averaged masses).

↵s µg (GeV)  (GeV) mq (GeV) �M (MeV) N

max

= L

max

cc̄ 0.3595
0.02

0.938 1.522 52 (8 states)
24

b

¯

b 0.2500 1.490 4.763 50 (14 states)
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Light-Front Wavefunctions (LFWFs)
LFWFs provides intrinsic information of the structure of hadrons:

I Form factors (electromagnetic, gravitational ...) [Ji ’97&’98]

A(q2) =
X

n

Z
dD

n

nX

f=1

x
f

 ⇤
n

({~k0
i?, xi

,�
i

}
f

) 
n

({~k
i?, xi

,�
i

}
f

)

~k0
i? =

(
~k
i? + (1� x

i

)~q?, for struck partons
~k
i? � x

i

~q?, for spectators.

I Distributions (hadron tomography) [Ji ’97&’98]

GTMDs

TMFFs
TMDs

TMSDs

GPDs

charges

FFs

PDFs

d2b? d2k?dx

ZZZ
ZZZ

ZZZ

~k? $ ~r?, ~�? $ ~b?
[Lorce & Pasquini ’11]

�

⇤
�

GPD
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[YL et al., Phys. Lett. B 758, 118 (2016); 
[JPV et al., Few Body Sys. DOI 10.1007/s00601-016-1117-x (2016)] 



Hadron Tomography [Adhikari et al., Phys.Rev.C 93, 055202 (2016)]

I Generalized parton distributions (GPDs) [Ji ’97 & ’98]

H(x, ⇣, t) = 1

2

Z
dz�

2⇡
eixP

+

z

�
hP 0| (� 1

2

z)�+ (+ 1

2

z)|P i
���
z

+

=z

?
=0

q = P 0 � P , ⇣ = q+/P+, t = q2.

I DVCS, SIDIS, ..., spin physics

I Impact parameter dependent GPDs: [Burkardt ’01]

q(x,~b?) =

Z
d

2

�?
(2⇡)2

ei
~

�?·~b?H(x, ⇣ = 0, t = ��

2

?).

I partonic interpretation:
R
d2b?

R
1

0

dx
��q(x,~b?)

��2 = 1.

I Light-front wavefunction representation [Brodsky ’01, Diehl ’03]
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11S
0

21S
0

positronium

Stay tuned for quarkonia GPDs 



(Exp)   Results 
  8 Exp  
  5 Lattice 
  4 DSE 
16 BLFQ 

1 
2 3 

4 Cases 1-4 
Exp-BLFQ 
   alone 





Generalization to Baryons [work in progress]

The e↵ective interaction can be generalized to the baryon sector:

H
e↵

=

X

a

~p2
a? +m2

a

x
a

� ~P 2

? +

1

2

X

a,b

V (2)

ab

+

1

6

X

a,b,c

V (3)

abc

+ · · ·

I The soft-wall confinement: Vsw =

1

2

X

a,b

x
a

x
b

(~r
a? � ~r

b?)
2.

I The one-gluon exchange

Jacobi coordinates on the light front (three-body example):
longitudinal: x = x

3

, � = x

2

1�x

3

;

transverse momenta: ~k? = (1� x

3

)~p
3? � x

3

(~p
1? + ~p

2?), ~? = x

1

~p

2?�
2

~p

1?
x

1

+x

2

;

transverse coordinates: ~r? = ~r

3? � x

1

~r

1?�x

2

~r

2?
x

1

+x

2

, ~⇢? = ~r

1? � ~r

2?.

I Taking advantage of the kinematical nature of light-front boosts
Vsw = 4x(1� x)~r2? + 4

(1� x)�(1� �)~⇢2?
I The longitudinal confinement

V
L

= � 

4

(m

1

+m

2

+m

3

)

2

h
@
x

�
x(1� x)@

x

) +

1

1�x

@
�

�
�(1� �)@

�

�i
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Emergent Phenomena 
 

NCSM:  Clustering and Collective Rotational Motion 
BLFQ:   Spontaneous Symmetry Breaking 



9Be Translationally invariant gs density 
Full 3D densities = rotate around the vertical axis 

Total density  Proton – Neutron density 

Shows that one neutron provides a “ring” cloud  
around two alpha clusters binding them together 

C. Cockrell, J.P. Vary, P. Maris, Phys. Rev. C86, 034325 (2012);  C. Cockrell, PhD, Iowa State University 



Can we observe a phase transition in         ? 	

� 

Φ1+1
4

How does a phase transition develop as a function of increased coupling?	
	
What are the observables associated with a phase transition?	
	
What are its critical properties (coupling, exponent, …)?	



φ4 in 1+1 Dimensions	
DLCQ with Coherent State Analysis	

A. 	Derive the Hamiltonian and quantize it on the light front,	
        investigate coherent state treatment of vacuum:   	
        A. Harindranath and J.P. Vary, Phys Rev D36, 1141(1987)	
	

B. 	Obtain vacuum energy as well as the mass and profile functions 
(topological properties) of soliton-like solutions (“Kinks”) in the 
symmetry-broken phase:	

        	
	APBC:   SSB = degeneracy ~ Kink ~ coherent state!	
	Chakrabarti, Harindranath, Martinovic and Vary, 	
	Phys. Letts. B582, 196 (2004);  hep-th/0309263 	

	
	PBC:     SSB = degeneracy ~ Kink + Antinkink ~ coherent state!	
	Chakrabarti, Harindranath, Martinovic, Pivovarov and Vary,	
	Phys. Letts. B617, 92(2005); hep-th/0310290.	

	
C. 	Demonstrate onset of Kink Condensation at strong coupling (APBC)	

	Chakrabarti, Harindranath and Vary, 	
       Phys. Rev. D71, 125012(2005);  hep-th/0504094	



Just plotting the total energy on a course scale reveals little 



D. Chakrabarti, A. Harindranath and J.P. Vary, Phys. Rev. D 71, 125012(2005); hep-th/05104094.  

Spontaneous symmetry breaking in LF quantized Hamiltonian approach  
Kink condensation in scalar 1+1 field theory 
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Compare lowest state’s LF momentum distribution  
at strong coupling with ansatz variational coherent state’s 
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States 3-8:	
single boson in plane wave states 	

scattering from Kink	

At weak coupling, kink-boson scattering states and	
kink collective excitation observed	

State 2 = Collective Kink excitation	
State 9 => 2 boson excitation  

D. Chakrabarti, A. Harindranath and J.P. Vary, Phys. Rev. D 71, 125012(2005); hep-th/05104094.  



Compare lowest state’s topology at strong coupling with 
ansatz variational coherent state topology 
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Continuum limit of the critical coupling and critical exponent	

Analysis of the vanishing mass gap        yields: δM 2

δM 2 = λ − λc( )ν ,      ν = 1.0 Agrees with classical 
constructive field theory 
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•  Space-time structure 

 

•  Two effects: acceleration and radiation 
 

tBLFQ:	Nonlinear	Compton	Sca\ering	
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See Friday’s talk by Xingbo Zhao 



Summary and Outlook 

There exist multiple avenues of symbiosis between  
ab initio nuclear theory and relativistic quantum field theory 
 
Continuous interchange should be mutually beneficial: 
 
! Many-body theory – bound states and scattering 
! Renormalization, regularization and extrapolation 
! Uncertainty quantification 
! Methods for identifying emergent phenomena 
! Efficient utilization of supercomputing resources 

This INT program is one example of a productive approach 


