Magnetic Properties of Light Nuclei from Lattice QCD

INT-Program **16-1** *Nuclear Physics from Lattice QCD*

B C Tiburzi 18 May 2016

My work funded by

Done in collaboration with Nuclear Physics Lattice QCD =

Magnetic Moments of Light Nuclei

Home Physics General Physics February 2, 2015

PHYS ORG

Pinpointing the magnetic moments of nuclear matter

February 2, 2015 by Kathy Kincade

Artist's impression of a triton, the atomic nucleus of a tritium atom. The image show a red neutron with quarks inside; the arrows indicate the alignments of the spins. Credit: William Detmold, MIT

A team of nuclear physicists has made a key discovery in its quest to shed light on the structure and behavior of subatomic particles. Beane, et al. (NPLQCD), Phys.Rev. Lett.113, 2014.

First Computation:

$$m_u = m_d = (m_s)_{\text{phys}}$$

 $m_\pi \sim 800\,{\rm MeV}$

Grand Overview

Electroweak Interactions: Nucleons and Nuclei

- Lattice QCD continues to sharpen our knowledge of The Standard Model (e.g. CKM extraction, $K -> \pi \pi$)
- Nucleons and light nuclei present challenge opportunity
- QCD relevant for high-precision low-energy experiments

Quark Interactions to Nuclear Physics

- Textbook: gauge theories defined in perturbation theory
- **QCD**: short distance perturbative, long distance non-perturbative

 $\overline{q}\left(\not\!\!D + m_q\right)q + \frac{1}{4}G_{\mu\nu}G_{\mu\nu} \quad \text{Many Technicalities} \quad M_N \quad \delta_{NN}(k) \quad \epsilon_b(D)$

One step: $\int \left[\mathcal{D}A_{\mu} \right] e^{-S_{\rm YM}(A_{\mu})} \approx \frac{1}{N_{\rm cfg}} \sum_{\{A_{\mu}\}} e^{-S_{\rm YM}(A_{\mu})} \quad \text{stat. evaluation}$

Non-perturbative definition of asymptotically free gauge theories

Strong interaction observables

sys. approx.
$$U_{\mu}(x)=e^{igaA_{\mu}(x)}\in SU(3)$$

Quark electroweak interactions fortunately perturbative ... $J_{\mu} = \overline{q} \gamma_{\mu} q$

Another step:

Quarks:

Particle Physics (B=0) vs. Nuclear Physics (B>0)

Pion Correlation Function

Particle Physics (B=0) vs. Nuclear Physics (B>0)

Pion Correlation Function

 $\sum \langle qqq(t) \overline{qqq}(t) qqq(0) \overline{qqq}(0) \rangle \sim e^{-3m_{\pi}t}$

 $\sum \langle qqq(t) \overline{qqq}(0) \rangle \sim e^{-Mt}$

Nucleon Correlation Function

 $\{A_{\mu}\}$

Signal

Noise^2

 $d\log G_{\pi}(t)/dt$

Signal/Noise

 $\sim \mathrm{const}$

Baryons are statistically noisy

Scales exponentially with B in asymptotic time limit

Signal/Noise

 $\sim e^{-(M-\frac{3}{2}m_{\pi})t}$

-100

Nuclear Physics @ m_{π} =800 and 450 MeV

Beane, Chang, Cohen, Detmold, Lin, Luu, Orginos, Parreño, Savage, Walker-Loud **PRD87** (2013) Orginos, Parreño, Savage, Beane, Chang, Detmold **PRD92** (2015) **Spectrum**

Nuclear Physics @ m_{π} =800 and 450 MeV

Beane, Chang, Cohen, Detmold, Lin, Luu, Orginos, Parreño, Savage, Walker-Loud **PRD87** (2013) Orginos, Parreño, Savage, Beane, Chang, Detmold **PRD92** (2015) Spectrum

Nuclear Properties @ m_{π} =800?

Spectrum responds to external fields:

Compute spectrum as a function of applied field

- I). In weak enough fields, can utilize same sources
- II). Need roughly same statistics for each field strength
- III). Requires fitting the field-strength dependence
- IV). Limited number of properties for a given type of field

Practical Solution:

Lattice QCD + Classical Fields

e.g. uniform magnetic fields

 $G_{^{3}\mathrm{He}}(t)_{\vec{B}} =$ $\sum_{\{A_{\mu}\}} \langle qqqqqqqq(t) \overline{qqqqqqqq}(0) \rangle_{\vec{B}}$

Beane, et al. PRL:113 (2014) Beane, et al. PRL:115 (2015) Chang, et al. PRD:92 (2015) Detmold, et al. PRL:116 (2016)

Gauge links:

Magnetic Field on a Periodic Lattice

 $U_{\mu}(x) = e^{igG_{\mu}(x)} \in SU(3)$ $U_{\mu}^{\text{e.m.}}(x) = e^{iqA_{\mu}(x)} \in U(1)$

Seek uniform B-field $U_{\mu}(x) = e^{-iqx_2B\delta_{\mu 1}}$

Gauge links:

Magnetic Field on a Periodic Lattice

 $U_{\mu}(x) = e^{igG_{\mu}(x)} \in SU(3)$ $U_{\mu}^{\text{e.m.}}(x) = e^{iqA_{\mu}(x)} \in U(1)$

Seek uniform B-field $U_{\mu}(x) = e^{-iqx_2B\delta_{\mu 1}}$

	0.						
N -	- 1	qB(1-N)	qB(1-N)	qB(1-N)	qB(1-N)	qB(1-N)	qB(1-N)
		qB	qB	qB	qB	qB	qB
		qB	qB	qB	qB	qB	qB
		qB	qB ,	qB	qB	qB	qB
	x_2	qB	qB	qB	qB	qB	qB
	0	qB	qB	qB	qB	qB	qB
	U	x_1		•	N-1		- 1 0

 $U_1(x)U_2(x+\hat{i})U_2^{\dagger}(x+\hat{i}+\hat{j})U_1^{\dagger}(x+\hat{j}) = e^{iqF_{12}} = e^{iqB}$

Gauge links:

Magnetic Field on a Periodic Lattice

 $U_{\mu}(x) = e^{igG_{\mu}(x)} \in SU(3)$ $U_{\mu}^{\text{e.m.}}(x) = e^{iqA_{\mu}(x)} \in U(1)$

Seek uniform B-field $U_{\mu}(x) = e^{-iqx_2B\delta_{\mu 1}} e^{+iqx_1BN\delta_{\mu 2}\delta_{x_2,N-1}}$

 $U_1(x)U_2(x+\hat{i})U_2^{\dagger}(x+\hat{i}+\hat{j})U_1^{\dagger}(x+\hat{j}) = e^{iqF_{12}} = e^{iqB}$

Magnetic Moments of Octet Baryons

Magnetic Moments of Octet Baryons

Magnetic Moments of Octet Baryons

Compute Zeeman Effect using Lattice QCD + Uniform Magnetic fields

Natural baryon magnetons
$$[nBM] = \frac{e}{2M_B(m_\pi)}$$

 $\delta\mu_B \text{ [nBM]} = \mu_B \text{ [nBM]} - Q_B$

U-spin

$$\begin{pmatrix} d \\ s \end{pmatrix} \xrightarrow{SU(2)} U \begin{pmatrix} d \\ s \end{pmatrix}$$

Magnetic Moments of Light Nuclei

Magnetic Moments of Light Nuclei

First "Nuclear Reaction" from QCD

Dominant M1 transition @ Low Energy

Two-body contribution isolated & compares favorably with EFT(T) phenomenology

 $n+p \to d+\gamma \qquad \gamma^* + d \to n+p$ Magnetically Coupled Channels $|\Delta I| = |\Delta J| = 1 \qquad I_3 = j_z = 0$ $\mathbf{C}(t;\mathbf{B}) = \begin{pmatrix} C_{3S_{1},3S_{1}}(t;\mathbf{B}) & C_{3S_{1},1S_{0}}(t;\mathbf{B}) \\ C_{1S_{0},3S_{1}}(t;\mathbf{B}) & C_{1S_{0},1S_{0}}(t;\mathbf{B}) \end{pmatrix}$ 0.4 0.3 \overline{L}_1 [nNM] μ_1 0.1 0.0 L 0.2 0.8 0.0 0.4 0.6 1.0 m_{π}^2 [GeV²] \overline{L}_1

Beane, *et al.* (NPLQCD), Phys.Rev. Lett.115, 2015.

Extreme Magnetic Environments

Beyond Linear: Magnetic Polarizabilities

Chang, *et al.* (NPLQCD), Phys.Rev. D92, 2015.

Future Directions

Magnetic Structure of Nuclei

Move beyond exploratory studies: remove systematics, lower pion mass, better treat Landau levels, sea quarks, ...

Electric Structure of Nuclei

Electric polarizabilities? **EDMs of light nuclei** from θ-term?, BSM sources?

Nuclei in other classical fields...

Gravitational?, Weak?

