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Introduction  
Theory: HORSE (J-matrix) formalism as a natural extension of  SM 
How it works: a model 2-body problem 
Application to A-body problems within the no-core shell model 
Summary 
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Exchange of methods, ideas, etc. 

Thanks to organizers, I’ve learned a lot! 
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Thomas Papenbrock talk, INT, May 16 2016  

•  We derive similar results for continuum 
spectrum. 

•  Maybe it will be useful for lattice QCD 
community… 



No-core Shell Model 
•  NCSM is a standard tool in ab initio nuclear structure 

theory 
•  NCSM: antisymmetrized function of all nucleons 
•  Wave function:  

•  Traditionally single-particle functions            are 
harmonic oscillator wave functions  

•  Nmax truncation makes it possible to separate c.m. 
motion 

•  Discussed here by James Vary, Angelo Calci, Bruce 
Barrett 
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No-core Shell Model 
•  NCSM is a bound state technique, no continuum spectrum; not 

clear how to interpret states in continuum above thresholds − 
how to extract resonance widths or scattering phase shifts 

•  HORSE (J-matrix) formalism can be used for this purpose 
•  Other possible approaches: NCSM+RGM; Gamov SM; 

Continuum SM; SM+Complex Scaling; … 
•  All of them make the SM much more complicated. Our goal is to 

interpret directly the SM results above thresholds obtained in a 
usual way without additional complexities and to extract from 
them resonant parameters and phase shifts at low energies. 

•  I will discuss a more general interpretation of SM results 

 



J-matrix (Jacobi matrix) 
formalism in scattering theory  

 
•  Two types of L2 basises:  
•  Laguerre basis (atomic hydrogen-like 

states) — atomic applications 
•  Oscillator basis — nuclear applications 
•  Other titles in case of oscillator basis: 
HORSE (harmonic oscillator  representation 
of scattering equations), 
Algebraic version of RGM 
  



J-matrix formalism 

•  Initially suggested in atomic physics (E. Heller, H. Yamani,       
L. Fishman, J. Broad, W. Reinhardt) :           

     H.A.Yamani and L.Fishman, J. Math. Phys 16, 410 (1975). 
Laguerre and oscillator basis. 

•  Rediscovered independently in nuclear physics (G. Filippov,      
I. Okhrimenko, Yu. Smirnov): 

     G.F.Filippov and I.P.Okhrimenko, Sov. J. Nucl. Phys. 32, 480 
(1980).  Oscillator basis. 



HORSE: 
•  Schrödinger equation: 

•  Wave function is expanded in oscillator functions: 

•  Schrödinger equation is an infinite set of algebraic equations: 

     where H=T+V,  
     T — kinetic energy operator,  
     V — potential energy 

H l�lm(E, r) = E�lm(E, r)

1X

n0=0

(H l
nn0 � �nn0)ann0(E) = 0.



HORSE: 
•  Kinetic energy matrix elements: 

•  Kinetic energy is tridiagonal: 

•  Note! Kinetic energy tends to infinity as n and n’=n, n±1 
increases:  

|nlm⇤ � ⇥nlm(r) =
1

r
Rnl(r)Ylm(r̂)

T l
nn0 � ⇥nlm|T |n0l0m0⇤ =

Z
⇥nlm(r)T⇥n0l0m0(r) d3r

= �ll0�mm0

Z
RnlTRn0l dr



HORSE: 
•  Potential energy matrix elements: 

•  For central potentials only 

•  Note! Potential energy tends to zero as n and/or n’ increases: 

•  Therefore for large n or n’:  

    A reasonable approximation when n or n’ are large 



HORSE: 
•  In other words, it is natural to truncate the potential energy: 

•   This is equivalent to writing the potential energy operator as 

•  For large n, the Schrödinger equation 

     takes the form 
1X

n0=0

(T l
nn0 � �nn0E)an0l(E) = 0, n � N + 1



General idea of the 
 HORSE formalism 

This is an exactly    
solvable algebraic problem! 

And this looks like a natural 
extension of SM where both 
potential and kinetic energies are 
truncated  



Asymptotic region n ≥ N 
•  Schrödinger equation takes the form of three-term recurrent relation: 

•  This is a second order finite-difference equation. It has two independent 
solutions: 

 
     where dimensionless momentum     
 
     For derivation, see S.A.Zaytsev, Yu.F.Smirnov, and A.M.Shirokov, 

Theor. Math. Phys. 117, 1291 (1998)  



Asymptotic region n ≥ N 
•  Schrödinger equation: 

•  Arbitrary solution anl(E) of this equation can be expressed as a 
superposition of the solutions Snl(E) and Cnl(E), e.g.: 

•  Note that 

      



Asymptotic region n ≥ N 
•  Therefore our wave function 

•  Reminder: the ideas of quantum scattering theory. 
•  Cross section 

•  Wave function 

•  δ in the HORSE approach is the phase shift! 



Internal region  
(interaction region) n ≤ N 

•  Schrödinger equation 

•  Inverse Hamiltonian matrix: 



Matching condition at n=N 
•  Solution: 

•  From the asymptotic region 

•  Note, it is valid at n=N and n=N+1. Hence 

•  This is equation to calculate the phase shifts.  
•  The wave function is given by 

     where 



Problems with direct HORSE application 

•  A lot of Eλ eigenstates needed while SM  
codes usually calculate few lowest states only 
•  One needs highly excited states and to get  
rid from CM excited states. 
•             are normalized for all states including the CM excited 

ones, hence renormalization is needed. 
•  We need            for the relative n-nucleus coordinate rnA but 

NCSM provides            for the n coordinate rn relative to the 
nucleus CM. Hence we need to perform Talmi-Moshinsky 
transformations for all states to obtain            in relative             
n-nucleus coordinates. 

•  Concluding, the direct application of the HORSE formalism in   
n-nucleus scattering is unpractical. 
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Single-state HORSE  
(SS-HORSE) 

 
 
 
 
Suppose E = Eλ: 
 
 
 

Eλ are eigenstates that are consistent with scattering information for 
given ħΩ and Nmax; this is what you should obtain in any calculation 
with oscillator basis and what you should compare with your ab 
initio results. 
 

tan �(E�) = �SN+1,�(E�)

CN+1,�(E�)
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Single-state HORSE  
(SS-HORSE) 

 
 
 
 
Suppose E = Eλ: 
 
 
 

Calculating a set of Eλ eigenstates with different ħΩ and Nmax within 
SM, we obtain a set of            values which we can approximate by 
a smooth curve at low energies.  

tan �(E�) = �SN+1,�(E�)

CN+1,�(E�)

�(E�)

Note, information about wave 
function disappeared in this formula, 
any channel can be treated 



S-matrix at low energies 
 Symmetry property: 
 
 
Hence 
 
 
As 
 
Bound state:  
 
 
 
Resonance: 
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Universal function         

fnl (E) = arctan −
Snl (E)
Cnl (E)
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S. Coon et al extrapolations 

S. A. Coon, M. I. Avetian,  
M. K. G. Kruse, U. van Kolck,  
P. Maris, and J. P. Vary,  PRC 86, 
054002 (2012) 

What is λsc dependence  for 
resonances? 



scaling with fnl (E) = arctan − Snl (E)
Cnl (E)
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Universal function scaling         
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fN+1,l = - arctan(SN+1,l/CN+1,l)
h� = 20   l=2l=2 

Ecm (MeV)⇒ ε = Ecm[2(N +1)+ l + 3 2]
Ω

S.Coon et al (ir cutoff) 

λSC = mNΩ( ) / Ntot + 3 2( )



How it works 
•  Model problem:  nα scattering by Woods-Saxon potential          

J. Bang and C. Gignoux, Nucl. Phys. A, 313 , 119 (1979). 
•  UV cutoff of S. A. Coon, M. I. Avetian, M. K. G. Kruse, U. van 

Kolck, P. Maris, and J. P. Vary,  PRC 86, 054002 (2012) to 
select eigenvalues: 
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nα scattering: NCSM, JISP16 
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Coulomb + nuclear interaction 

•  SS-HORSE: 

•  Scaling at  

V Sh =

⇢
V Nucl + V Coul, r  R0;

0, r > R0.
R0 � R

Nucl

.
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Same idea as discussed by Gautam Rupak on May 20 
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pα scattering: NCSM, JISP16 



Summary 
•  SM states obtained at energies above thresholds can 

be interpreted and understood. 
•  Parameters of low-energy resonances (resonant 

energy and width) and low-energy phase shifts can 
be extracted from results of conventional Shell Model 
calculations 

•  A message: looks like that at large quanta only kinetic 
energy is important. Neglecting potential energy in 
higher model subspaces can save a lot of memory 
and computer resources. 






