

Exotic Glue in the Nucleus? Double Helicity Flip Gluon Operators from Lattice QCD

Phiala Shanahan

Collaborator: Will Detmold

April 27, 2016

Outline

- Motivation
- 2 Double Helicity Flip Gluon Structure Function: $\Delta(x,Q^2)$
- 3 Lattice Study
- 4 Preliminary Results: ϕ meson
- Question for Discussion
- 6 Summary

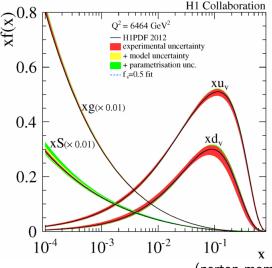
Motivation

Understanding gluons in hadron and nuclear structure is

- Important
 - $\,\,\,\,\,\,\,$ e.g., Dominance of gluon PDF at low x

Gluons are Important in Hadron Structure

Parton distribution function in the proton



(parton momentum fraction)

Motivation

Understanding gluons in hadron and nuclear structure is

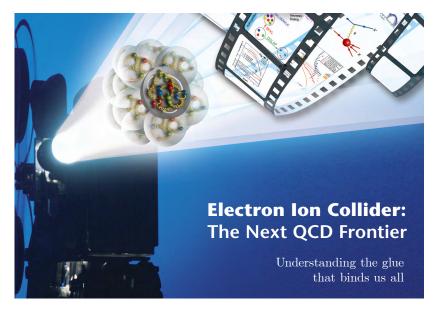
- Important
 - \triangleright e.g., Dominance of gluon PDF at low x
- Hard
 - No direct expt. measurement of glue in a nucleus (yet)
 - Gluon probed only indirectly in electron scattering from hadrons/nuclei (does not couple to photon)
 - Drell-Yan more direct but messy

Motivation

Understanding gluons in hadron and nuclear structure is

- Important
 - \triangleright e.g., Dominance of gluon PDF at low x
- Hard
 - No direct expt. measurement of glue in a nucleus (yet)
 - Gluon probed only indirectly in electron scattering from hadrons/nuclei (does not couple to photon)
 - Drell-Yan more direct but messy
- Topical
 - Electron-Ion Collider
 - JLab 12 GeV (lesser extent)

Significant Experimental Progress Expected

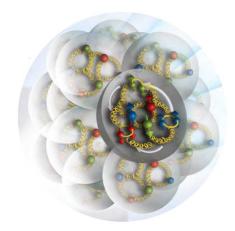


Motivation

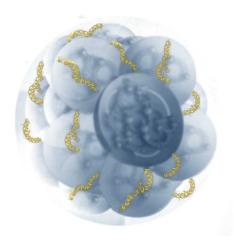
Understanding gluons in hadron and nuclear structure is

- Important
 - \triangleright e.g., Dominance of gluon PDF at low x
- Hard
 - No direct expt. measurement of glue in a nucleus (yet)
 - Gluon probed only indirectly in electron scattering from hadrons/nuclei (does not couple to photon)
 - Drell-Yan more direct but messy
- Topical
 - Electron-Ion Collider
 - JLab 12 GeV (lesser extent)

'Exotic' Glue in the Nucleus



'Exotic' Glue in the Nucleus



'Exotic' Glue

Contributions to gluon observables that are not from nucleon degrees of freedom.

Exotic glue operator:

operator in nucleon = 0 operator in nucleus $\neq 0$

Outline

- Motivation
- 2 Double Helicity Flip Gluon Structure Function: $\Delta(x,Q^2)$
- 3 Lattice Study
- 4 Preliminary Results: ϕ meson
- Question for Discussion
- 6 Summary

Jaffe and Manohar (1989)

Leading-twist, double-helicity-flipping structure function $\Delta(x,Q^2)$ sensitive to exotic glue in the nucleus

- Clear signature for exotic glue in nuclei with spin ≥ 1 : NO analogous twist-2 quark PDF \rightarrow unambiguous
- Experimentally measurable (JLab LOI 2016)
- Moments are calclable on the lattice

Jaffe and Manohar (1989)

Leading-twist, double-helicity-flipping structure function $\Delta(x,Q^2)$ sensitive to exotic glue in the nucleus

- Clear signature for exotic glue in nuclei with spin ≥ 1 : NO analogous twist-2 quark PDF \rightarrow unambiguous
- Experimentally measurable (JLab LOI 2016)
- Moments are calclable on the lattice

First Lattice Study

• First moment of $\Delta(x,Q^2)$ in spin-1 ϕ (or ρ) meson

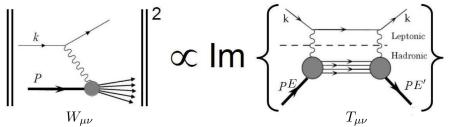
Jaffe and Manohar (1989)

Leading-twist, double-helicity-flipping structure function $\Delta(x,Q^2)$ sensitive to exotic glue in the nucleus

- Clear signature for exotic glue in nuclei with spin ≥ 1 : NO analogous twist-2 quark PDF \rightarrow unambiguous
- Experimentally measurable (JLab LOI 2016)
- Moments are calclable on the lattice

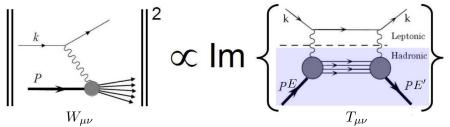
Hadronic tensor for inelastic lepton scattering from a polarized spin-one target:

$$\frac{1}{4\pi} \int d^4x \, e^{iq \cdot x} \langle p, E' | [j_{\mu}(x), j_{\nu}(0)] | p, E \rangle$$



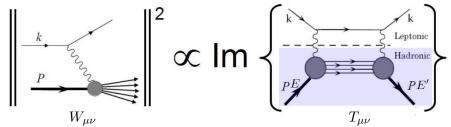
Hadronic tensor for inelastic lepton scattering from a polarized spin-one target:

$$\frac{1}{4\pi} \int d^4x \, e^{iq \cdot x} \langle p, E' | [j_{\mu}(x), j_{\nu}(0)] | p, E \rangle$$



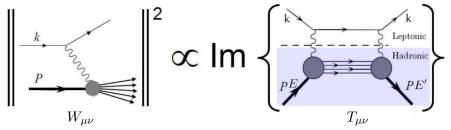
Hadronic tensor for inelastic lepton scattering from a polarized spin-one target:

$$\frac{1}{4\pi} \int d^4x \, e^{iq\cdot x} \langle p, \underline{\underline{E}'} | [j_\mu(x), j_\nu(0)] | p, \underline{\underline{E}} \rangle$$



Hadronic tensor for inelastic lepton scattering from a polarized spin-one target:

$$\frac{1}{4\pi} \int d^4x \, e^{iq\cdot x} \langle p, \underline{E}' | [j_\mu(x), j_\nu(0)] | p, \underline{E} \rangle = \underline{E}'^{*\alpha} \underline{E}^\beta W_{\mu\nu,\alpha\beta}$$



Hadronic tensor for inelastic lepton scattering from a polarized spin-one target:

$$\frac{1}{4\pi} \int d^4x \, e^{iq\cdot x} \langle p, \underline{E}' | [j_\mu(x), j_\nu(0)] | p, \underline{E} \rangle = \underline{E}'^{*\alpha} \underline{E}^\beta W_{\mu\nu,\alpha\beta}$$

$$W_{\mu\nu,\alpha\beta} = \sum_{hH,h'H'} P(hH,h'H')_{\mu\nu,\alpha\beta} A_{hH,h'H'}$$

Hadronic tensor for inelastic lepton scattering from a polarized spin-one target:

$$\frac{1}{4\pi} \int d^4x \, e^{iq\cdot x} \langle p, \underline{E}' | [j_\mu(x), j_\nu(0)] | p, \underline{E} \rangle = \underline{E}'^{*\alpha} \underline{E}^\beta W_{\mu\nu,\alpha\beta}$$

Helicity projection operators
$$W_{\mu\nu,\alpha\beta} = \sum_{hH,h'H'} P(hH,h'H')_{\mu\nu,\alpha\beta} A_{hH,h'H'}$$

Hadronic tensor for inelastic lepton scattering from a polarized spin-one target:

$$\frac{1}{4\pi} \int d^4x \, e^{iq\cdot x} \langle p, \underline{E}' | [j_\mu(x), j_\nu(0)] | p, \underline{E} \rangle = \underline{E}'^{*\alpha} \underline{E}^\beta W_{\mu\nu,\alpha\beta}$$

Helicity projection operators Target helicity
$$W_{\mu
u,lphaeta}=\sum_{hH,h'H'}P(hH,h'H')_{\mu
u,lphaeta}A_{hH,h'H'}$$

Hadronic tensor for inelastic lepton scattering from a polarized spin-one target:

$$\frac{1}{4\pi} \int d^4x \, e^{iq\cdot x} \langle p, \underline{E}' | [j_\mu(x), j_\nu(0)] | p, \underline{E} \rangle = \underline{E}'^{*\alpha} \underline{E}^\beta W_{\mu\nu,\alpha\beta}$$

$$W_{\mu\nu,\alpha\beta} = \sum_{hH,h'H'}^{\text{Helicity projection operators}} P(hH,h'H')_{\mu\nu,\alpha\beta} A_{hH,h'H'}$$

Hadronic tensor for inelastic lepton scattering from a polarized spin-one target:

$$\frac{1}{4\pi} \int d^4x \, e^{iq\cdot x} \langle p, \underline{E}' | [j_\mu(x), j_\nu(0)] | p, \underline{E} \rangle = \underline{E}'^{*\alpha} \underline{E}^\beta W_{\mu\nu,\alpha\beta}$$

Helicity projection:

$$W_{\mu\nu,\alpha\beta} = \sum_{hH,h'H'}^{\text{Helicity projection operators}} P(hH,h'H')_{\mu\nu,\alpha\beta} A_{hH,h'H'}$$

Double helicity flip amplitude:

$$\Delta(x, Q^2) = A_{+-,-+} = A_{-+,+-}$$

Hadronic tensor for inelastic lepton scattering from a polarized spin-one target:

$$\frac{1}{4\pi} \int d^4x \, e^{iq\cdot x} \langle p, \underline{E}' | [j_\mu(x), j_\nu(0)] | p, \underline{E} \rangle = \underline{E}'^{*\alpha} \underline{E}^\beta W_{\mu\nu,\alpha\beta}$$

Double helicity flip piece of structure function:

$$\begin{split} W^{\Delta=2}_{\mu\nu,\alpha\beta} &= \frac{1}{2} \left\{ \; \left[\left(E'^*_{\mu} - \frac{q \cdot E'^*}{\kappa \nu} \left(p_{\mu} - \frac{M^2}{\nu} q_{\mu} \right) \right) \left(E_{\nu} - \frac{q \cdot E}{\kappa \nu} \left(p_{\nu} - \frac{M^2}{\nu} q_{\nu} \right) \right) + (\mu \leftrightarrow \nu) \right] \right. \\ & \left. - \left[g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2} + \frac{q^2}{\kappa \nu^2} \left(p_{\mu} - \frac{\nu}{q^2} q_{\mu} \right) \left(p_{\nu} - \frac{\nu}{q^2} q_{\nu} \right) \right] \left[E'^* \cdot E + \frac{M^2}{\kappa \nu^2} q \cdot E'^* q \cdot E \right] \right\} \Delta(x, Q^2) \end{split}$$

12 / 32

Hadronic tensor for inelastic lepton scattering from a polarized spin-one target:

$$\frac{1}{4\pi} \int d^4x \, e^{iq\cdot x} \langle p, \underline{E}' | [j_\mu(x), j_\nu(0)] | p, \underline{E} \rangle = \underline{E}'^{*\alpha} \underline{E}^\beta W_{\mu\nu,\alpha\beta}$$

Double helicity flip piece of structure function:

$$\begin{split} W^{\Delta=2}_{\mu\nu\sigma\beta} &= \frac{1}{2} \left\{ \; \left[\left(E'^*_{\mu} - \frac{q \cdot E'^*}{\kappa \nu} \left(p_{\mu} - \frac{M^2}{\nu} q_{\mu} \right) \right) \left(E_{\nu} - \frac{q \cdot E}{\kappa \nu} \left(p_{\nu} - \frac{M^2}{\nu} q_{\nu} \right) \right) + (\mu \leftrightarrow \nu) \right] \\ & \text{Double} \\ & \text{Helicity Flip} \end{split} \right. \\ & \left. - \left[g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2} + \frac{q^2}{\kappa \nu^2} \left(p_{\mu} - \frac{\nu}{q^2} q_{\mu} \right) \left(p_{\nu} - \frac{\nu}{q^2} q_{\nu} \right) \right] \left[E'^* \cdot E + \frac{M^2}{\kappa \nu^2} q \cdot E'^* q \cdot E \right] \right\} \Delta(x, Q^2) \end{split}$$

Hadronic tensor for inelastic lepton scattering from a polarized spin-one target:

$$\frac{1}{4\pi} \int d^4x \, e^{iq\cdot x} \langle p, \underline{E}' | [j_\mu(x), j_\nu(0)] | p, \underline{E} \rangle = \underline{E}'^{*\alpha} \underline{E}^\beta W_{\mu\nu,\alpha\beta}$$

Double helicity flip piece of structure function:

$$\begin{split} W_{\mu\nu\alpha\beta}^{\Delta=2} &= \frac{1}{2} \left\{ \; \left[\left(E_{\mu}^{\prime*} - \frac{q \cdot E^{\prime*}}{\kappa \nu} \left(p_{\mu} - \frac{M^2}{\nu} q_{\mu} \right) \right) \left(E_{\nu} - \frac{q \cdot E}{\kappa \nu} \left(p_{\nu} - \frac{M^2}{\nu} q_{\nu} \right) \right) + (\mu \leftrightarrow \nu) \right] \\ & \text{Double} \\ & \quad + \left[g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2} + \frac{q^2}{\kappa \nu^2} \left(p_{\mu} - \frac{\nu}{q^2} q_{\mu} \right) \left(p_{\nu} - \frac{\nu}{q^2} q_{\nu} \right) \right] \left[E^{\prime*} \cdot E + \frac{M^2}{\kappa \nu^2} q \cdot E^{\prime*} q \cdot E \right] \right\} \Delta(x, Q^2) \\ & \text{Helicity Flip} \end{split}$$

Relate to matrix elements of operator (next slide) using **Operator Product Expansion**

$$\mathcal{T}_{\mu\nu}(q) \equiv i \int d^4x \, e^{iq\cdot x} T(j_{\mu}(x)j_{\nu}(0))$$

Relate to matrix elements of operator (next slide) using **Operator Product Expansion**

$$\mathcal{T}_{\mu\nu}(q) \equiv i \int d^4x \, e^{iq\cdot x} T(j_{\mu}(x)j_{\nu}(0))$$

Showing only double helicity flip part: tower of gluonic operators

$$\frac{1}{2}\mathcal{T}_{\mu\nu}(q) = \dots + \sum_{n=2,4,\dots} \frac{2^n q^{\mu_1} \dots q^{\mu_n}}{(Q^2)^n} C_n(Q^2) \mathcal{O}_{\mu\nu\mu_1\dots\mu_n}$$

Relate to matrix elements of operator (next slide) using **Operator Product Expansion**

$$\mathcal{T}_{\mu\nu}(q) \equiv i \int d^4x \, e^{iq\cdot x} T(j_{\mu}(x)j_{\nu}(0))$$

Showing only double helicity flip part: tower of gluonic operators

$$\frac{1}{2}\mathcal{T}_{\mu\nu}(q) = \dots + \sum_{n=2,4,\dots} \frac{2^n q^{\mu_1} \dots q^{\mu_n}}{(Q^2)^n} C_n(Q^2) \mathcal{O}_{\mu\nu\mu_1\dots\mu_n}$$

where

$$\boxed{\mathcal{O}_{\mu\nu\mu_1\dots\mu_n}} = S \left[G_{\mu\mu_1} \overleftrightarrow{D}_{\mu_3} \dots \overleftrightarrow{D}_{\mu_n} G_{\nu\mu_2} \right]$$

Relate to matrix elements of operator (next slide) using **Operator Product Expansion**

$$\mathcal{T}_{\mu\nu}(q) \equiv i \int d^4x \, e^{iq\cdot x} T(j_{\mu}(x)j_{\nu}(0))$$

Showing only double helicity flip part: tower of gluonic operators

$$\frac{1}{2}\mathcal{T}_{\mu\nu}(q) = \dots + \sum_{n=2,4,\dots} \frac{2^n q^{\mu_1} \dots q^{\mu_n}}{(Q^2)^n} C_n(Q^2) \mathcal{O}_{\mu\nu\mu_1\dots\mu_n}$$

where

Symmetrize and trace subtract in μ_1,\ldots,μ_n

$$\mathcal{O}_{\mu\nu\mu_1...\mu_n} = \underline{S} \left[G_{\mu\mu_1} \overleftrightarrow{D}_{\mu_3} \dots \overleftrightarrow{D}_{\mu_n} G_{\nu\mu_2} \right]$$

$$\langle pE'|\mathcal{O}_{\mu\nu\{\mu_{1}...\mu_{n}\}}-\text{Tr}|pE\rangle$$

$$= (-2i)^{n-2}S\left[(p_{\mu}E_{\mu_{1}}^{\prime*}-p_{\mu_{1}}E_{\mu}^{\prime*})(p_{\nu}E_{\mu_{2}}-p_{\mu_{2}}E_{\nu}) + (\mu \leftrightarrow \nu)\right]p_{\mu_{3}}...p_{\mu_{n}}A_{n}(Q^{2})...,$$

$$\begin{split} \langle pE'|\mathcal{O}_{\mu\nu\{\mu_1\dots\mu_n\}} - &\text{Tr}|pE\rangle \quad \text{Symmetrize and trace subtract in } \mu_1,\dots,\mu_n \\ &= (-2i)^{n-2}\underline{S} \left[(p_\mu E'^*_{\mu_1} - p_{\mu_1} E'^*_\mu) (p_\nu E_{\mu_2} - p_{\mu_2} E_\nu) \right. \\ &+ \left. (\mu \leftrightarrow \nu) \right] p_{\mu_3}\dots p_{\mu_n} A_n(Q^2)\dots, \end{split}$$

$$\begin{split} \langle pE'|\mathcal{O}_{\mu\nu\{\mu_1\dots\mu_n\}} - &\mathrm{Tr}|pE\rangle \text{ Symmetrize and trace subtract in } \mu_1,\dots,\mu_n \\ &= (-2i)^{n-2}\underline{S} \left[(p_\mu E'^*_{\mu_1} - p_{\mu_1} E'^*_\mu) (p_\nu E_{\mu_2} - p_{\mu_2} E_\nu) \right. \\ &+ \left. (\mu \leftrightarrow \nu) \right] p_{\mu_3} \dots p_{\mu_n} A_n(Q^2) \dots, \end{split}$$
 Reduced Matrix Element

$$\begin{split} \langle pE'|\mathcal{O}_{\mu\nu\{\mu_1\dots\mu_n\}} - &\text{Tr}|pE\rangle \text{ Symmetrize and trace subtract in } \mu_1,\dots,\mu_n \\ &= (-2i)^{n-2}\underline{S} \left[(p_\mu E'^*_{\mu_1} - p_{\mu_1} E'^*_\mu) (p_\nu E_{\mu_2} - p_{\mu_2} E_\nu) \right. \\ &+ \left. (\mu \leftrightarrow \nu) \right] p_{\mu_3} \dots p_{\mu_n} A_n(Q^2) \dots, \end{split}$$
 Reduced Matrix Element

Dispersion relation for helicity flip part of $\mathcal{T}_{\mu\nu}$ (previous slide) and analytic continuation give **moments**:

$$\int_0^1 dx x^{n-1} \Delta(x, Q^2) = \frac{\alpha_s(Q^2)}{3\pi} \frac{A_n(Q^2)}{n+2}, \quad n = 2, 4, 6 \dots,$$

Unpolarized scattering: symmetric piece of hadronic tensor $W_{\mu\nu}$, \rightarrow even n

$$\begin{split} \langle pE'|\mathcal{O}_{\mu\nu\{\mu_1\dots\mu_n\}} - &\text{Tr}|pE\rangle \text{ Symmetrize and trace subtract in } \mu_1,\dots,\mu_n \\ &= (-2i)^{n-2}\underline{S} \left[(p_\mu E'^*_{\mu_1} - p_{\mu_1} E'^*_\mu) (p_\nu E_{\mu_2} - p_{\mu_2} E_\nu) \right. \\ &+ \left. (\mu \leftrightarrow \nu) \right] p_{\mu_3} \dots p_{\mu_n} A_n(Q^2) \dots, \end{split}$$
 Reduced Matrix Element

Dispersion relation for helicity flip part of $\mathcal{T}_{\mu\nu}$ (previous slide) and analytic continuation give **moments**:

Moment of Structure Function

$$\int_0^1 dx x^{n-1} \Delta(x, Q^2) = \frac{\alpha_s(Q^2)}{3\pi} \frac{A_n(Q^2)}{n+2}, \quad n = 2, 4, 6 \dots,$$

Unpolarized scattering: symmetric piece of hadronic tensor $W_{\mu\nu}$, \rightarrow even n

$$\begin{split} \langle pE'|\mathcal{O}_{\mu\nu\{\mu_1\dots\mu_n\}} - &\text{Tr}|pE\rangle \text{ Symmetrize and trace subtract in } \mu_1,\dots,\mu_n \\ &= (-2i)^{n-2}\underline{S} \left[(p_\mu E'^*_{\mu_1} - p_{\mu_1} E'^*_\mu) (p_\nu E_{\mu_2} - p_{\mu_2} E_\nu) \right. \\ &+ \left. (\mu \leftrightarrow \nu) \right] p_{\mu_3} \dots p_{\mu_n} A_n(Q^2) \dots, \end{split}$$
 Reduced Matrix Element

Dispersion relation for helicity flip part of $\mathcal{T}_{\mu\nu}$ (previous slide) and analytic continuation give moments:

Moment of Structure Function

$$\int_0^1 dx x^{n-1} \Delta(x, Q^2) =$$

Reduced Matrix Element

$$\int_0^1 dx x^{n-1} \Delta(x, Q^2) = \frac{\alpha_s(Q^2) A_n(Q^2)}{3\pi n + 2}, \quad n = 2, 4, 6 \dots,$$

Unpolarized scattering: symmetric piece of hadronic tensor $W_{\mu\nu}$, \rightarrow even n

Double Helicity Flip Gluon Structure Function: $\Delta(x, Q^2)$

Parton model interpretation

For a target in the infinite momentum frame polarized in the \hat{x} direction perpendicular to its momentum,

$$\Delta(x,Q^2) \propto \int_x^1 \frac{dy}{y^3} \left(g_{\hat{x}}(y,Q^2) - g_{\hat{y}}(y,Q^2) \right)$$

 $g_{\hat{x},\hat{y}}(y,Q^2)$: probability of finding a gluon with momentum fraction y linearly polarized in the \hat{x} , \hat{y} direction

"How much more momentum of transversely polarized particle carried by gluons aligned rather than perpendicular to it in the transverse plane"

Outline

- Motivation
- 2 Double Helicity Flip Gluon Structure Function: $\Delta(x,Q^2)$
- 3 Lattice Study
- 4 Preliminary Results: ϕ meson
- Question for Discussion
- Summary

Lattice Operators

First moment of $\Delta(x,Q^2)$

Matrix elt. of $\mathcal{O}_{\mu\nu\mu_1\mu_2} = S[G_{\mu\mu_1}G_{\nu\mu_2}]$

Lattice Operators

First moment of $\Delta(x,Q^2)$

Matrix elt. of $\mathcal{O}_{\mu\nu\mu_1\mu_2} = S[G_{\mu\mu_1}G_{\nu\mu_2}]$

- Relate $\mathcal{O}_{\mu\nu\mu_1\mu_2}$ to Euclidean operator
- Find linear combs. of Euclidean operator (with different indices) that
 - lacktriangle Transform irriducibly under appropriate representations of H(4)
 - ② Don't mix with same or lower-dimensional quark or gluon operators
 - ▶ 3 irreps. of dimension 2, 6, 2, i.e., 10 basis vectors
- ullet Lattice simulation of matrix element in ϕ meson (spin-1)

L/a	T/a	β	am_l	am_s
24	64	6.1	-0.2800	-0.2450
a (fm)	L (fm)	T (fm)	m_π (MeV)	m_K (MeV)
0.1167(16)	2.801(29)	7.469(77)	450(5)	596(6)
m_ϕ (MeV)	$m_{\pi}L$	$m_{\pi}T$	$N_{ m cfg}$	$N_{ m src}$
1040(3)	6.390	17.04	1042	10^{5}

- All ϕ polarization states ($\{1,2,3\}$ or $\{+,-,0\}$)
 - on-diagonal
 - off-diagonal
- Momenta up to (1,1,1) in lattice units
- HYP smearing of gauge fields in operator (2-5 steps)

L/a	T/a	β	am_l	am_s
24	64	6.1	-0.2800	-0.2450
a (fm)	L (fm)	T (fm)	m_π (MeV)	m_K (MeV)
0.1167(16)	2.801(29)	7.469(77)	450(5)	596(6)
m_ϕ (MeV)	$m_{\pi}L$	$m_{\pi}T$	$N_{ m cfg}$	$N_{ m src}$
1040(3)	6.390	17.04	1042	10^{5}

- All ϕ polarization states ($\{1,2,3\}$ or $\{+,-,0\}$)
 - on-diagonal
 - off-diagonal
- Momenta up to (1,1,1) in lattice units
- HYP smearing of gauge fields in operator (2-5 steps)

L/a	T/a	β	am_l	am_s
24	64	6.1	-0.2800	-0.2450
<i>a</i> (fm)	L (fm)	T (fm)	m_π (MeV)	m_K (MeV)
0.1167(16)	2.801(29)	7.469(77)	450(5)	596(6)
m_ϕ (MeV)	$m_{\pi}L$	$m_{\pi}T$	$N_{ m cfg}$	$N_{ m src}$
1040(3)	6.390	17.04	1042	10^{5}

- All ϕ polarization states ($\{1,2,3\}$ or $\{+,-,0\}$)
 - on-diagonal
 - off-diagonal
- Momenta up to (1,1,1) in lattice units
- HYP smearing of gauge fields in operator (2-5 steps)

$\overline{L/a}$	L/a SYSTEMATICS IGNORED			
24	Quark m			$\frac{am_s}{-0.2450}$
<i>a</i> (fm)	 Volume effects 			n_K (MeV)
0.1167(16)	 Discretization effects Renormalization (for now) 			596(6)
m_{ϕ} (MeV)				$N_{ m src}$
1040(3)	6.390	17.04	1042	10^{5}

- All ϕ polarization states ($\{1,2,3\}$ or $\{+,-,0\}$)
 - on-diagonal
 - off-diagonal
- Momenta up to (1,1,1) in lattice units
- HYP smearing of gauge fields in operator (2-5 steps)

Extraction of A_2

$$\begin{split} \langle pE'|\mathcal{O}_{\mu\nu\{\mu_1\dots\mu_n\}} - &\text{Tr}|pE\rangle \text{ Symmetrize and trace subtract in } \mu_1,\dots,\mu_n \\ &= (-2i)^{n-2}\underline{S} \left[(p_\mu E_{\mu_1}'^* - p_{\mu_1} E_\mu'^*) (p_\nu E_{\mu_2} - p_{\mu_2} E_\nu) \right. \\ &+ \left. (\mu \leftrightarrow \nu) \right] p_{\mu_3} \dots p_{\mu_n} \underline{A_n(Q^2)} \dots, \end{split}$$
 Reduced Matrix Element

Extraction of A_2

$$\begin{split} \langle pE'|\mathcal{O}_{\mu\nu\{\mu_1\dots\mu_n\}} - &\text{Tr}|pE\rangle \text{ Symmetrize and trace subtract in } \mu_1,\dots,\mu_n \\ &= (-2i)^{n-2}\underline{S} \left[(p_\mu E'^*_{\mu_1} - p_{\mu_1} E'^*_\mu) (p_\nu E_{\mu_2} - p_{\mu_2} E_\nu) \right. \\ &+ \left. (\mu \leftrightarrow \nu) \right] p_{\mu_3} \dots p_{\mu_n} A_n(Q^2) \dots, \end{split}$$
 Reduced Matrix Element

$$\left[rac{C_{
m 3pt}^{EE'}}{C_{
m 2pt}^{EE'}}
ight](t_{
m sink}, au)\propto A_2$$
, factors of m and p

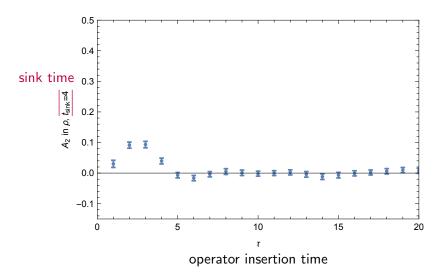
Some choice of irrep. and basis vector ϕ momentum (0,0,0)

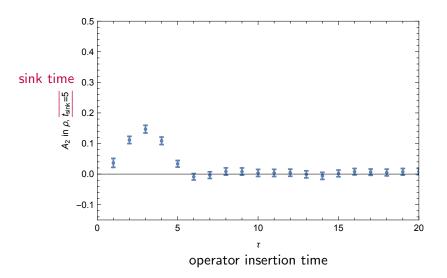
$$\rho_{0} \qquad \rho_{+} \qquad \rho_{-} \\
\rho_{0} \qquad \frac{2m^{2}A_{2}}{\sqrt{3}} \qquad 0 \qquad 0 \\
\rho_{+} \qquad 0 \qquad -\frac{m^{2}A_{2}}{\sqrt{3}} \qquad 0 \\
\rho_{-} \qquad 0 \qquad 0 \qquad -\frac{m^{2}A_{2}}{\sqrt{3}}$$

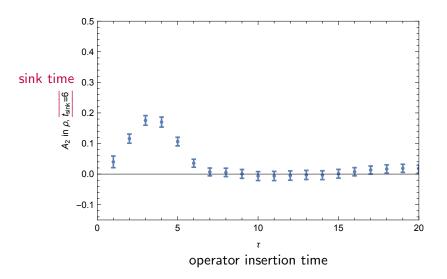
Some choice of irrep. and basis vector ϕ momentum (0,0,0)

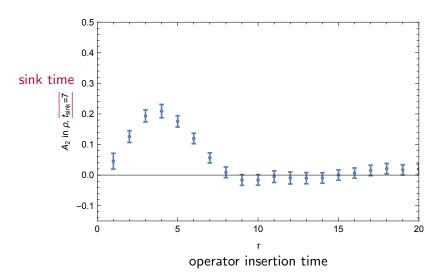
$$\rho_{0} \qquad \rho_{+} \qquad \rho_{-} \\
\rho_{0} \qquad \frac{\rho_{+}}{\sqrt{3}} \qquad 0 \qquad 0 \\
\rho_{+} \qquad 0 \qquad -\frac{m^{2}A_{2}}{\sqrt{3}} \qquad 0 \\
\rho_{-} \qquad 0 \qquad 0 \qquad -\frac{m^{2}A_{2}}{\sqrt{3}}$$

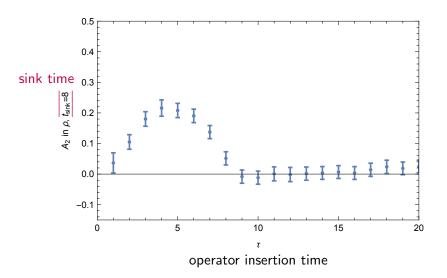
Some choice of irrep. and basis vector ϕ momentum (p, p, p)

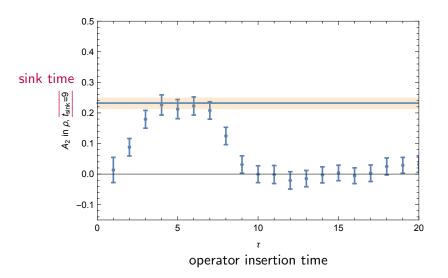


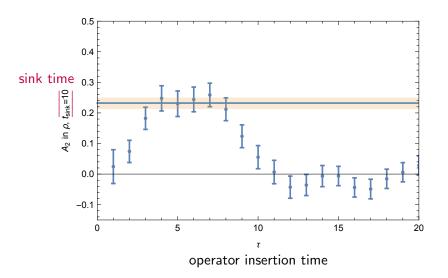


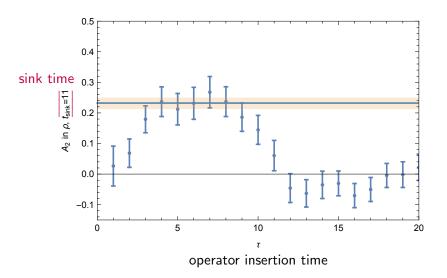


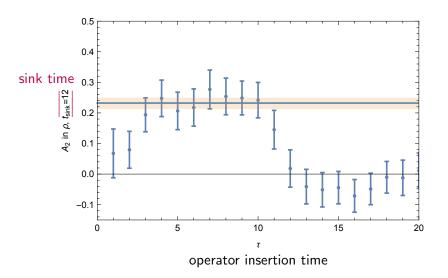


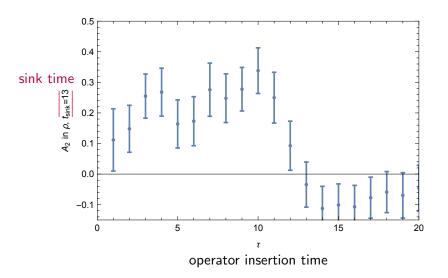


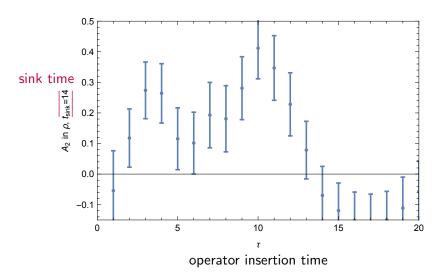


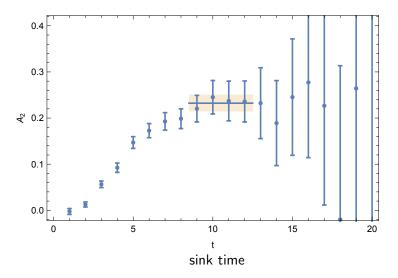






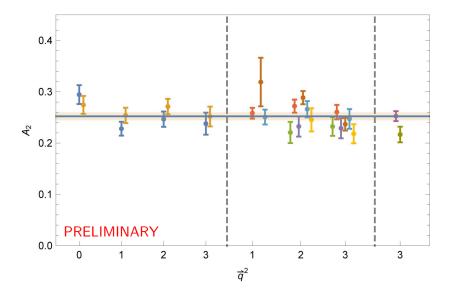


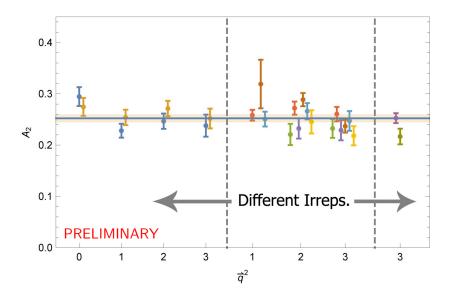


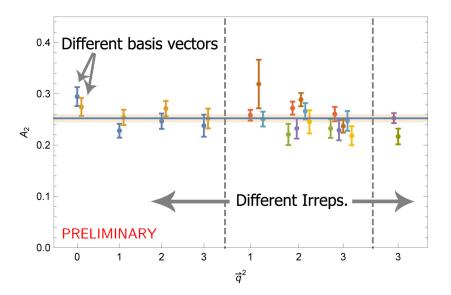


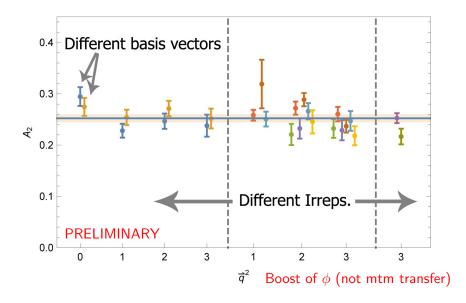
Outline

- Motivation
- 2 Double Helicity Flip Gluon Structure Function: $\Delta(x,Q^2)$
- 3 Lattice Study
- 4 Preliminary Results: ϕ meson
- Question for Discussion
- 6 Summary









Preliminary Results: ϕ meson

CLEAR NON-ZERO SIGNAL

Proof of principle: similar signal in a nucleus ⇔ exotic glue

Preliminary Results: ϕ meson

CLEAR NON-ZERO SIGNAL

Proof of principle: similar signal in a nucleus ⇔ exotic glue

SYSTEMATICS IGNORED

- Quark mass effects
- Volume effects
- Discretization effects
- Renormalization

Renormalisation:

- Gradient flow instead of HYP smearing
- Gradient-flowed lattice perturbation theory
- Non-peturbative renormalisation (set gauge-fixed gluon matrix elt. = tree level value)

Explore gluon structure of ϕ meson more generally

Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \le \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \underset{\text{Spin-dependent}}{\Delta} q(x) \right)$$

Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \underset{\text{Spin-dependent}}{\Delta} q(x) \right)$$

$$|A_2| \le \frac{1}{2}B_2$$

Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \underset{\text{Spin-dependent}}{\Delta} q(x) \right)$$

$$\frac{G_{\mu\mu_1}G_{\nu\mu_2}}{|A_2|} \le \frac{1}{2}B_2$$

Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \underset{\text{Spin-dependent}}{\Delta} q(x) \right)$$

$$\frac{G_{\mu\mu_1}G_{\nu\mu_2}}{A_2} \leq \frac{1}{2}B_2$$

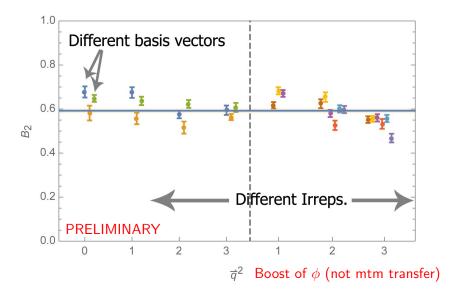
Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \underset{\text{Spin-dependent}}{\Delta} q(x) \right)$$

$$\begin{aligned} G_{\mu\mu_1}G_{\nu\mu_2} & G_{\mu_1\alpha}G_{\mu_2}^{\quad \alpha} \\ A_2 & \leq \frac{1}{2} B_2 \end{aligned} \qquad \widetilde{G}_{\mu_1\alpha}G_{\mu_2}^{\quad \alpha} \rightarrow 0$$

UNRENORMALISED reduced matrix element: ϕ meson



If we imagine approx. the same renormalisation for A_2 and B_2 :

$$\begin{array}{c}
G_{\mu\mu_1}G_{\nu\mu_2} & G_{\mu_1\alpha}G_{\mu_2}^{\alpha} \\
A_2 & \leq \frac{1}{2}B_2
\end{array}$$

$$0.25 \leq \frac{1}{2} 0.6$$

First two moments of quark distributions: Soffer bound saturated to 80% (lattice QCD, Diehl $\it et~al.~2005$)

Outline

- Motivation
- 2 Double Helicity Flip Gluon Structure Function: $\Delta(x,Q^2)$
- 3 Lattice Study
- 4 Preliminary Results: ϕ meson
- 6 Question for Discussion
- **6** Summary

Question for Discussion

Given lattice results for light nuclei ⇒ extrapolate to heavier nuclei?

Recall:

- Leading twist, double helicity flip
- Zero in spin < 1 states (nucleons, pions)
 i.e., gluon contributions from non-nucleonic and pionic degrees of freedom

Experimental possibilities:

- JLab 2016 proposal: Nitrogen
- EIC: possibly deuteron and other lighter nuclei!

 $^3{\rm He}_\Sigma$ lithium

Given lattice results for light nuclei ⇒ extrapolate to heavier nuclei?

Recall:

- Leading twist, double helicity flip
- Zero in spin < 1 states (nucleons, pions)
 i.e., gluon contributions from non-nucleonic and pionic degrees of freedom

Experimental possibilities:

- JLab 2016 proposal: Nitrogen
- EIC: possibly deuteron and other lighter nuclei!

Outline

- Motivation
- 2 Double Helicity Flip Gluon Structure Function: $\Delta(x,Q^2)$
- 3 Lattice Study
- 4 Preliminary Results: ϕ meson
- Question for Discussion
- **6** Summary

Summary

NON-ZERO signal for 'exotic glue' operator in the ϕ (or ρ) meson

Proof of principle: similar signal in a nucleus ⇔ exotic glue

Explore gluon structure of hadrons more generally e.g., Soffer bound analogue

Summary

NON-ZERO signal for 'exotic glue' operator in the ϕ (or ρ) meson

Proof of principle: similar signal in a nucleus ⇔ exotic glue

Explore gluon structure of hadrons more generally e.g., Soffer bound analogue

BUT: SYSTEMATICS IGNORED

⇒ no physically meaningful number (yet)

UNRENORMALISED reduced matrix element: ϕ meson, nHYP=2

