Deconfinement Transition at High Isospin Chemical Potential and Low Temperature

 Srimoyee Sen, University of Arizona (In collaboration with Thomas D. Cohen, University of Maryland)

Outline

- QCD phase diagram.
- Why we should be interested in QCD with finite isospin chemical potential μ _{*I*}
- What we already know about this regime
- Low energy effective theory
- First order deconfinement phase transition
- Equation of state and phase diagram

QCD phase diagram: the success so far

- Low μ _{*B*} and low temperature \rightarrow Hadronic phase \rightarrow handled using effective theory.
- High μ_{B} and low temperature \rightarrow Color superconductors → perturbative calculations using QCD.
- Low μ_{B} and high temperature \rightarrow QGP \rightarrow lattice calculations.

QCD phase diagram: the not so successful part.

• Moderate μ _{*B*} and low *T* regime is relevant for neutron star physics.

• In this regime no handle except model calculations.

• Lattice QCD fails due to sign problem.

Finite Isospin (µ^I) regime: benefits

• Learn all we can about QCD with chemical potential when finite μ_{β} regime is not accessible.

• Tractable using lattice \rightarrow no sign problem.

• Nonzero μ , present in neutron stars due to the suppression of proton fraction.

The limit considered in this talk

• QCD with two degenerate flavors of light quarks.

• Asymptotically high μ _{*l*}.

• Set μ_{B} to zero.

Exciting features of this limit

• At low *T*, this limit of QCD is equivalent to *SU(3)* Yang-Mills.

• Expected to undergo a first order deconfinement transition just like *SU(3)* Yang-Mills with changing *T*.

• Scale of this deconfinement transition can be calculated using effective theory.

Exciting features of this limit (contd.)

• Observables in the strongly coupled regime of this limit can be related to the observables of pure YM which is amenable to straightforward lattice calculation.

• For example, the EOS in this limit can be calculated using the EOS calculated in pure YM on lattice.

Exciting feature of this limit (contd.)

• The phase diagram at moderate isospin chemical potential is likely to have either a critical point or a triple point or a phase transition somewhere on the *T=0* axis.

• Only a lattice calculation can settle this as this regime is beyond the reach of perturbative calculations.

Low Isospin

• Lagrangian at low isospin with matrix pion fields :

$$
\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} \text{Tr} \nabla_{\nu} \Sigma \nabla_{\nu} \Sigma^{\dagger} - \frac{m_{\pi}^2 f_{\pi}^2}{2} \text{Re} \text{Tr} \Sigma.
$$

where,

$$
\nabla_i \Sigma = \partial_i \Sigma
$$

$$
\nabla_0 \Sigma = \partial_0 \Sigma - \frac{\mu_I}{2} (\tau_3 \Sigma - \Sigma \tau_3)
$$

● For *µ^I > m π ,* there is a charged pion condensate.

High isospin

- Fermi liquid of anti up quarks and down quarks.
- Attractive interaction at the Fermi surface leading to Cooper pair formation in the $\langle \overline{u} \gamma^5 d \rangle$ channel.
- The condensate has same quantum numbers as the pion condensate.

High isospin

• The condensate is color neutral \rightarrow no Meissner screening for gluons.

• At temperatures below the gap no Debye screening either for the gluons.

• At low T the quarks are gapped \rightarrow only pure gluodynamics *(SU(3))*.

High Isospin

• However $\mathscr{L} = \frac{-F^2}{4a^2}$ is not the complete picture.

• Despite being bound in color singlet Cooper pairs, the quarks can partially screen the gluons altering the chromo dieletric constant ϵ of the system.

High Isospin

- ϵ and λ (chrormo magnetic permeability) can be calculated by integrating out the quarks around the Fermi surface.
- The deconfinement scale is related to ϵ
- Our results for the deconfinement scale as a function of μ_I should be compared with future lattice calculations.

Similarity with two flavor color superconductor (2SC phase)

- Moderate μ_B : two quarks forming a condensate that breaks color SU(3) down to SU(2).
- Five of the eight gluons acquire Meissner mass. Three remain massless.
- Pure SU(2) gluodynamics at temperature below Debye mass. The quarks alter the chromo dielectric constant of the system.

Derivation of the effective Lagrangian from the microscopic theory • Microscopic Lagrangian:

 $\mathscr{L}=\overline{\psi}(i\gamma^{\mu}D_{\mu}+\mu_{I}\gamma^{0}\tau_{3})\psi-\frac{1}{4}(F_{\mu\nu}^{a})^{2}$

where
$$
\psi = \begin{pmatrix} u \\ d \end{pmatrix} D_{\mu} = \partial_{\mu} - igA_{\mu}^{a}t^{a}
$$

 $F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + gf_{abc} A_\mu^b A_\nu^c$ • Rewrite using $\tilde{\psi} \equiv \begin{pmatrix} u \\ \tilde{d} \end{pmatrix}$ $\tilde{d} = \gamma_5 d$ • Find the full Fermion propagator using the gap equation.

 $G = \begin{pmatrix} G^+ & \Sigma^- \\ \Sigma^+ & G^- \end{pmatrix}$ where

$$
G^{-}(k) = \sum_{e=\pm} \frac{-ik_0 + (\mu - ek)}{-k_0^2 - (\epsilon_k^e)^2} \lambda_{\mathbf{k}}^{-e} \gamma^0
$$

$$
G^{+}(k) = \sum_{e=\pm} \frac{-ik_0 - (\mu - ek)}{-k_0^2 - (\epsilon_k^e)^2} \lambda_{\mathbf{k}}^{+e} \gamma^0
$$

$$
\Sigma^{-}(k) = i \sum_{e=\pm} \frac{\Delta^{e} \lambda_{k}^{e}}{-k_{0}^{2} - (\epsilon_{k}^{e})^{2}}
$$

$$
\Sigma^{+}(k) = -i \sum_{e=\pm} \frac{\Delta^e \lambda_k^{-e}}{-k_0^2 - (\epsilon_k^e)^2}
$$

 $(\epsilon_k^e)^2 = (|\mathbf{k}| - e\mu)^2 + (\Delta^e)^2 \quad e = \pm \lambda_{\mathbf{p}}^{\pm} \equiv \frac{1}{2} (1 \pm \gamma_0 \gamma \cdot \hat{\mathbf{p}})$

Low energy effective action

• The effective action:

$$
S_{glue} = \sum_{a} \frac{1}{g^2} \int d^4q \left(\frac{\epsilon}{2} E_a^2 - \frac{1}{2\lambda} B_a^2 \right)
$$

where $E_i^a = F_{0i}^a$ $B_k^a = \epsilon_{ijk} F_{ij}$

• The polarization tensor can be written as

$$
\Pi_{ab}^{00}(q_0, \mathbf{q}) = -(\epsilon - 1)|\mathbf{q}|^2 \delta_{ab}
$$

$$
\Pi_{ab}^{ij} \frac{\delta^{ij}}{2} \frac{\delta_{ab}}{8} = -(\epsilon - 1)q_0^2
$$

$$
\Pi_{ab}^{ij}(q_0, \mathbf{q}) \left(-\delta^{ik} - \frac{q^i q^k}{|\mathbf{q}|^2} \right) = \left(\frac{1}{\lambda} - 1 \right) |\mathbf{q}|^2 \delta_{ab} \delta^{jk}
$$

One loop polarization can be calculated as

$$
\Pi_{ab}^{ij}(q) = g^2 T \sum_{k_0} \int \frac{d^3 k}{(2\pi)^3} \text{Trace} \left[\gamma^i t_a G^+(k) \gamma^j t_b G^+(k - q) \right.
$$

$$
+ \gamma^i t_a G^-(k) \gamma^j t_b G^-(k - q) \newline + \gamma^i t_a \Sigma^-(k) \gamma^j t_b \Sigma^+(k - q) \newline + \gamma^i t_a \Sigma^+(k) \gamma^j t_b \Sigma^-(k - q) \right]
$$

In the limit *T → 0* and around *q* and *|q|* → *0 0* $\Pi_{aa}^{00}=-\tfrac{g^2\mu_I^2|\mathbf{q}|^2}{18\pi^2(\Delta)^2}\ \ \Pi_{ab}^{ij}=\tfrac{g^2\mu_I^2q_0^2}{18\pi^2(\Delta)^2}\delta^{ij}\delta_{ab}$ **第一章** leads to

• The effective action can be recast as

RESIGNS

$$
S = -\frac{1}{4(g'')^2} \int d^4x'' (F'')^2
$$

using $t''_0 = \frac{t_0}{\sqrt{\epsilon}} A_0^{a''} = \sqrt{\epsilon} A_0^a$ $g'' = \frac{g}{\epsilon^{1/4}}$

• The coupling g" runs like that of pure YM as the energy scale reached Δ from below at which point the coupling needs to be matched as follows

$$
\alpha_s''(\Delta) = \frac{\alpha_s(\mu_I)}{\sqrt{\epsilon}}
$$

Confinement

• The new confinement scale can be found as

$$
\tilde{\lambda} = \Delta \exp\left(-\frac{2\pi}{b_0 \alpha_s''(\Delta)}\right)
$$

$$
= \Delta \exp\left[-2\sqrt{2\pi} \frac{\mu_I}{33\Delta\sqrt{\alpha_s(\mu_I)}}\right]
$$

where $b = 11$ for pure *SU(3)* YM. *0* • The gap is given by where $b = 10^4$

Different scales in the problem

Equation of state

• In our problem, other than the pure YM at low energy we also have a Goldstone mode corresponding to the spontaneous breaking of

$$
\begin{pmatrix} u \\ d \end{pmatrix} \rightarrow e^{i\alpha\tau_3} \begin{pmatrix} u \\ d \end{pmatrix}
$$

- The gluons and the Goldstone mode don't interact.
- Hence the pressure at low energy

$$
P(T) = T^4 f\left(\frac{T}{\tilde{T}_c}\right) + \frac{\pi^2}{90} \frac{T^4}{v^4}
$$

Phase Diagram: Scenario 1

Phase diagram: Scenario 2

Phase diagram: Scenario 3

Summary

- QCD at very high isospin chemical potential undegoes a first order deconfinement transition with increasing temperature.
- We calculate the scale of this deconfinement transition.
- Our prediction for this deconfinement scale as a function of μ should be tested using lattice.
- The EOS in the strongly coupled regime of this limit of QCD can be obtained using the EOS of pure YM found using lattice.