Deconfinement Transition at High Isospin Chemical Potential and Low Temperature

Srimoyee Sen, University of Arizona (In collaboration with Thomas D. Cohen, University of Maryland)

Outline

- QCD phase diagram.
- Why we should be interested in QCD with finite isospin chemical potential μ_{i}
- What we already know about this regime
- Low energy effective theory
- First order deconfinement phase transition
- Equation of state and phase diagram

QCD phase diagram: the success so far

- Low μ_B and low temperature \rightarrow Hadronic phase \rightarrow handled using effective theory.
- High μ_{B} and low temperature \rightarrow Color superconductors \rightarrow perturbative calculations using QCD.
- Low μ_{B} and high temperature \rightarrow QGP \rightarrow lattice calculations.

QCD phase diagram: the not so successful part.

• Moderate μ_{B} and low *T* regime is relevant for neutron star physics.

• In this regime no handle except model calculations.

• Lattice QCD fails due to sign problem.

Finite Isospin (μ_{I} **) regime: benefits**

• Learn all we can about QCD with chemical potential when finite μ_{B} regime is not accessible.

• Tractable using lattice \rightarrow no sign problem.

• Nonzero μ_{μ} present in neutron stars due to the suppression of proton fraction.

The limit considered in this talk

• QCD with two degenerate flavors of light quarks.

• Asymptotically high μ_{μ} .

• Set $\mu_{_B}$ to zero.

Exciting features of this limit

• At low *T*, this limit of QCD is equivalent to *SU(3)* Yang-Mills.

 Expected to undergo a first order deconfinement transition just like SU(3) Yang-Mills with changing T.

• Scale of this deconfinement transition can be calculated using effective theory.

Exciting features of this limit (contd.)

 Observables in the strongly coupled regime of this limit can be related to the observables of pure YM which is amenable to straightforward lattice calculation.

• For example, the EOS in this limit can be calculated using the EOS calculated in pure YM on lattice.

Exciting feature of this limit (contd.)

• The phase diagram at moderate isospin chemical potential is likely to have either a critical point or a triple point or a phase transition somewhere on the *T*=0 axis.

 Only a lattice calculation can settle this as this regime is beyond the reach of perturbative calculations.

Low Isospin

Lagrangian at low isospin with matrix pion fields :

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} \text{Tr} \nabla_{\nu} \Sigma \nabla_{\nu} \Sigma^{\dagger} - \frac{m_{\pi}^2 f_{\pi}^2}{2} \text{Re} \text{Tr} \Sigma.$$

where,

$$\nabla_i \Sigma = \partial_i \Sigma$$

$$\nabla_0 \Sigma = \partial_0 \Sigma - \frac{\mu_I}{2} (\tau_3 \Sigma - \Sigma \tau_3)$$

• For $\mu_{\mu} > m_{\pi}$, there is a charged pion condensate.

High isospin

- Fermi liquid of anti up quarks and down quarks.
- Attractive interaction at the Fermi surface leading to Cooper pair formation in the <uγ⁵d> channel.
- The condensate has same quantum numbers as the pion condensate.

High isospin

 The condensate is color neutral → no Meissner screening for gluons.

• At temperatures below the gap no Debye screening either for the gluons.

• At low T the quarks are gapped \rightarrow only pure gluodynamics (SU(3)).

High Isospin

• However $\mathscr{L} = \frac{-F^2}{4g^2}$ is not the complete picture.

 Despite being bound in color singlet Cooper pairs, the quarks can partially screen the gluons altering the chromo dieletric constant € of the system.

High Isospin

- ϵ and λ (chrormo magnetic permeability) can be calculated by integrating out the quarks around the Fermi surface.
- The deconfinement scale is related to ϵ
- Our results for the deconfinement scale as a function of μ_I should be compared with future lattice calculations.

Similarity with two flavor color superconductor (2SC phase)

- Moderate μ_B : two quarks forming a condensate that breaks color SU(3) down to SU(2).
- Five of the eight gluons acquire Meissner mass. Three remain massless.
- Pure SU(2) gluodynamics at temperature below Debye mass. The quarks alter the chromo dielectric constant of the system.

Derivation of the effective Lagrangian from the microscopic theory

Microscopic Lagrangian:

$$\mathscr{L} = \overline{\psi}(i\gamma^{\mu}D_{\mu} + \mu_{I}\gamma^{0}\tau_{3})\psi - \frac{1}{4}(F^{a}_{\mu\nu})^{2}$$

1

where
$$\psi = \begin{pmatrix} u \\ d \end{pmatrix} D_{\mu} = \partial_{\mu} - igA^{a}_{\mu}t^{a}$$

$$\begin{split} F^{a}_{\mu\nu} &= \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + gf_{abc}A^{b}_{\mu}A^{c}_{\nu} \\ \bullet \text{ Rewrite using } \tilde{\psi} \equiv \begin{pmatrix} u \\ \tilde{d} \end{pmatrix} \quad \tilde{d} = \gamma_{5}d \end{split}$$

• Find the full Fermion propagator using the gap equation.

 $G = \begin{pmatrix} G^+ & \Sigma^- \\ \Sigma^+ & G^- \end{pmatrix} \text{ where }$

$$\begin{aligned} G^{-}\left(k\right) &= \sum_{e=\pm} \frac{-ik_{0} + (\mu - ek)}{-k_{0}^{2} - (\epsilon_{k}^{e})^{2}} \lambda_{\mathbf{k}}^{-e} \gamma^{0} \\ G^{+}\left(k\right) &= \sum_{e=\pm} \frac{-ik_{0} - (\mu - ek)}{-k_{0}^{2} - (\epsilon_{k}^{e})^{2}} \lambda_{\mathbf{k}}^{+e} \gamma^{0} \end{aligned}$$

$$\Sigma^{-}(k) = i \sum_{e=\pm} \frac{\Delta^e \lambda_k^e}{-k_0^2 - (\epsilon_k^e)^2}$$

$$\Sigma^+(k) = -i\sum_{e=\pm} \frac{\Delta^e \lambda_k^{-e}}{-k_0^2 - (\epsilon_k^e)^2}$$

 $(\epsilon_k^e)^2 = (|\mathbf{k}| - e\mu)^2 + (\Delta^e)^2 \quad e = \pm \quad \lambda_{\mathbf{p}}^{\pm} \equiv \frac{1}{2} \left(1 \pm \gamma_0 \boldsymbol{\gamma} \cdot \boldsymbol{\hat{p}}\right)$

Low energy effective action

• The effective action:

$$S_{glue} = \sum_{a} \frac{1}{g^2} \int d^4q \left(\frac{\epsilon}{2} E_a^2 - \frac{1}{2\lambda} B_a^2\right)$$

where $E_i^a = F_{0i}^a$ $B_k^a = \epsilon_{ijk}F_{ij}$

The polarization tensor can be written as

$$\Pi_{ab}^{00}(q_0, \mathbf{q}) = -(\epsilon - 1)|\mathbf{q}|^2 \delta_{ab}$$
$$\Pi_{ab}^{ij} \frac{\delta^{ij}}{2} \frac{\delta_{ab}}{8} = -(\epsilon - 1)q_0^2$$
$$\Pi_{ab}^{ij}(q_0, \mathbf{q}) \left(-\delta^{ik} - \frac{q^i q^k}{|\mathbf{q}|^2}\right) = \left(\frac{1}{\lambda} - 1\right)|\mathbf{q}|^2 \delta_{ab} \delta^{jk}$$

One loop polarization can be calculated as

$$\Pi_{ab}^{ij}(q) = g^2 T \sum_{k_0} \int \frac{d^3 k}{(2\pi)^3} \operatorname{Trace} \left[\gamma^i t_a G^+(k) \gamma^j t_b G^+(k-q) \right. \\ \left. + \gamma^i t_a G^-(k) \gamma^j t_b G^-(k-q) \right. \\ \left. + \gamma^i t_a \Sigma^-(k) \gamma^j t_b \Sigma^+(k-q) \right. \\ \left. + \gamma^i t_a \Sigma^+(k) \gamma^j t_b \Sigma^-(k-q) \right]$$

In the limit $T \to 0$ and around q_0 and $|\mathbf{q}| \to 0$ $\Pi_{aa}^{00} = -\frac{g^2 \mu_I^2 |\mathbf{q}|^2}{18\pi^2 (\Delta)^2} \quad \Pi_{ab}^{ij} = \frac{g^2 \mu_I^2 q_0^2}{18\pi^2 (\Delta)^2} \delta^{ij} \delta_{ab}$ leads to $\lambda = 1$ $\epsilon = 1 + \frac{g^2 \mu_I^2}{18\pi^2 (\Delta)^2}$ The effective action can be recast as

$$S = -\frac{1}{4(g'')^2} \int d^4x'' (F'')^2$$

using
$$t_0'' = \frac{t_0}{\sqrt{\epsilon}}$$
 $A_0^{a''} = \sqrt{\epsilon}A_0^a$ $g'' = \frac{g}{\epsilon^{1/4}}$

 The coupling g" runs like that of pure YM as the energy scale reached Δ from below at which point the coupling needs to be matched as follows

$$\alpha_s''(\Delta) = \frac{\alpha_s(\mu_I)}{\sqrt{\epsilon}}$$

Confinement

The new confinement scale can be found as

$$\tilde{\lambda} = \Delta \exp\left(-\frac{2\pi}{b_0 \alpha_s''(\Delta)}\right)$$
$$= \Delta \exp\left[-2\sqrt{2\pi}\frac{\mu_I}{33\Delta\sqrt{\alpha_s(\mu_I)}}\right]$$

where $b_0 = 11$ for pure *SU*(3) YM. • The gap is given by $\Delta = b|\mu_I|g(\mu_I)^{-5} \exp(-\frac{3\pi^2}{2g(\mu_I)})$ where $b = 10^4$

Different scales in the problem

Equation of state

 In our problem, other than the pure YM at low energy we also have a Goldstone mode corresponding to the spontaneous breaking of

$$\begin{pmatrix} u \\ d \end{pmatrix} \to e^{i\alpha\tau_3} \begin{pmatrix} u \\ d \end{pmatrix}$$

- The gluons and the Goldstone mode don't interact.
- Hence the pressure at low energy

$$P(T) = T^4 f\left(\frac{T}{\tilde{T}_c}\right) + \frac{\pi^2}{90} \frac{T^4}{v^4}$$

Phase Diagram: Scenario 1

Phase diagram: Scenario 2

Phase diagram: Scenario 3

Summary

- QCD at very high isospin chemical potential undegoes a first order deconfinement transition with increasing temperature.
- We calculate the scale of this deconfinement transition.
- Our prediction for this deconfinement scale as a function of μ_{μ} should be tested using lattice.
- The EOS in the strongly coupled regime of this limit of QCD can be obtained using the EOS of pure YM found using lattice.