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Plan

• Introduction: scattering processes on the lattice and
non-relativistic EFT

• Definition of the optical potential

• The limit L→ ∞ and smoothing

• Energy scan: twisted boundary conditions

• Conclusions, outlook
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Scattering, resonances and the bound states

• How are the scattering processes described on the lattice?

(Performing the limit L→ ∞)

• How are the inelastic channels included?

• How does one include the multi-particle bound states?

• How does one study the properties of the inelastic resonances?

. . .
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Lüscher’s approach

M. Lüscher, lectures given at Les Houches (1988); NPB 364 (1991) 237, · · ·

• Lattice simulations are always done in a finite box of size L

• The interaction range is much smaller than the box size: R≪ L

• The box is small enough, so that the individual energy levels can
be separated

• p ≃ 2π/L: non-relativistic EFT can be applied

⇒ Single channel case: Lüscher equation relates the scattering

phase to the measured energy level

⇒ The finite-volume corrections to the scattering phase are
exponentially suppressed

⇒ Masses and widths of resonances are extracted from measured
phases
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Resonances

• Lüscher approach: spectrum ↔ scattering phase, real axis

• Resonances correspond to S-matrix poles on the unphysical
Riemann sheets after continuation into the complex plane

Resonance

Threshold

Bound state

• Resonances are characterized by their mass, their lifetime, . . .
These are the intrinsic properties of a resonance that should not
depend neither on a particular experiment nor a particular
theoretical model which is used to describe the data

How are the mass and width extracted from the measured phase?
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Where are the resonance poles?

Assume, e.g., the effective range expansion (S-wave):

p cot δ(p) = A0 +A1p
2 + · · · ,

Analytic continuation to the resonance pole:

pR cot δ(pR) = −ipR

⇒ A0, A1, · · · are measured on the lattice (real)

⇒ Resonance pole pR in the complex momentum plane
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The limit L → ∞

Analytic structure of the two-point function in the complex plane
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• The distance between energy levels ∼ (2π)2/L2.

• The poles merge in the cut as L→ ∞

FL(E) =
1

1− E + g2
√
E cot(

√
EL)

→ 1

1− E + g2
√
E
, ImE 6= 0

• Lüscher equation: p cot δ(p) is a meromorphic function

• Phase can be extracted at real energies, L→ ∞ limit can be
performed, only exponentially suppressed corrections
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Covariant NREFT in the infinite volume

G. Colangelo, J. Gasser, B. Kubis and A. Rusetsky, PLB 638 (2006) 187

J. Gasser, B. Kubis and A. Rusetsky, NPB 850 (2011) 96

The Lagrangian:

• Contains non-relativistic field operators

• Particle number is conserved

• Counting rules observed after applying “threshold expansion”

• Electromagnetic and weak interactions can be systematically
included

LI = C0Φ
†
1Φ

†
2Φ1Φ2 + derivatives

The propagator with the relativistic dispersion law:

D(p) =
1

2w(p)

1

w(p)− p0 − i0
, w(p) =

√

M2 + p2
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Lippmann-Schwinger equation

• Threshold expansion: in Feynman integrals, expand all

integrands in powers of three-momenta, integrate in the
dimensional regularization and sum up again

→֒ loop =
ip

8π
√
s
, p =

λ1/2(s,M2
1 ,M

2
2 )

2
√
s

T = + + + ...

→֒ Scattering amplitude is Lorentz-invariant:

Tl =
8π

√
s

p cot δl(p)− ip
, p2l+1 cot δl(p) = − 1

al
+

1

2
rlp

2 + · · ·

• Important in nonrest frames (formfactors, 3-body scattering)
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Covariant NREFT in a finite volume

EFT in a finite volume with the same Lagrangian ⇒ lattice QCD

Feynman loops are modified in a finite volume

∫

d3p

(2π)3
→ 1

L3

∑

p

(finite box with periodic b.c.)

Lippmann-Schwinger equation in a finite volume

TL(E) = V + V GL(E)TL(E)

• The potential V is a low-energy polynomial, only exponentially
suppressed finite-volume corrections

• The finite-volume Green function GL(E) contains a tower of the

real poles. The limit L→ ∞ does not exist for ImE = 0.
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Lüscher equation

Poles in the amplitude = spectrum of the Hamiltionan

→֒ Lüscher equation: (see S. R. Beane et al., NPA 747 (2005) 55)

det (δll′δmm′ − tan δl(s)Mlm,l′m′) = 0

Mlm,l′m′ is a linear combination of Lüscher zeta-functions

Zlm(1, q2) = lim
s→1

∑

n∈Z3

Ylm(n)

(n2 − q2)s
, q =

pL

2π

• In case of multi-channel scattering, Lippmann-Schwinger
equation becomes a matrix equation in the channel space

• In order to ensure a smooth limit L→ ∞ for real energies E, one
should determine all elements of the matrix V separately
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Optical potential for the multi-channel scattering

H. Feshbach, ’58; A.K. Kerman et al, ’59

• Coupled channel Lüscher approach: more unknowns than
measurements at a single energy, use of phenomenological
parameterizations inevitable (effective-range expansion,
UChPT,. . .)

M. Lage, U.-G. Meißner and AR, PLB 681 (2009) 439

V. Bernard, M. Lage, U.-G. Meißner and AR, JHEP 1101 (2011) 019

M. Döring, U.-G. Meißner, E. Oset and AR, EPJA 47 (2011) 139

• Intermediate and final states with three and more particles: the
proposed framework still very cumbersome

• Many interesting exotic states decaying into different channels:

Zc(3900)
± → J/ψπ±, hcπ

±, (DD̄∗)±

Zc(4025) → D∗D̄∗ , hcπ , etc

Change of a paradigm?
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Optical potential in the infinite volume: πη − KK̄

• Multi-channel Lippmann-Schwinger equation reduces to
algebraic equations in each partial wave; Potential = K-matrix

T (E) = V + V G0(E)T (E) .

• Projectors: “primary”: P = KK̄, “secondary”: Q = 1− P = πη

• Definition of the optical potential

TP (E) = W (E) + ipKK̄ W (E)TP (E)

W (E) = VPP +
ipπηV

2
PQ

1− ipπηVQQ

• Introduce M = V −1: useful in the vicinity of the K-matrix poles

W−1(E) =MPP −
M2

PQ

MQQ − ipπη
.
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Optical potential: short summary

• Optical potential contains less information than the multi-channel
potential V . Interactions between different channels are not
resolved separately

• Optical potential contains full information about the primary
channel: it leads to the same TP (E), as the solution of full

Lippmann-Schwinger equation and can be used to extract poles
in the primary channel

• The imaginary part of the optical potential is given by a sum of
the cross sections into the secondary channels. Multi-channel
unitarity is obeyed

Is it possible to directly extract the optical potential on the
lattice without resolving scattering into individual final states?
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Scattering equations in a finite volume

• Imposing periodic boundary conditions: p = (2π/L)n , n ∈ Z
3

ipk → 2√
πL

Z00(1; q
2
k) , qk =

pkL

2π
, k = πη, KK̄

• The secular equation determines the energy levels:

(

MPP − 2√
πL

Z00(1; q
2

KK̄)

)(

MQQ − 2√
πL

Z00(1; q
2
πη)

)

−M2
PQ = 0

• Finite-volume analog of the optical potential:

W−1

L (E)
.
=

2√
πL

Z00(1; q
2

KK̄) = MPP −
M2

PQ

MQQ − 2√
πL

Z00(1; q2πη)

2√
πL

Z00(1; q
2
πη) → ipπη ⇒ W−1

L (E) →W−1(E)
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The infinite-volume limit of W−1
L (E)
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L : no limit L→ ∞ in the presence of inelastic channels!
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Causal prescription

• Introduce causal prescription E → E + iε, equivalent to adiabatic
turning on/off the interaction

• The limits L→ ∞ and ε→ 0 are not interchangeable.
Infinite-volume limit is obtained with first L→ ∞ and then ε→ 0
(DeWitt, 1956)

• If ε≫ (distance between energy levels), the individual levels
merge in a cut

E
ε
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Fit to the pseudophase on the real axis
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L (E) =
∑

i

Zi

E − Yi
+D0 +D1E +D2E

2 +D3E
3 + · · ·

• Only simple poles + regular background, even when multiparticle
states are present!
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Continuation into the complex plane

• For E → E + iε, the regular summation theorem (Lüscher) can
be applied to the diagrams containing any number of
intermediate particles.

• The limit L→ ∞ exists, if ε 6= 0
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Smoothing: threshold behavior built in
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• Fit the oscillating functions by

Ŵ−1(E) =
∑

k

(ak + ipπη(E + iε)bk)(E + iε− E0)
k

• Evaluate the result at ε→ 0
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The penalty factor

χ2 =
∑

k

|Ŵ−1(Ek)− Ŵ−1

L (Ek)|2
σ2
k

+ P (aj , bj)

example: P (aj , bj) = λ4
∫ Emax+iε

Emin+iε

∣

∣

∣

∣

∂2Ŵ−1(E)

∂E2

∣

∣

∣

∣

Looking for the sweet spot in λ (LASSO method):

• Choose arbitrarily the training set, determine χ2 for this set

• From the rest of the data (test-validation set) determine χ2
V

without altering the fit parameters aj , bj

• The minimum of χ2
V as a function of λ determines the sweet spot
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Finding the sweet spot

2(training), =0.05 GeV
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• Training and test/validation sets: different ε

• Test with the “true” potential yields a very similar value of λ
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Non-parametric methods: Gaussian smearing

• Each data point is replaced by a linear combination of the
neighbouring data points with the weights:

w(x) ∝ exp(−(x− x0)
2/2σ2

0)

• Smearing radius = 2σ0 = 2 × distance between peaks

• Numerically extrapolate ε→ 0
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Measuring W−1
L (E) by using twisted boundary conditions

• W−1

L (E) depends on L, possibly on other parameters. In the fit,

all these parameters should be fixed

• In some cases, tuning the energy can be achieved by using
(partially) twisted boundary conditions: The elastic threshold
moves and the inelastic stays put

u(x+ Le) = eiθu(x) , d(x+ Le) = eiθd(x) , s(x+ Le) = s(x)

Z00(1; q
2

KK̄) → Zθ
00(1; q

2

KK̄) =
1√
4π

∑

n∈Z3

1

(n+ θ/2π)2 − q2
KK̄

W−1

L (E) =
2√
πL

Zθ
00(1; q

2

KK̄(θ)) : No explicit dependence on θ!
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Synthetic data obtained with partial twisting

• Can not scan below primary threshold!
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1 MeV error, polynomial smearing
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2 MeV error, polynomial smearing
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3 MeV error, polynomial smearing
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1 MeV error, Gaussian smearing
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2 MeV error, Gaussian smearing
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3 MeV error, Gaussian smearing
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Conclusions, outlook

• Effective field theories in a finite volume provide a powerful tool
for the extraction of hadronic observables in the scattering sector
from the lattice QCD data

Infinite volume : QCD → EFT (∞)

Finite volume : QCD on the lattice → EFT (L)

⇒ Allow to study the limit L→ ∞ in the observables

⇒ Enable for a direct extraction of the optical potential on the lattice
– multiparticle inelastic states allowed

• The method implies analytic continuation to the complex
energies – otherwise, the limit L→ ∞ can not be performed

• Smoothing allows one to determine the optical potential at a
finite L

• Twisted boundary conditions: a tool for the energy scan

• Forthcoming: testing in the φ4 theory on the lattice
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