

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

Inelastic scattering on the lattice

Akaki Rusetsky, University of Bonn

In coll with D. Agadjanov, M. Döring, M. Mai and U.-G. Meißner arXiv:1603.07205

Nuclear Physics from Lattice QCD, INT Seattle, March 29, 2016

- \bullet Introduction: scattering processes on the lattice andnon-relativistic EFT
- Definition of the optical potential
- \bullet • The limit $L\to\infty$ and smoothing
- \bullet Energy scan: twisted boundary conditions
- \bullet Conclusions, outlook

Scattering, resonances and the bound states

- How are the scattering processes described on the lattice?*(Performing the limit* $L \rightarrow \infty$ *)*
- How are the inelastic channels included?
- •How does one include the multi-particle bound states?
- How does one study the properties of the inelastic resonances?

 \cdots

L ¨uscher's approach

M. Lüscher, lectures given at Les Houches (1988); NPB ³⁶⁴ (1991) 237, · · ·

- • $\bullet~$ Lattice simulations are always done in a finite box of size L
- \bullet • The interaction range is much smaller than the box size: $R \ll L$
- The box is small enough, so that the individual energy levels can be separated
- $p\simeq 2\pi/L$: non-relativistic EFT can be applied
- \Rightarrow Single channel case: Lüscher equation relates the scattering
 \Rightarrow shace to the measured energy lovel phase to the measured energy level
- \Rightarrow The finite-volume corrections to the scattering phase are
exponentially suppressed exponentially suppressed
- ⇒ Masses and widths of resonances are extracted from measured phases

Resonances

- •• Lüscher approach: spectrum $↔$ scattering phase, real axis
- •• Resonances correspond to S -matrix poles on the unphysical Riemann sheets after continuation into the complex plane

• Resonances are characterized by their mass, their lifetime, . . . These are the *intrinsic* properties of ^a resonance that should not depend neither on ^a particular *experiment* nor ^a particular *theoretical model* which is used to describe the data

How are the mass and width extracted from the measured phase?

Where are the resonance poles?

Assume, e.g., the effective range expansion (S-wave):

$$
p \cot \delta(p) = A_0 + A_1 p^2 + \cdots,
$$

Analytic continuation to the resonance pole:

$$
p_R \cot \delta(p_R) = -ip_R
$$

- ⇒ $A_0, A_1,$ $,\cdots$ are measured on the lattice (real)
- ⇒ \Rightarrow Resonance pole p_R $\overline{\overline{R}}$ in the complex momentum plane

The limit $L \to \infty$

Analytic structure of the two-point function in the complex plane

- •• The distance between energy levels $\sim (2\pi)^2/L^2.$
- • $\bullet\,$ The poles merge in the cut as $L\rightarrow\infty$

$$
F_L(E) = \frac{1}{1 - E + g^2 \sqrt{E} \cot(\sqrt{E}L)} \rightarrow \frac{1}{1 - E + g^2 \sqrt{E}}, \quad \text{Im}E \neq 0
$$

- •**•** Lüscher equation: $p \cot \delta(p)$ is a *meromorphic* function
- • Phase can be extracted at *real* energies, ^L [→] [∞] limit can be performed, only exponentially suppressed corrections

Covariant NREFT in the infinite volume

G. Colangelo, J. Gasser, B. Kubis and A. Rusetsky, PLB 638 (2006) 187J. Gasser, B. Kubis and A. Rusetsky, NPB 850 (2011) 96

The Lagrangian:

- Contains non-relativistic field operators
- Particle number is conserved
- \bullet Counting rules observed after applying "threshold expansion"
- \bullet Electromagnetic and weak interactions can be systematicallyincluded

 $\mathcal{L}_I=C_0\Phi^\dagger_1\Phi^\dagger_2\Phi_1\Phi_2+$ derivatives

The propagator with the relativistic dispersion law:

$$
D(p) = \frac{1}{2w(\mathbf{p})} \frac{1}{w(\mathbf{p}) - p_0 - i0}, \qquad w(\mathbf{p}) = \sqrt{M^2 + \mathbf{p}^2}
$$

Lippmann-Schwinger equation

 \hookrightarrow

 $p\cot\delta_l(p)$

• Threshold expansion: in Feynman integrals, expand all integrands in powers of three-momenta, integrate in thedimensional regularization and sum up again

$$
\leftarrow \text{loop} = \frac{ip}{8\pi\sqrt{s}}, \qquad p = \frac{\lambda^{1/2}(s, M_1^2, M_2^2)}{2\sqrt{s}} \times \text{Scattering amplitude is } \frac{1 \text{orentz-invariant:}}{2\pi\sqrt{s}} \times \text{Soci}
$$
\n
$$
T_l = \frac{8\pi\sqrt{s}}{\arctan\lambda_l(p) - in}, \qquad p^{2l+1} \cot\delta_l(p) = -\frac{1}{q} + \frac{1}{2}r_l p^2 + \cdots
$$

•Important in nonrest frames (formfactors, 3-body scattering)

−

 a_{l}

 $\, + \,$

 $\overline{2}$

 r_lp

 $\overline{-ip}$, p^{-}

 \overline{z} + \cdots

Covariant NREFT in ^a finite volume

EFT in ^a finite volume with the *same* Lagrangian ⇒ lattice QCD

Feynman loops are modified in ^a finite volume

$$
\int \frac{d^3 \mathbf{p}}{(2\pi)^3} \to \frac{1}{L^3} \sum_{\mathbf{p}} \qquad \text{(finite box with periodic b.c.)}
$$

Lippmann-Schwinger equation in ^a finite volume

 $T_L(E) = V + V G_L(E) T_L(E)$

- •• The potential V is a low-energy polynomial, only exponentially suppressed finite-volume corrections
- $\bullet~$ The finite-volume Green function $G_L(E)$ contains a tower of the real poles. The limit $L\rightarrow\infty$ does not exist for Im $E=0.$

L ¨uscher equation

Poles in the amplitude ⁼ spectrum of the Hamiltionan \hookrightarrow Lüscher equation: (see S. R. Beane *et al.,* NPA 747 (2005) 55)

$$
\det\left(\delta_{ll'}\delta_{mm'}-\tan\delta_l(s)\mathcal{M}_{lm,l'm'}\right)=0
$$

 $\mathcal{M}_{lm,l'm'}$ is a linear combination of Lüscher zeta-functions

$$
Z_{lm}(1,q^2) = \lim_{s \to 1} \sum_{\mathbf{n} \in \mathbb{Z}^3} \frac{\mathcal{Y}_{lm}(\mathbf{n})}{(\mathbf{n}^2 - q^2)^s}, \qquad q = \frac{pL}{2\pi}
$$

- In case of multi-channel scattering, Lippmann-Schwinger equation becomes ^a *matrix equation* in the channel space
- In order to ensure a smooth limit $L \to \infty$ for real energies E , one should determine *all elements* of the matrix V separately should determine *all elements* of the matrix ^V separately

Optical potential for the multi-channel scattering

H. Feshbach, '58; A.K. Kerman *et al*, '59

• Coupled channel Lüscher approach: more unknowns than measurements at ^a single energy, use of phenomenological parameterizations inevitable (effective-range expansion, $UChPT, \ldots$

M. Lage, U.-G. Meißner and AR, PLB 681 (2009) 439V. Bernard, M. Lage, U.-G. Meißner and AR, JHEP 1101 (2011) 019M. Döring, U.-G. Meißner, E. Oset and AR, EPJA ⁴⁷ (2011) 139

- Intermediate and final states with three and more particles: theproposed framework still very cumbersome
- \bullet Many interesting exotic states decaying into different channels:

 $Z_c(3900)^{\pm} \rightarrow J/\psi \pi^{\pm},\ h_c \pi^{\pm}$, $(D\bar{D}^*)$ $^*)^{\pm}$

 $Z_c(4025)\rightarrow D^*$ ${}^*\bar{D}{}^*$, $h_c\pi$, etc

Change of ^a paradigm?

\bm{K} $\bm{\bar{K}}$ $\bm{\bar{K}}$ $\bm{\bar{K}}$ $\bm{\bar{K}}$ $\bm{\bar{K}}$ $\bm{\bar{K}}$ $\bm{\bar{K}}$ $\bm{\bar{K}}$

• Multi-channel Lippmann-Schwinger equation reduces toalgebraic equations in each partial wave; Potential = $K\text{-}$ matrix

> $T(E) = V + VG$ $_0(E)T(E)$.

- Projectors: "primary": $P = K\bar{K}$, "secondary": $Q = 1$ $-P=\pi \eta$
- Definition of the optical potential

$$
T_P(E) = W(E) + ip_{K\bar{K}} W(E) T_P(E)
$$

$$
W(E) = V_{PP} + \frac{ip_{\pi\eta} V_{PQ}^2}{1 - ip_{\pi\eta} V_{QQ}}
$$

• Introduce $M=V^{-1}$: useful in the vicinity of the K-matrix poles

$$
W^{-1}(E) = M_{PP} - \frac{M_{PQ}^2}{M_{QQ} - ip_{\pi\eta}}
$$

Optical potential: short summary

- Optical potential contains less information than the multi-channel potential $V.$ Interactions between different channels are not resolved separately
- Optical potential contains full information *about the primary* $\bm{channel:}$ it leads to the same $T_P(E),$ as the solution of full Lippmann-Schwinger equation and can be used to extract polesin the primary channel
- The imaginary part of the optical potential is given by ^a sum ^of the cross sections into the secondary channels. Multi-channel unitarity is obeyed

Is it possible to directly extract the optical potential on thelattice without resolving scattering into individual final states?

Scattering equations in ^a finite volume

 \bullet • Imposing periodic boundary conditions: $\mathbf{p} = (2\pi/L)\mathbf{n} \, , \; \mathbf{n} \in \mathbb{Z}^3$

$$
ip_k \to \frac{2}{\sqrt{\pi}L} Z_{00}(1; q_k^2), \qquad q_k = \frac{p_k L}{2\pi}, \qquad k = \pi \eta, K\overline{K}
$$

• The secular equation determines the energy levels:

$$
\left(M_{PP} - \frac{2}{\sqrt{\pi}L} Z_{00}(1; q_{K\bar{K}}^2)\right) \left(M_{QQ} - \frac{2}{\sqrt{\pi}L} Z_{00}(1; q_{\pi\eta}^2)\right) - M_{PQ}^2 = 0
$$

 \bullet Finite-volume analog of the optical potential:

$$
W_L^{-1}(E) \doteq \frac{2}{\sqrt{\pi}L} Z_{00}(1; q_{K\bar{K}}^2) = M_{PP} - \frac{M_{PQ}^2}{M_{QQ} - \frac{2}{\sqrt{\pi}L} Z_{00}(1; q_{\pi\eta}^2)}
$$

$$
\frac{2}{\sqrt{\pi}L} Z_{00}(1; q_{\pi\eta}^2) \to ip_{\pi\eta} \implies W_L^{-1}(E) \to W^{-1}(E)
$$

\mathbf{F} **infinite-volume** limit of W^-_L 1 $L^{-1}(E)$

 W^- 1 L_{-} L^{-1} : no limit $L\rightarrow\infty$ in the presence of inelastic channels!

Causal prescription

- Introduce causal prescription $E \to E + i\varepsilon$, equivalent to adiabatic
turning on/off the interaction turning on/off the interaction
- The limits $L \to \infty$ and $\varepsilon \to 0$ are not interchangeable.
Infinite-volume limit is obtained with first $L \to \infty$ and t Infinite-volume limit is obtained with first $L\rightarrow\infty$ and then $\varepsilon\rightarrow0$
(DeWitt_1956) (DeWitt, 1956)
- If $\varepsilon \gg$ (distance between energy levels), the individual levels
merge in a cut merge in ^a cut

Fit to the pseudophase on the real axis

$$
\hat{W}_L^{-1}(E) = \sum_i \frac{\Delta_i}{E - Y_i} + D_0 + D_1 E + D_2 E^2 + D_3 E^3 + \cdots
$$

• Only simple poles + regular background, even when multiparticle states are present!

Continuation into the complex plane

• For $E \to E + i\varepsilon$, the regular summation theorem (Lüscher) can
be explied to the diagrams containing environment of be applied to the diagrams containing *any number of intermediate particles.*

• The limit
$$
L \to \infty
$$
 exists, if $\varepsilon \neq 0$

Smoothing: threshold behavior built in

 \bullet Fit the oscillating functions by

$$
\hat{W}^{-1}(E) = \sum_{k} (a_k + ip_{\pi\eta}(E + i\varepsilon)b_k)(E + i\varepsilon - E_0)^k
$$

 \bullet • Evaluate the result at $\varepsilon \to 0$

The penalty factor

$$
\chi^2 = \sum_{k} \frac{|\hat{W}^{-1}(E_k) - \hat{W}_L^{-1}(E_k)|^2}{\sigma_k^2} + P(a_j, b_j)
$$

$$
\textbf{example:} \quad P(a_j, b_j) = \lambda^4 \int_{E_{\min} + i\varepsilon}^{E_{\max} + i\varepsilon} \left| \frac{\partial^2 \hat{W}^{-1}(E)}{\partial E^2} \right|
$$

Looking for the *sweet spot* in λ (LASSO method):

- \bullet \bullet Choose arbitrarily the *training set,* determine χ^2 for this set
- \bullet From the rest of the data *(test-validation set)* determine χ^2_V without altering the fit parameters a_j, b_j
- \bullet • The minimum of χ^2_V as a function of λ determines the *sweet spot*

Finding the sweet spot

- •Training and test/validation sets: different ε
- •Test with the "true" potential yields a very similar value of λ

Non-parametric methods: Gaussian smearing

• Each data point is replaced by ^a linear combination of theneighbouring data points with the weights:

$$
w(x) \propto \exp(-(x-x_0)^2/2\sigma_0^2)
$$

- \bullet • Smearing radius = $2\sigma_0$ = 2 \times distance between peaks
- \bullet • Numerically extrapolate $\varepsilon\to0$

Measuring^W−¹ ^L (E) **by using twisted boundary conditions**

- •• $W_L^{-1}(E)$ depends on L, possibly on other parameters. In the fit,

all these parameters should be fixed all these parameters should be fixed
- In some cases, tuning the energy can be achieved by using (partially) twisted boundary conditions: The elastic thresholdmoves and the inelastic stays put

$$
u(\mathbf{x} + L\mathbf{e}) = e^{i\theta}u(\mathbf{x}), \quad d(\mathbf{x} + L\mathbf{e}) = e^{i\theta}d(\mathbf{x}), \quad s(\mathbf{x} + L\mathbf{e}) = s(\mathbf{x})
$$

$$
Z_{00}(1;q_{K\bar{K}}^2) \to Z_{00}^{\theta}(1;q_{K\bar{K}}^2) = \frac{1}{\sqrt{4\pi}} \sum_{\mathbf{n} \in \mathbb{Z}^3} \frac{1}{(\mathbf{n} + \theta/2\pi)^2 - q_{K\bar{K}}^2}
$$

 W_L^{-1} $\mathcal{T}_L^{-1}(E) = \frac{2}{\sqrt{\pi}L}$ $\frac{1}{L}\,Z_{00}^\theta(1;q_{K\bar K}^2(\theta)):\quad$ No explicit dependence on $\theta!$

Synthetic data obtained with partial twisting

 \bullet Can not scan below primary threshold!

1 MeV error, polynomial smearing

2 MeV error, polynomial smearing

3 MeV error, polynomial smearing

¹ MeV error, Gaussian smearing

2 MeV error, Gaussian smearing

3 MeV error, Gaussian smearing

Conclusions, outlook

- Effective field theories in a finite volume provide a powerful tool for the extraction of hadronic observables in the scattering sector from the lattice QCD data
	- Infinite volume : QCD $\begin{array}{ccc} \mathsf{D} & & \rightarrow & \ \cdot & \cdot & \end{array}$ \rightarrow EFT (∞) Finite volume $\quad \, : \quad \, \mathsf{QCD}$ on the lattice $\quad \rightarrow \quad \, \mathsf{EFT}\,(L)$
- ⇒ Allow to study the limit $L \to \infty$ in the observables
- $⇒$ Enable for a direct extraction of the optical potential on the lattice $-$ multinarticle inelastic states allowed – multiparticle inelastic states allowed
	- The method implies analytic continuation to the complex energies – otherwise, the limit $L\to\infty$ can not be performed
	- Smoothing allows one to determine the optical potential at a finite L
	- Twisted boundary conditions: ^a tool for the energy scan
	- Forthcoming: testing in the ϕ^4 theory on the lattice