Electroweak structure of light nuclei

Saori Pastore 2016 INT Program: Nuclear Physics from Lattice QCD - Seattle, WA

* in collaboration with *
Rocco Schiavilla - JLab/ODU
Bob Wiringa, Steven Pieper, Maria Piarulli - ANL
Stefano Gandolfi, Joe Carlson - LANL
Luca Girlanda, Michele Viviani, Laura E. Marcucci, Alejandro Kievsky
- Salento U/INFN/Pisa U

PRC78(2008)064002 - PRC80(2009)034004 - PRC84(2011)024001 - PRC87(2013)014006 - PRC87(2013)035503 - PRL111(2013)062502 -

PRC90(2014)024321 - JPhysG41(2014)123002

Ab initio calculations of light nuclei

Aim: understand nuclei in terms of interactions between individual nucleons

Electromagnetic reactions are a powerful tool to test our theoretical models

- ► coupling constant $\alpha \sim 1/137$ allows for a perturbative treatment of the EM interaction \rightarrow single photon γ exchange suffices
- ▶ calculated x-sections $\propto |\langle \Psi_f | j^{\mu} | \Psi_i \rangle|^2$ with j^{μ} nuclear EM currents \rightarrow clear connection between measured x-sections and calculated properties of nuclear targets
- ► EXPT data (in most cases) known with great accuracy → viable EXPT constraints on theories
- ► For few-nucleon systems, the many-body problem can be solved exactly or within controlled approximations

Electromagnetic probes to test predictive power of nuclear theories/models

- ► In this talk we primarily focus on:

 EM ground state properties and transitions between low-lying states
- * Validate our theoretical understanding and control of nuclear EM structure and reactions is an essential prerequisite for studies on: *
- ⇒ Weak induced reactions, e.g., v-nucleus interactions (major progress by A. Lovato, S. Gandolfi et al.)
- ⇒ Larger nuclear systems

Bridging lattice QCD, EFTs and AIM (ab initio many-body) approaches

- ► From LQCD to EFTs to AIM calculations,
 - ▶ input to AIM: nucleonic form factors ***
 - input to AIM: strong and electroweak LECs entering many-body nuclear operators (e.g., g_A, L₁, ...) ***
 - calculations of quantities that are not easily accessed experimentally can help calibrate AIM (three-body forces, radiative captures at low energies...)

The Basic Model: Nuclear Potentials

► The nucleus is a system made of A non-relativistic interacting nucleons, its energy is given by

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

where v_{ij} and V_{ijk} are 2- and 3-nucleon interaction operators

- Realistic v_{ij} and V_{ijk} interactions are based on EXPT data fitting and fitted parameters subsume underlying QCD
- Realistic potentials at large inter-particle distances are described in terms of one-pion-exchange, range $\sim 1/m_{\pi}$. Other mechanisms are, *e.g.*, two-pion exchange, range $\sim 1/2m_{\pi}$; Δ -excitations . . .

Potentials utilized in these sets of calculations to generate nuclear wave functions $|\Psi_i\rangle$ solving $H|\Psi_i\rangle = E_i|\Psi_i\rangle$ are: [AV18+UIX], [AV18+IL7], [NN(N3LO)+3N(N2LO)]

The Basic Model: Nuclear Electromagnetic Currents - Impulse Approximation

► Current and charge operators describe the interaction of nuclei with external fields. They are expanded as a sum of 1-, 2-, ... nucleon operators:

$$\rho = \sum_{i=1}^{A} \rho_i + \sum_{i < j} \rho_{ij} + \dots, \qquad \qquad \mathbf{j} = \sum_{i=1}^{A} \mathbf{j}_i + \sum_{i < j} \mathbf{j}_{ij} + \dots$$

▶ In Impulse Approximation IA nuclear EM currents are expressed in terms of those associated with individual protons and nucleons, *i.e.*, ρ_i and \mathbf{j}_i

▶ IA picture is however incomplete; Historical evidence is the 10% underestimate of the *np* radiative capture 'fixed' by incorporating corrections from two-body meson-exchange EM currents - Riska&Brown 1972

The Basic Model: Nuclear Electromagnetic Currents

► Current and charge operators describe the interaction of nuclei with external fields. They are expanded as a sum of 1−, 2−, ... nucleon operators:

$$\rho = \sum_{i=1}^{A} \rho_i + \sum_{i < j} \rho_{ij} + \dots, \qquad \qquad \mathbf{j} = \sum_{i=1}^{A} \mathbf{j}_i + \sum_{i < j} \mathbf{j}_{ij} + \dots$$

Longitudinal EM current operator \mathbf{j} linked to the nuclear Hamiltonian via continuity eq. (\mathbf{q} momentum carried by the external EM probe γ)

$$\mathbf{q} \cdot \mathbf{j} = [H, \boldsymbol{\rho}] = [t_i + v_{ij} + V_{ijk}, \boldsymbol{\rho}]$$

* Meson-exchange currents MEC follow once meson-exchange mechanisms are implemented to describe nuclear forces - Villars&Miyazawa 40ies

These days we have:

- ▶ Highly sophisticated MEC projected out realistic potentials
- EM currents derived from χΕFTs

χ EFT EM current up to n = 1 (or up to N3LO)

- Two-body charge operators enter at N3LO and do not depend on LECs *
- ► LO = IA N2LO = IA(relativistic-correction)
- fits to np phases shifts PRC68, 041001 (2003)
- Unknown EM LECs enter the N3LO contact and tree-level currents
- ▶ No three-body EM currents at this order !!!
- ▶ NLO and N3LO loop-contributions lead to purely isovector operators

PRC78(2008)064002, PRC80(2009)034004, PRC84(2011)024001

χEFT EM currents at N3LO: fixing the EM LECs

Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

 d_2^V and d_1^V are known assuming Δ -resonance saturation

Left with 3 LECs: Fixed in the A = 2 - 3 nucleons' sector

- ► Isoscalar sector:
 - * d^S and c^S from EXPT μ_d and $\mu_S(^3H/^3He)$
- ► Isovector sector:
 - * model $I = c^V$ from EXPT $npd\gamma$ xsec.

or

* model II = c^V from EXPT $\mu_V(^3\text{H}/^3\text{He})$ m.m. \leftarrow our choice

Λ	NN/NNN	$10 \times d^S$	c^S	c^V
600	AV18/UIX (N3LO/N2LO)	-2.033 (3.231)	5.238 (11.38)	-1.025(-11.69)

Predictions with χ EFT EM currents for A=2-3 systems

np capture xsec. (using model II) / μ_V of A=3 nuclei (using model I) bands represent nuclear model dependence (N3LO/N2LO – AV18/UIX)

- ▶ $npd\gamma$ xsec. and $\mu_V(^3\text{H}/^3\text{He})$ m.m. are within 1% and 3% of EXPT
- ▶ Two-body currents important to reach agreement with exp data
- ▶ Negligible dependence on the cutoff entering the regulator $exp(-(k/\Lambda)^4)$

Applications:

EM form factors of nuclei with A = 2 and 3

Predictions with χEFT EM Currents for the Deuteron Charge and Quadrupole f.f.'s

Λ MeV	$\langle r_d \rangle$ (fm)	$\langle r_d \rangle$ EXP	Q_d (fm ²)	Q_d (fm ²) EXP
500	1.976	1.9734(44)	0.285	0.2859(3)
600	1.968		0.282	

- ► Calculations include nucleonic f.f.'s taken from EXPT data
- Sensitivity to the cutoff used to regularize divergencies in the matrix elements is given by the bands' thickness

Predictions with χ EFT EM Currents for the Deuteron Magnetic f.f.

PRC86(2012)047001 & PRC87(2013)014006

Predictions with χ EFT EM Currents for ³He and ³H Magnetic f.f.'s

LO/N3LO with AV18+UIX – LO/N3LO with χ -potentials NN(N3LO)+3N(N2LO)

- ▶ 3 He/ 3 H m.m.'s used to fix EM LECs; $\sim 15\%$ correction from two-body currents
- ► Two-body corrections crucial to improve agreement with EXPT data

	3 He $< r >_{EXP} =$	$1.976 \pm 0.047 \text{ fm}$	3 H < $r >_{EXP} =$	$1.840 \pm 0.181 \text{ fm}$
Λ	500	600	500	600
LO	2.098 (2.092)	2.090 (2.092)	1.924 (1.918)	1.914 (1.918)
N3LO	1.927 (1.915)	1.913 (1.924)	1.808 (1.792)	1.794 (1.797)

Benchmark calculations of ³He Zemach Moments*

Quote: Precise moments are useful observables for the comparison with theoretical calculations, . . . in particular for light nuclei where very accurate *ab initio* calculations can be performed. I. Sick - PRC90(2014)064002

$$\langle r \rangle_{(2)} \propto - \int_0^\infty \frac{dq}{q^2} \left[G_E G_M - 1 \right] \,, \qquad \qquad \langle r^3 \rangle_{(2)} \propto \int_0^\infty \frac{dq}{q^4} \left[G_E^2 - 1 + q^2 R^2 / 3 \right] \,. \label{eq:constraint}$$

	VMC(IA)	VMC(TOT)	GFMC(IA)	GFMC(TOT)	EXPT
$\langle r \rangle_{(2)}$	2.522	2.477	2.504	2.454	$2.528 \pm 0.016 \mathrm{fm}$
$\langle r^3 \rangle_{(2)}$	27.40	n.a.	29.30	n.a.	$28.15 \pm 0.70 \mathrm{fm}^3$
$\langle r_{\rm ch}^2 \rangle^{1/2}$	1.967	n.a.	1.970	n.a.	$1.973 \pm 0.014 \text{ fm}$
$\langle r_{\rm m}^2 \rangle^{1/2}$	2.000	1.962	2.019	1.942	$1.976 \pm 0.047 \text{ fm}$
$\langle r_{ m ch}^4 angle$	19.8	n.a.	30.0	n.a.	$32.9 \pm 1.60 \text{fm}^4$
$\langle \mu \rangle$	-1.775	-2.134	-1.767	-2.129	$-2.127 \mu_N$

^{*} collaboration with

Nir Nievo, Chen Ji, Sonia Bacca, Maria Piarulli and Bob Wiringa

Preliminary!!!

Calculations with EM Currents from χ EFT with π 's and N's

```
▶ Park, Min, and Rho et al. (1996)
  applications to:
  magnetic moments and M1 properties of A=2-3 systems, and
  radiative captures in A=2-4 systems by Song, Lazauskas, Park at al.
  (2009-2011) within the hybrid approach
  * Based on EM & EFT currents from NPA596(1996)515
► Meissner and Walzl (2001);
  Kölling, Epelbaum, Krebs, and Meissner (2009–2011)
  applications to:
  d and <sup>3</sup>He photodisintegration by Rozpedzik et al. (2011); e-scattering (2014);
  d magnetic f.f. by Kölling, Epelbaum, Phillips (2012);
  radiative N-d capture by Skibinski et al. (2014)
   . . . . . .
  * Based on EM \chiEFT currents from PRC80(2009)045502 &
  PRC84(2011)054008 and consistent χEFT potentials from UT method
► Phillips (2003-2007)
  applications to deuteron static properties and f.f.'s
```

Moving on to larger nuclear systems: magnetic moments and transitions in $A \leq 10$ nuclei

Green's function Monte Carlo

A trial w.f. Ψ_V is obtained by minimizing the H = T + AV18 + IL7 expectation value

$$E_V = \frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} \ge E_0$$

 Ψ_V is further improved it by "filtering" out the remaining excited state contamination:

$$\Psi(\tau) = \exp[-(H - E_0)\tau]\Psi_V = \sum_n \exp[-(E_n - E_0)\tau]a_n\psi_n$$

$$\Psi(\tau \to \infty) = a_0\psi_0$$

Evaluation of $\Psi(\tau)$ is done stochastically (Monte Carlo method) in small time steps $\Delta \tau$ using a Green's function formulation.

In practice, we evaluate a "mixed" estimates

$$\begin{split} \langle O(\tau) \rangle &= \frac{f \langle \Psi(\tau) | O | \Psi(\tau) \rangle_i}{\langle \Psi(\tau) | \Psi(\tau) \rangle} \approx \langle O(\tau) \rangle_{\text{Mixed}}^i + \langle O(\tau) \rangle_{\text{Mixed}}^f - \langle O \rangle_V \\ \langle O(\tau) \rangle_{\text{Mixed}}^i &= \frac{f \langle \Psi_V | O | \Psi(\tau) \rangle_i}{f \langle \Psi_V | \Psi(\tau) \rangle_i} \; ; \; \langle O(\tau) \rangle_{\text{Mixed}}^f = \frac{f \langle \Psi(\tau) | O | \Psi_V \rangle_i}{f \langle \Psi(\tau) | \Psi_V \rangle_i} \end{split}$$

[Wiringa et al. PRC51(1995)38 + Piper et al. PRC64(2001)014001]

Magnetic Moments in $A \le 10$ Nuclei

Predictions for A > 3 nuclei

- $\mu(IA) = \mu_N \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i(1 \tau_{i,z})/2]$
- ► GFMC calculations based on H = T + AV18 + IL7

Magnetic Moments in $A \le 10$ Nuclei - bis

Predictions for A > 3 nuclei

- $\mu_N(IA) = \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i(1 \tau_{i,z})/2]$
- ▶ ${}^{9}\text{C}$ (${}^{9}\text{Li}$) dominant spatial symmetry [s.s.] = [432] = [α , ${}^{3}\text{He}({}^{3}\text{H}),pp(nn)$] \rightarrow Large MEC
- 9 Be (9 B) dominant spatial symmetry [s.s.] = [441] = [$\alpha, \alpha, n(p)$]

PRC87(2013)035503

EM Transitions in $A \le 9$ Nuclei

- ► Two-body EM currents bring the theory in a better agreement with the EXP
- Significant correction in A = 9, T = 3/2 systems. Up to $\sim 40\%$ correction found in ⁹C m.m.

$$\Gamma(IA) = 0.59(2) \text{ eV}$$

 $\Gamma(TOT) = 0.79(3) \text{ eV}$

PRC87(2013)035503

⁹Be(⁵/₂- ³/₂-) B(E2)

 $^{9}\text{Be}(^{5}/_{2}^{-3}/_{2}^{-}) \text{ B}(\text{M1})$

⁸B(3⁺ 2⁺) B(M1)

⁸B(1+ 2+) B(M1) ▶ Major correction ($\sim 60 - 70\%$ of ⁸Li(3+ 2+) B(M1) total MEC) is due to the ⁸Li(1+ 2+) B(M1) one-pion-exchange currents at NLO – purely isovector $^{7}\text{Be}(^{1}/_{2}^{-3}/_{2}^{-}) \text{ B(M1)}$ ⁷Li(¹/₂- ³/₂-) B(E2) One M1 prediction: $^9\text{Li}(1/2 \rightarrow 3/2)^*$ $^{7}\text{Li}(^{1}/_{2}^{-} \ ^{3}/_{2}^{-}) \text{ B(M1)}$ ⁶Li(0+ 1+) B(M1) **★** EXPT + a number of B(E2)s in IA Ratio to experiment *Ricard-McCutchan et al. TRIUMF proposal 2014 - ongoing data analysis

⁸Be Energy Spectrum

- ▶ 2^+ and 4^+ broad states at $\sim 3 \text{ MeV}$ and $\sim 11 \text{ MeV}$
- isospin-mixed states at \sim 16 MeV, \sim 17 MeV, \sim 19 MeV
- M1 transitions
- ► E2 transitions
- ► E2 + M1 transitions

$J^{\pi}; T$	GFMC	Iso-mixed	Experiment
0+	-56.3(1)		-56.50
2+	+3.2(2)		+3.03(1)
4+	+11.2(3)		+11.35(15)
2+;0	+16.8(2)	+16.746(3)	+16.626(3)
2+;1	+16.8(2)	+16.802(3)	+16.922(3)
1+;1	+17.5(2)	+17.67	+17.640(1)
$1^{+};0$	+18.0(2)	+18.12	+18.150(4)
3+;1	+19.4(2)	+19.10	+19.07(3)
3 ⁺ ;0	+19.9(2)	+19.21	+19.235(10)

One-body M1 transitions densities

- ► [s.s.]-conserving transitions are enhanced due to overlap between large components of the initial and final w.f.'s
- ► Isospin-conserving transitions are suppressed w.r.t. isospin-changing transitions due to a cancellation between proton and neutron spin magnetization terms

$$M1(IA) = \mu_N \sum_{i} [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i (1 - \tau_{i,z})/2]$$

PRC90(2014)024321

Two-body M1 transitions densities

$(J_i, T_i) \rightarrow (J_f, T_f)$	IA	NLO-OPE	N2LO-RC	N3LO-TPE	N3LO-CT	N3LO-Δ	MEC
$(1^+;1) \rightarrow (2^+_2;0)$	2.461 (13)	0.457(3)	-0.058 (1)	0.095(2)	-0.035 (3)	0.161 (21)	0.620(5)

M1 Transition Widths / EXPT

- ▶ Predictions for [s.s.]-conserving transitions are in fair agreement with EXPT
- ▶ The theoretical description for this system is unsatisfactory, however, MEC provide a $\sim 20-30\%$ correction to the calculated matrix elements improving the agreement with EXPT data

Beta-decay rates for $A \le 10$ nuclei

Theory vs Experiment: Quenching

3< A< 18

Fig. from Chou et al. PRC47(1993)163

perfect agreement theory > experiment

temporary fix: $g_A^{\rm eff} \simeq 0.70 g_A$

Quenching origin: i) better w.f.'s and/or ii) many body currents are required

$\beta \pm - (J_i^{\pi}, T_i) \rightarrow (J_f^{\pi}, T_f)$	simple w.f.'s	IA	IA+MEC	Experiment
$^{3}\text{H}(1/2^{+},1/2) \rightarrow ^{3}\text{He}(1/2^{+},1/2)$	2.449	2.2765(1)		2.357(10)*
$^{6}\text{He}(0^{+},1) \rightarrow ^{6}\text{Li}(1+,0)$	2.449	2.150	2.187	2.182*
$^{7}\text{Be}(3/2^{-},1/2) \rightarrow ^{7}\text{Li}(3/2-,1/2)$	2.582	2.292	2.395	2.290*
$^{10}\text{C}(0^+,1) \rightarrow ^{10}\text{B}(1+,0)$	2.449	2.024	2.076	1.862*

Preliminary!!!

- in collaboration with B. Wiringa, S. Gandolfi, R. Schiavilla, J. Carlson
- * data from TUNL compilations
- * data from Suzuki et al. PRC67(2003)044302

Summary

The microscopic description of nuclei successfully reproduces EXPT data provided that many-body effects in nuclear interactions and EM currents are accounted for. J.Phys.G41(2014)123002 - S.Bacca&S.P.

- ► Two-body EM currents from χ EFT tested in $A \leq 10$ nuclei
- ► Two-body corrections can be sizable and improve on theory/EXPT agreement
- ► EM structure of A=2–3 nuclei well reproduced with chiral charge and current operators for $q\lesssim 3m_\pi$
- $\sim 40\%$ two-body correction found in 9 C's m.m.
- ightharpoonup ~ 20-30% corrections found in M1 transitions in low-lying states of $^8{\rm Be}$

Outlook

The microscopic description of nuclei successfully reproduces EXPT data provided that many-body effects in nuclear interactions and EM currents are accounted for. J.Phys.G41(2014)123002 - S.Bacca&S.P.

- * EM structure and dynamics of light nuclei
 - ▶ Charge and magnetic form factors of $A \le 10$ systems
 - ▶ M1/E2 transitions in light nuclei
 - Radiative captures, photonuclear reactions . . .
 - Fully consistent χ EFT calculations with 'MEC' for A > 4
 - Role of Δ-resonances in 'MEC' (EM current consistent with the chiral 'Δ-full' NN potential developed by M. Piarulli et al. PRC91(2015)024003)
- * Electroweak structure and dynamics of light nuclei
 - ► v-nucleus scattering J. Carlson, S. Gandolfi, B. Wiringa, R. Schaivilla
 - Test axial currents (chiral and conventional) in light nuclei (A. Baroni et al.PRC93(2016)015501)
 - ► Many-body effects in *v-d* pion-production at threshold (in preparation)

EXTRA SLIDES

Example of GFMC propagation: M1 Transition in A = 7

Examples of GFMC propagation: Magnetic moment in A = 9

Reduce noise by increasing the statistic for the IA results

NN Potential at NLO (or $Q^{n=2}$)

- ► Contact potential at LO (or $Q^{n=0}$) depends on 2 LECs
- ► Contact potential at NLO (or $Q^{n=2}$) depends on 7 additional LECs

NN potentials with π 's and *N*'s

- * van Kolck *et al.* (1994–96)
- * Kaiser, Weise et al. (1997–98)
- * Epelbaum, Glöckle, Meissner (1998–2015)
- * Entem and Machleidt (2002–2015) ←

* ..

Deuteron wave functions

from Entem&Machleidt 2011 Review

- Entem&Machleidt N3LO
- ► Epelbaum et al. 2005
- ▶ black lines = conventional potentials, *i.e.* AV18, CD-Bonn, Nijm-I

³He and ³H charge f.f.'s

- ► Excellent agreement up to $q \simeq 2 \text{ fm}^{-1}$
- ► N3LO and N4LO comparable

	3 He $< r >_{EXP} =$	$1.959 \pm 0.030 \text{ fm}$	$^{3}H < r >_{EXP} =$	1.755 ± 0.086
Λ	500	600	500	600
LO	1.966 (1.950)	1.958 (1.950)		1.750 (1.743)
N4LO	1.966 (1.950)	1.958 (1.950)	1.762 (1.743)	1.750 (1.743)

E2 transitions in ⁸Be

- ▶ 2^+ and 4^+ broad rotational states at ~ 3 MeV and ~ 11 MeV
- ▶ $4^+ \rightarrow 2^+$ transition recently measured at BARC*, Mumbai
- Calculational challenge:
 2⁺ and 4⁺ states tend to break up into two α as τ increases
- Results obtained by linear fitting the GFMC points and extrapolating at $\tau = 0.1$ MeV where stability is observed in the g.s. energy propagation

$J^{\pi};T$	E [MeV]	$B(E2) [e^2 fm^4]$
0_{+}	-56.3(1)	
2^{+}	+3.2(2)	20.0 (8)– [$2^+ \rightarrow 0^+$]
4^{+}	+11.2(3)	$27.2(15)-[4^+ \rightarrow 2^+]^*$

*Bhabha Atomic Research Centre

*EXPT B(E2) = $21 \pm 2.3 e^2 \text{ fm}^4$

E2 transition widths / EXPT

- We attempt to evaluate a number of E2 transitions (predictions not shown in the figure)
- Complications are due to large cancellations among large m.e.'s → E2s very sensitive to small components
- One more complication: make sure that the first and second $(J^{\pi},T)=(2^{+},0)$ states are orthogonal

* We orthogonalize the second $(J^{\pi}, T) = (2^+, 0)$ via

$$|\Psi^{2_{2}^{+}}(\text{ortho})\rangle_{G} = |\Psi^{2_{2}^{+}}\rangle_{G} -_{G}\langle\Psi^{2_{2}^{+}}|\Psi^{2^{+}}\rangle_{V}|\Psi^{2^{+}}\rangle_{G}$$

Anomalous magnetic moment of ⁹C

Mirror nuclei spin expectation value

► Charge Symmetry Conserving (CSC) picture $(p \longleftrightarrow n)$ $^{\diamond}$

$$<\sigma_z> = \frac{\mu(T_z = +T) + \mu(T_z = -T) - J}{(g_s^p + g_s^n - 1)/2} = \frac{2\mu(IS) - J}{0.3796}$$

- For A = 9, T = 3/2 mirror nuclei: ${}^{9}C$ and ${}^{9}Li$ EXP $< \sigma_z >= 1.44$ while THEORY $< \sigma_z >\sim 1$ (assuming CSC) possible cause: Charge Symmetry Breaking (CSB)
- ► Three different predictions for $\langle \sigma_z \rangle$ with CSC w.f.'s (*) and CSB w.f.'s

$<\sigma_z>$	Symmetry	IA	TOT	EXP
CSB CSC	${}^{9}\text{Li}(\frac{3}{2}^{-};\frac{3}{2}), {}^{9}\text{C}(\frac{3}{2}^{-};\frac{3}{2})$ ${}^{9}\text{Li}(\frac{3}{2}^{-};\frac{3}{2}), {}^{9}\text{C}(\frac{3}{2}^{-};\frac{3}{2})*$	1.05(1) 0.95 (11)	1.31(11) 1.00 (11)	1.44
CSC	${}^{9}\text{Li}(\frac{3}{2}^{-};\frac{3}{2})^{*},{}^{9}\text{C}(\frac{3}{2}^{-};\frac{3}{2})$	1.00(1)	1.05 (1)	

▶ Need both CSB in the w.f.'s and MEC!

Utsuno – PRC70, 011303(R) (2004)

Currents from nuclear interactions *- Marcucci et al. PRC72, 014001 (2005)

- Current operator j constructed so as to satisfy the continuity equation with a realistic Hamiltonian
- Short- and intermediate-behavior of the EM operators inferred from the nuclear two- and three-body potentials

- * also referred to as Standard Nuclear Physics Approach (SNPA) currents
 - Long range part of j(v) corresponds to OPE seagull and pion-in-flight EM currents

Currents from nuclear interactions - Marcucci et al. PRC72, 014001 (2005)

$$v^{\text{ME}} = f_{\text{PS}} \ominus \frac{\mathbf{PS}}{\mathbf{k}, m_a} + - - - -$$

- Exploiting the meson exchange (ME) mechanism, one assumes that the static part v_0 of v is due to pseudoscalar (PS) and vector (V) exchanges
- ν^{ME} is expressed in terms of 'effective propagators' ν_{PS} , ν_{V} , ν_{VS} , fixed such to reproduce ν_{0} , for example

$$v_{PS} = \left[v^{\sigma\tau}(k) - 2v^{t\tau}(k)\right]/3$$

with $v^{\sigma\tau}$ and $v^{t\tau}$ components of v_0

The current operator is obtained by taking the non relativistic reduction of the ME Feynman amplitudes and replacing the bare propagators with the 'effective' ones

Currents from nuclear interactions - Marcucci et al. PRC72, 014001 (2005)

Satisfactory description of a variety of nuclear EM properties [see Marcucci et al. (2005) and (2008)]

► Isoscalar magnetic moments are a few % off (10% in A=7 nuclei)

courtesy of R.B.Wiringa

THREE-NUCLEON POTENTIALS

Urbana
$$V_{ijk} = V_{ijk}^{2\pi P} + V_{ijk}^R$$

Carlson, Pandharipande, & Wiringa, NP A401, 59 (1983)

Illinois
$$V_{ijk} = V_{ijk}^{2\pi P} + V_{ijk}^{2\pi S} + V_{ijk}^{3\pi\Delta R} + V_{ijk}^R$$

Pieper, Pandharipande, Wiringa, & Carlson, PRC 64, 014001 (2001)

Illinois-7 has 4 strength parameters fit to 23 energy levels in A < 10 nuclei. In light nuclei we find (thanks to large cancellation between $\langle K \rangle$ & $\langle v_{ij} \rangle$):

$$\langle V_{ijk} \rangle \sim (0.02 \text{ to } 0.07) \langle v_{ij} \rangle \sim (0.15 \text{ to } 0.5) \langle H \rangle$$

We expect $\langle V_{ijkl} \rangle \sim 0.05 \langle V_{ijk} \rangle \sim (0.01 \text{ to } 0.03) \langle H \rangle \sim 1 \text{ MeV in }^{12}\text{C}$.

Transition amplitude in time-ordered perturbation theory

$$T_{fi} = \langle f \mid T \mid i \rangle = \langle f \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i \eta} H_1 \right)^{n-1} \mid i \rangle$$
$$= \langle f \mid H_1 \mid i \rangle + \sum_{|I|} \langle f \mid H_1 \mid I \rangle \frac{1}{E_i - E_I} \langle I \mid H_1 \mid i \rangle + \dots$$

A contribution with N interaction vertices and L loops scales as

$$\underbrace{e\left(\prod_{i=1}^{N}Q^{\alpha_{i}-\beta_{i}/2}\right)}_{H_{1}\text{scaling}}\times\underbrace{Q^{-(N-N_{K}-1)}Q^{-2N_{K}}}_{\text{denominators}}\times\underbrace{Q^{3L}}_{\text{loop integration}}$$

 α_i = number of derivatives in H_1 and β_i = number of π 's at each vertex N_K = number of pure nucleonic intermediate states

 \triangleright Due to the chiral expansion, the transition amplitude $T_{\rm fi}$ can be expanded as

$$T_{\rm fi} = T^{\rm LO} + T^{\rm NLO} + T^{\rm N2LO} + \dots$$
 and $T^{\rm NnLO} \sim (Q/\Lambda_{\gamma})^n T^{\rm LO}$

Power counting

▶ N_K energy denominators scale as Q^{-2}

$$\frac{1}{E_i-E_I}|I\rangle = \frac{1}{E_i-E_N}|I\rangle \sim Q^{-2}|I\rangle$$

• $(N-N_K-1)$ energy denominators scale Q^{-1} in the <u>static limit</u>; they can be further expanded in powers of $(E_i-E_N)/\omega_\pi \sim Q$

$$\frac{1}{E_i - E_I} |I\rangle = \frac{1}{E_i - E_N - \omega_{\pi}} |I\rangle \sim -\left[\underbrace{\frac{1}{\omega_{\pi}}}_{Q^{-1}} + \underbrace{\frac{E_i - E_N}{\omega_{\pi}^2}}_{Q^0} + \underbrace{\frac{(E_i - E_N)^2}{\omega_{\pi}^3}}_{Q^1} + \dots\right] |I\rangle$$

- Terms accounted into the Lippmann-Schwinger Eq. are subtracted from the reducible amplitude
- EM operators depend on the off-the-energy shell prescription adopted for the non-static OPE and TPE potentials
- Ultimately, the EM operators are unitarily equivalent: Description of physical systems is not affected by this ambiguity

Magnetic moment at N³LO

ightharpoonup Magnetic moment operator due to two-body current density $\mathbf{J}(\mathbf{x})$

$$\mu(\mathbf{R}, \mathbf{r}) = \frac{1}{2} \left[\mathbf{R} \times \int d\mathbf{x} \, \mathbf{J}(\mathbf{x}) + \int d\mathbf{x} \, (\mathbf{x} - \mathbf{R}) \times \mathbf{J}(\mathbf{x}) \right]$$

▶ Sachs' and translationally invariant magnetic moments

$$\begin{array}{lcl} \boldsymbol{\mu}_{\mathrm{Sachs}}(\mathbf{R},\mathbf{r}) & = & -i\,\frac{\mathbf{R}}{2}\,\times\int\!\mathrm{d}\mathbf{x}\,\mathbf{x}\,[\boldsymbol{\rho}\left(\mathbf{x}\right),\,\upsilon_{12}] \\ \\ \boldsymbol{\mu}_{\mathrm{T}}(\mathbf{r}) & = & -\frac{i}{2}\,\int_{\mathbf{k}}\mathrm{e}^{i\mathbf{k}\cdot\mathbf{r}}\,\nabla_{q}\times\mathbf{j}(\mathbf{q},\mathbf{k})\bigg|_{\mathbf{q}=0} \end{array}$$

OPEP beyond the static limit

On-the-energy-shell, non-static OPEP at N2LO (Q^2) can be equivalently written as

$$\begin{array}{lcl} \upsilon_{\pi}^{(2)}(\mathbf{v}=0) & = & \upsilon_{\pi}^{(0)}(\mathbf{k}) \, \frac{(E_{1}'-E_{1})^{2}+(E_{2}'-E_{2})^{2}}{2 \, \omega_{k}^{2}} \\ \upsilon_{\pi}^{(2)}(\mathbf{v}=1) & = & -\upsilon_{\pi}^{(0)}(\mathbf{k}) \, \frac{(E_{1}'-E_{1}) \, (E_{2}'-E_{2})}{\omega_{k}^{2}} \\ \upsilon_{\pi}^{(0)}(\mathbf{k}) & = & -\frac{g_{A}^{2}}{F_{2}^{2}} \, \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} \, \frac{\boldsymbol{\sigma}_{1} \cdot \mathbf{k} \, \boldsymbol{\sigma}_{2} \cdot \mathbf{k}}{\omega_{r}^{2}} \end{array}$$

 $v_{\pi}^{(2)}(\mathbf{v})$ corrections are different off-the-energy-shell $(E_1 + E_2 \neq E_1' + E_2')$

 \triangleright TPE contributions are affected by the choice made for the parameter v

From amplitudes to potentials

The two-nucleon potential $v = v^{(0)} + v^{(1)} + v^{(2)} + \dots$ (with $v^{(n)} \sim Q^n$) is iterated into the Lippmann-Schwinger (LS) equation *i.e.*

$$\upsilon + \upsilon G_0 \upsilon + \upsilon G_0 \upsilon G_0 \upsilon + \dots$$
, $G_0 = 1/(E_i - E_I + i\eta)$

 $v^{(n)}$ is obtained subtracting from the transition amplitude $T_{\rm fi}^{(n)}$ terms already accounted for into the LS equation

$$\begin{array}{rcl} \upsilon^{(0)} & = & T^{(0)} \;, \\ \upsilon^{(1)} & = & T^{(1)} - \left[\upsilon^{(0)} G_0 \,\upsilon^{(0)}\right] \;, \\ \upsilon^{(2)} & = & T^{(2)} - \left[\upsilon^{(0)} G_0 \,\upsilon^{(0)} G_0 \,\upsilon^{(0)}\right] - \left[\upsilon^{(1)} G_0 \,\upsilon^{(0)} + \upsilon^{(0)} G_0 \,\upsilon^{(1)}\right] \;, \\ \upsilon^{(3)}(\mathbf{v}) & = & T^{(3)} - \left[\upsilon^{(0)} G_0 \,\upsilon^{(0)} G_0 \,\upsilon^{(0)} G_0 \,\upsilon^{(0)}\right] - \left[\upsilon^{(1)} G_0 \,\upsilon^{(0)} G_0 \,\upsilon^{(0)} + \mathrm{permutations}\right] \\ & & - \underbrace{\left[\upsilon^{(1)} G_0 \,\upsilon^{(1)}\right] - \left[\upsilon^{(2)}(\mathbf{v}) G_0 \,\upsilon^{(0)} + \upsilon^{(0)} G_0 \,\upsilon^{(2)}(\mathbf{v})\right]}_{\mathrm{LS \; terms}} \end{array}$$

From amplitudes to potentials: an example with OPE and TPE only

► To each $v_{\pi}^{(2)}(\mathbf{v})$ corresponds a $v_{2\pi}^{(3)}(\mathbf{v})$

Unitary equivalence of $v_{\pi}^{(2)}(\mathbf{v})$ and $v_{2\pi}^{(3)}(\mathbf{v})$

 Different off-the-energy-shell parameterizations lead to unitarily equivalent two-nucleon Hamiltonians

$$H(\mathbf{v}) = t^{(-1)} + v_{\pi}^{(0)} + v_{2\pi}^{(2)} + v_{\pi}^{(2)}(\mathbf{v}) + v_{2\pi}^{(3)}(\mathbf{v})$$

 $t^{(-1)}$ is the kinetic energy, $v_{\pi}^{(0)}$ and $v_{2\pi}^{(2)}$ are the static OPEP and TPEP

▶ The Hamiltonians are related to each other via

$$H(\mathbf{v}) = e^{-iU(\mathbf{v})} H(\mathbf{v} = 0) e^{+iU(\mathbf{v})}, \qquad iU(\mathbf{v}) \simeq iU^{(0)}(\mathbf{v}) + iU^{(1)}(\mathbf{v})$$

from which it follows

$$H(v) = H(v = 0) + \left[t^{(-1)} + v_{\pi}^{(0)}, i U^{(0)}(v)\right] + \left[t^{(-1)}, i U^{(1)}(v)\right]$$

 Predictions for physical observables are unaffected by off-the-energy-shell effects

Technical issue II - Recoil corrections at N³LO

Reducible contributions

$$\begin{aligned} \mathbf{j}_{\text{red}} & \sim & \int \upsilon^{\pi}(\mathbf{q}_2) \, \frac{1}{E_i - E_I} \, \mathbf{j}^{\text{NLO}}(\mathbf{q}_1) \\ & - & \int 2 \, \frac{\omega_1 + \omega_2}{\omega_1 \, \omega_2} \, V_{\pi NN}(2, \mathbf{q}_2) \, V_{\pi NN}(2, \mathbf{q}_1) \, V_{\pi NN}(1, \mathbf{q}_2) \, V_{\gamma \pi NN}(1, \mathbf{q}_1) \end{aligned}$$

Irreducible contributions

$$\mathbf{j}_{\text{irr}} = \int 2 \frac{\omega_{1} + \omega_{2}}{\omega_{1} \omega_{2}} V_{\pi NN}(2, \mathbf{q}_{2}) V_{\pi NN}(2, \mathbf{q}_{1}) V_{\pi NN}(1, \mathbf{q}_{2}) V_{\gamma \pi NN}(1, \mathbf{q}_{1})$$

$$- \int 2 \frac{\omega_{1}^{2} + \omega_{2}^{2} + \omega_{1} \omega_{2}}{\omega_{1} \omega_{2}(\omega_{1} + \omega_{2})} [V_{\pi NN}(2, \mathbf{q}_{2}), V_{\pi NN}(2, \mathbf{q}_{1})]_{-} V_{\pi NN}(1, \mathbf{q}_{2}) V_{\gamma \pi NN}(1, \mathbf{q}_{1})$$

 Observed partial cancellations at N³LO between recoil corrections to reducible diagrams and irreducible contributions

The box diagram: an example at N³LO

direct =
$$f_d(\omega_1, \omega_2) V_a V_b V_c V_d$$

crossed = $f_c(\omega_1, \omega_2) V_b V_a V_c V_d$ $V_b V_a = V_a V_b - [V_a, V_b]_-$

$$V_b V_a = V_a V_b - [V_a, V_b]_-$$

irreducible =
$$[f_d(\omega_1, \omega_2) + f_c(\omega_1, \omega_2)]V_a V_b V_c V_d$$

- $f_c(\omega_1, \omega_2)[V_a, V_b] - V_c V_d$

Transition amplitude in time-ordered perturbation theory

$$T_{\mathrm{fi}} = \langle f \mid T \mid i \rangle = \langle f \mid H_{1} \sum_{n=1}^{\infty} \left(\frac{1}{E_{i} - H_{0} + i \eta} H_{1} \right)^{n-1} \mid i \rangle$$

$$= \langle f \mid H_{1} \mid i \rangle + \sum_{|I|} \langle f \mid H_{1} \mid I \rangle \frac{1}{E_{i} - E_{I}} \langle I \mid H_{1} \mid i \rangle + \dots$$

▶ A contribution with N interaction vertices and L loops scales as

$$\underbrace{e\left(\prod_{i=1}^{N}Q^{\alpha_{i}-\beta_{i}/2}\right)}_{H_{1}\text{scaling}}\times\underbrace{Q^{-(N-N_{K}-1)}Q^{-2N_{K}}}_{\text{denominators}}\times\underbrace{Q^{3L}}_{\text{loopintegration}}$$

 α_i = number of derivatives in H_1 and β_i = number of π 's at each vertex

 N_K = number of pure nucleonic intermediate states

► $(N - N_K - 1)$ energy denominators expanded in powers of $(E_i - E_N)/\omega_{\pi} \sim Q$

$$\frac{1}{E_i - E_I} | \mathbf{I} \rangle = \frac{1}{E_i - E_N - \omega_{\pi}} | \mathbf{I} \rangle \sim - \left[\underbrace{\frac{1}{\omega_{\pi}}}_{C_i} + \underbrace{\frac{E_i - E_N}{\omega_{\pi}^2}}_{C_i} + \underbrace{\frac{(E_i - E_N)^2}{\omega_{\pi}^3}}_{C_i} + \dots \right] | \mathbf{I} \rangle$$

▶ Due to the chiral expansion, the transition amplitude $T_{\rm fi}$ can be expanded as

$$T_{\rm fi} = T^{\rm LO} + T^{\rm NLO} + T^{\rm N2LO} + \dots$$
 and $T^{\rm NnLO} \sim (O/\Lambda_{\Upsilon})^n T^{\rm LO}$

EM charge up to n = 0 (or up to N3LO)

 $\rho_{\pi}^{(0)}(v)$'s are unitarily equivalent

$$\rho_{\pi}^{(0)}(\mathbf{v}) \quad = \quad \rho_{\pi}^{(0)}(\mathbf{v}=0) + \left[\rho^{(-3)}, iU^{(0)}(\mathbf{v})\right]$$

No unknown LECs up to this order (g_A, F_{π})

EM charge @ n = 1 (or N4LO)

- ► (a), (f), (d), and (i) vanish
- ▶ Divergencies associated with (b) + (g), (c) + (h), and (e) + (j) cancel out—as they must since there are no counter-terms at N4LO
- $ho_{
 m h}^{(1)}(v)$ depends on the parametrization adopted for $v_{\pi}^{(2)}(v)$ and $v_{2\pi}^{(3)}(v)$
- $ho_{\rm h}^{(1)}(v)$'s are unitarily equivalent

$$\rho_{\rm h}^{(1)}({\bf v}) \quad = \quad \rho_{\rm h}^{(1)}({\bf v}=0) + \left[\rho^{(-3)} \,, i\, U^{(1)}({\bf v}) \right] \label{eq:rhoh}$$

EM charge @ n = 1 (or N4LO)

 \triangleright Charge operators (*v*-dependent included) up to n=1 satisfy the condition

$$\rho^{(n>-3)}(\mathbf{q}=0)=0$$

which follows from charge conservation

$$\rho(\mathbf{q}=0) = \int d\mathbf{x} \rho(\mathbf{x}) = e\frac{(1+\tau_{1,z})}{2} + 1 \rightleftharpoons 2 = \rho^{(-3)}(\mathbf{q}=0)$$

 $ightharpoonup
ho^{(1)}$ does not depend on unknown LECs and it is purely isovector