Electroweak structure of light nuclei

Saori Pastore

2016 INT Program: Nuclear Physics from Lattice QCD - Seattle, WA

∗ in collaboration with ∗ Rocco Schiavilla - JLab/ODU Bob Wiringa, Steven Pieper, Maria Piarulli - ANL Stefano Gandolfi, Joe Carlson - LANL Luca Girlanda, Michele Viviani, Laura E. Marcucci, Alejandro Kievsky - Salento U/INFN/Pisa U

PRC78(2008)064002 - PRC80(2009)034004 - PRC84(2011)024001 - PRC87(2013)014006 - PRC87(2013)035503 - PRL111(2013)062502 -

PRC90(2014)024321 - JPhysG41(2014)123002

Ab initio calculations of light nuclei

Aim: understand nuclei in terms of interactions between individual nucleons

Electromagnetic reactions are a powerful tool to test our theoretical models

- \triangleright coupling constant $\alpha \sim 1/137$ allows for a perturbative treatment of the EM interaction \rightarrow single photon γ exchange suffices
- ► calculated x-sections $\propto |\langle \Psi_f | j^{\mu} | \Psi_i \rangle|^2$ with j^{μ} nuclear EM currents \rightarrow clear connection between measured x-sections and calculated properties of nuclear targets
- EXPT data (in most cases) known with great accuracy \rightarrow viable EXPT constraints on theories
- ► For few-nucleon systems, the many-body problem can be solved exactly or within controlled approximations

Electromagnetic probes to test predictive power of nuclear theories/models

 \blacktriangleright In this talk we primarily focus on: EM ground state properties and transitions between low-lying states

∼∼∼∼∼

- * Validate our theoretical understanding and control of nuclear EM structure and reactions is an essential prerequisite for studies on: *
- ⇒ Weak induced reactions, *e.g.*, ^ν-nucleus interactions (major progress by A. Lovato, S. Gandolfi *et al.*)
- \Rightarrow Larger nuclear systems

Bridging lattice QCD, EFTs and AIM (ab initio many-body) approaches

\triangleright From LQCD to EFTs to AIM calculations,

- input to AIM: nucleonic form factors ***
- ▶ input to AIM: strong and electroweak LECs entering many-body nuclear operators (*e.g.*, *gA*, *L*1, ...) ***
- \triangleright calculations of quantities that are not easily accessed experimentally can help calibrate AIM (three-body forces, radiative captures at low energies...)

The Basic Model: Nuclear Potentials

► The nucleus is a system made of A non-relativistic interacting nucleons, its energy is given by

$$
H = T + V = \sum_{i=1}^A t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots
$$

where ^υ*ij* and *Vijk* are 2- and 3-nucleon interaction operators

- Realistic v_{ij} and V_{ijk} interactions are based on EXPT data fitting and fitted parameters subsume underlying QCD
- ▶ Realistic potentials at large inter-particle distances are described in terms of one-pion-exchange, range ∼ 1/*m*^π . Other mechanisms are, *e.g.*, two-pion exchange, range $\sim 1/2m_\pi$; Δ -excitations ...

▶ Potentials utilized in these sets of calculations to generate nuclear wave functions $|\Psi_i\rangle$ solving $H|\Psi_i\rangle = E_i|\Psi_i\rangle$ are: [AV18+UIX], [AV18+IL7], [NN(N3LO)+3N(N2LO)]

The Basic Model: Nuclear Electromagnetic Currents - Impulse Approximation

► Current and charge operators describe the interaction of nuclei with external fields. They are expanded as a sum of 1−, 2−, ... nucleon operators:

$$
\rho = \sum_{i=1}^A \rho_i + \sum_{i < j} \rho_{ij} + \dots, \qquad \qquad \mathbf{j} = \sum_{i=1}^A \mathbf{j}_i + \sum_{i < j} \mathbf{j}_{ij} + \dots
$$

▶ In Impulse Approximation IA nuclear EM currents are expressed in terms of those associated with individual protons and nucleons, *i.e.*, ^ρ*ⁱ* and j*ⁱ*

 \blacktriangleright IA picture is however incomplete; Historical evidence is the 10% underestimate of the *np* radiative capture 'fixed' by incorporating corrections from two-body meson-exchange EM currents - Riska&Brown 1972

The Basic Model: Nuclear Electromagnetic Currents

► Current and charge operators describe the interaction of nuclei with external fields. They are expanded as a sum of 1−, 2−, ... nucleon operators:

▶ Longitudinal EM current operator **j** linked to the nuclear Hamiltonian via continuity eq. (q momentum carried by the external EM probe γ)

$$
\mathbf{q} \cdot \mathbf{j} = [H, \rho] = [t_i + v_{ij} + V_{ijk}, \rho]
$$

* Meson-exchange currents MEC follow once meson-exchange mechanisms are implemented to describe nuclear forces - Villars&Miyazawa 40ies

These days we have:

- \blacktriangleright Highly sophisticated MEC projected out realistic potentials
- \triangleright EM currents derived from γ EFTs

χ EFT EM current up to $n = 1$ (or up to N3LO)

- * Two-body charge operators enter at N3LO and do not depend on LECs $*$
- \blacktriangleright LO = IA N2LO = IA(relativistic-correction)
- NLO : $j^{(-1)} \sim eQ^{-1}$ | $\sim j^{-1}$ | $\sim j^{-1}$ Nullet Strong contact LECs at N3LO fixed from fits to *np* phases shifts PRC68, 041001 (2003)
	- ► Unknown EM LECs enter the N3LO contact and tree-level currents
	- ► No three-body EM currents at this order !!!
	- ▶ NLO and N3LO loop-contributions lead to purely isovector operators

$$
N^3LO: j^{(i)} \sim eQ \quad \text{where} \quad \
$$

PRC78(2008)064002, PRC80(2009)034004, PRC84(2011)024001

χ EFT EM currents at N3LO: fixing the EM LECs

Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon

 d_2^V and d_1^V are known assuming ∆-resonance saturation

Left with 3 LECs: Fixed in the *A* = 2−3 nucleons' sector

```
► Isoscalar sector:
```
* d^S and c^S from EXPT μ_d and $\mu_S(^3H)^3He$)

► Isovector sector:

* model $I = c^V$ from EXPT *npd* γ xsec.

or * model II = c^V from EXPT μ_V (³H/³He) m.m. \leftarrow our choice

Predictions with χ EFT EM currents for $A = 2-3$ systems

np capture xsec. (using model II) / μ_V of $A = 3$ nuclei (using model I) bands represent nuclear model dependence (N3LO/N2LO – AV18/UIX)

- \blacktriangleright *npd* γ xsec. and μ_V ⁽³H/³He) m.m. are within 1% and 3% of EXPT
- Two-body currents important to reach agreement with exp data
- Negligible dependence on the cutoff entering the regulator $exp(-(k/\Lambda)^4)$

PRC87(2013)014006

Applications: EM form factors of nuclei with $A = 2$ and 3

- ◮ Calculations include nucleonic f.f.'s taken from EXPT data
- \triangleright Sensitivity to the cutoff used to regularize divergencies in the matrix elements is given by the bands' thickness

Predictions with χ EFT EM Currents for the Deuteron Magnetic f.f.

PRC86(2012)047001 & PRC87(2013)014006

LO/N3LO with AV18+UIX – LO/N3LO with χ -potentials NN(N3LO)+3N(N2LO)

- ◮ ³He/3H m.m.'s used to fix EM LECs; [∼] 15% correction from two-body currents
- ▶ Two-body corrections crucial to improve agreement with EXPT data

PRC87(2013)014006

Benchmark calculations of ³He Zemach Moments[∗]

Quote: Precise moments are useful observables for the comparison with theoretical calculations, . . . in particular for light nuclei where very accurate *ab initio* calculations can be performed. I. Sick - PRC90(2014)064002

* collaboration with

Nir Nievo, Chen Ji, Sonia Bacca, Maria Piarulli and Bob Wiringa

Preliminary!!!

Calculations with EM Currents from χ EFT with π 's and N's

▶ Park, Min, and Rho *et al.* (1996)

```
applications to:
magnetic moments and M1 properties of A=2–3 systems, and
radiative captures in A=2–4 systems by Song, Lazauskas, Park at al.
(2009-2011) within the hybrid approach
```
* Based on EM χ EFT currents from NPA596(1996)515

```
\blacktriangleright Meissner and Walzl (2001);
   Kölling, Epelbaum, Krebs, and Meissner (2009–2011)
   applications to:
  d and 3He photodisintegration by Rozpedzik et al. (2011); e-scattering (2014);
  d magnetic f.f. by Kölling, Epelbaum, Phillips (2012);
   radiative N - d capture by Skibinski et al. (2014)
```
* Based on EM χ EFT currents from PRC80(2009)045502 & PRC84(2011)054008 and consistent χEFT potentials from UT method

 \blacktriangleright Phillips (2003-2007)

applications to deuteron static properties and f.f.'s

*

......

......

Moving on to larger nuclear systems: magnetic moments and transitions in $A \leq 10$ nuclei

Green's function Monte Carlo

A trial w.f. Ψ_V is obtained by minimizing the H = T + AV18 + IL7 expectation value

$$
E_V = \frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} \ge E_0
$$

 Ψ_V is further improved it by "filtering" out the remaining excited state contamination:

$$
\Psi(\tau) = \exp[-(H - E_0)\tau]\Psi_V = \sum_n \exp[-(E_n - E_0)\tau]a_n\psi_n
$$

$$
\Psi(\tau \to \infty) = a_0\psi_0
$$

Evaluation of $\Psi(\tau)$ is done stochastically (Monte Carlo method) in small time steps ∆^τ using a Green's function formulation. In practice, we evaluate a "mixed" estimates

$$
\langle O(\tau) \rangle = \frac{f \langle \Psi(\tau) | O | \Psi(\tau) \rangle_i}{\langle \Psi(\tau) | \Psi(\tau) \rangle} \approx \langle O(\tau) \rangle_{\text{Mixed}}^i + \langle O(\tau) \rangle_{\text{Mixed}}^f - \langle O \rangle_{V}
$$

$$
\langle O(\tau) \rangle_{\text{Mixed}}^i = \frac{f \langle \Psi_V | O | \Psi(\tau) \rangle_i}{f \langle \Psi_V | \Psi(\tau) \rangle_i} ; \quad \langle O(\tau) \rangle_{\text{Mixed}}^f = \frac{f \langle \Psi(\tau) | O | \Psi_V \rangle_i}{f \langle \Psi(\tau) | \Psi_V \rangle_i}
$$

[Wiringa *et al.* PRC51(1995)38 + Piper *et al.* PRC64(2001)014001]

Magnetic Moments in $A \leq 10$ Nuclei

Predictions for *A* > 3 nuclei

- $ှ$ **+** μ (IA) = μ _{*N*} $\sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i(1 \tau_{i,z})/2]$
- GFMC calculations based on $H = T + AV18 + IL7$

PRC87(2013)035503 19/29

Magnetic Moments in $A \leq 10$ Nuclei - bis

Predictions for *A* > 3 nuclei

- $▶ μ_N(IA) = ∑_i[(L_i + g_pS_i)(1 + τ_{i,z})/2 + g_nS_i(1 − τ_{i,z})/2]$
- \blacktriangleright ⁹C (⁹Li) dominant spatial symmetry [s.s.] = [432] = [α ,³He(³H),*pp*(*nn*)] \rightarrow Large MEC
- \blacktriangleright 9Be (9B) dominant spatial symmetry [s.s.] = [441] = [α , α , $n(p)$]

PRC87(2013)035503

EM Transitions in $A \leq 9$ Nuclei

- ► Two-body EM currents bring the theory in a better agreement with the EXP
- Significant correction in $A = 9$, $T = 3/2$ systems. Up to $\sim 40\%$ correction found in ${}^{9}C$ m.m.
- Major correction ($\sim 60 70\%$ of total MEC) is due to the one-pion-exchange currents at NLO – purely isovector

One M1 prediction:⁹Li($1/2 \rightarrow 3/2$)*

 $Γ(IA) = 0.59(2) eV$ $Γ(TOT) = 0.79(3) eV$

 $+$ a number of B(E2)s in IA

*Ricard-McCutchan *et al.* TRIUMF proposal 2014 - ongoing data analysis

PRC87(2013)035503

⁸Be Energy Spectrum

- \triangleright 2⁺ and 4⁺ broad states at \sim 3 MeV and \sim 11 MeV
- \blacktriangleright isospin-mixed states at \sim 16 MeV, \sim 17 MeV, \sim 19 MeV
- \blacktriangleright M1 transitions
- \blacktriangleright E2 transitions
- \blacktriangleright E2 + M1 transitions

PRL111(2013)062502 & PRC90(2014)024321

One-body M1 transitions densities

- [s.s.]-conserving transitions are enhanced due to overlap between large components of the initial and final w.f.'s
- ◮ Isospin-conserving transitions are suppressed w.r.t. isospin-changing transitions due to a cancellation between proton and neutron spin magnetization terms

$$
M1(IA) = \mu_N \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i (1 - \tau_{i,z})/2]
$$

PRC90(2014)024321

Two-body M1 transitions densities

PRC90(2014)024321

M1 Transition Widths / EXPT

- ▶ Predictions for [s.s.]-conserving transitions are in fair agreement with EXPT
- \blacktriangleright The theoretical description for this system is unsatisfactory, however, MEC provide a \sim 20 – 30% correction to the calculated matrix elements improving the agreement with EXPT data

Beta-decay rates for $A \leq 10$ nuclei

Theory vs Experiment: Quenching

3≤ A≤ 18

Fig. from Chou *et al.* PRC47(1993)163

perfect agreement $theory$ > experiment

temporary fix: $g_A^{\text{eff}} \simeq 0.70 g_A$

Quenching origin: *i*) better w.f.'s and/or *ii*) many body currents are required

Preliminary!!!

- in collaboration with B. Wiringa, S. Gandolfi, R. Schiavilla, J. Carlson
- ∗ data from TUNL compilations
- ∗ data from Suzuki *et al.* PRC67(2003)044302

Summary

The microscopic description of nuclei successfully reproduces EXPT data provided that many-body effects in nuclear interactions and EM currents are accounted for. J.Phys.G41(2014)123002 - S.Bacca&S.P.

- \triangleright Two-body EM currents from γ EFT tested in $A \leq 10$ nuclei
- ▶ Two-body corrections can be sizable and improve on theory/EXPT agreement
- EM structure of $A = 2-3$ nuclei well reproduced with chiral charge and current operators for $q \leq 3m_\pi$
- $\blacktriangleright \sim 40\%$ two-body correction found in ⁹C's m.m.
- $\triangleright \sim 20\text{-}30\%$ corrections found in M1 transitions in low-lying states of 8 Be

Outlook

The microscopic description of nuclei successfully reproduces EXPT data provided that many-body effects in nuclear interactions and EM currents are accounted for. J.Phys.G41(2014)123002 - S.Bacca&S.P.

- EM structure and dynamics of light nuclei
	- \triangleright Charge and magnetic form factors of $A \leq 10$ systems
	- \blacktriangleright M1/E2 transitions in light nuclei
	- \triangleright Radiative captures, photonuclear reactions ...
	- Fully consistent χ EFT calculations with 'MEC' for $A > 4$
	- ◮ Role of ∆-resonances in 'MEC' (EM current consistent with the chiral '∆-full' NN potential developed by M. Piarulli et al. PRC91(2015)024003)
- Electroweak structure and dynamics of light nuclei
	- ◮ ^ν-nucleus scattering J. Carlson, S. Gandolfi, B. Wiringa, R. Schaivilla
	- \triangleright Test axial currents (chiral and conventional) in light nuclei (A. Baroni et al.PRC93(2016)015501)
	- ◮ Many-body effects in ^ν-*d* pion-production at threshold (in preparation)

EXTRA SLIDES

Example of GFMC propagation: M1 Transition in $A = 7$

Examples of GFMC propagation: Magnetic moment in $A = 9$

Reduce noise by increasing the statistic for the IA results

NN Potential at NLO (or $Q^{n=2}$)

- Contact potential at LO (or $Q^{n=0}$) depends on 2 LECs
- ▶ Contact potential at NLO (or $Q^{n=2}$) depends on 7 additional LECs

NN potentials with π 's and *N*'s

- ∗ van Kolck *et al.* (1994–96)
- ∗ Kaiser, Weise *et al.* (1997–98)
- Epelbaum, Glöckle, Meissner (1998–2015)
- ∗ Entem and Machleidt (2002–2015) ←
- ∗ ...

Deuteron wave functions

from Entem&Machleidt 2011 Review

- ► Entem&Machleidt N3LO
- ► Epelbaum *et al.* 2005
- ◮ black lines = conventional potentials, *i.e.* AV18, CD-Bonn, Nijm-I

³He and ³H charge f.f.'s

- Excellent agreement up to $q \approx 2$ fm⁻¹
- ▶ N3LO and N4LO comparable

E2 transitions in 8 Be

- \triangleright 2⁺ and 4⁺ broad rotational states at \sim 3 MeV and \sim 11 MeV
- \rightarrow 4⁺ \rightarrow 2⁺ transition recently measured at BARC*, Mumbai
- \blacktriangleright Calculational challenge: 2^+ and 4^+ states tend to break up into two α as τ increases
- \blacktriangleright Results obtained by linear fitting the GFMC points and extrapolating at $\tau = 0.1$ MeV where stability is observed in the g.s. energy propagation

J^{π} ; T	E [MeV]	$B(E2)$ [e^2 fm ⁴]
$0+$	$-56.3(1)$	
2^+	$+3.2(2)$	20.0 (8)– $[2^+ \rightarrow 0^+]$
4^+	$+11.2(3)$	27.2(15)-[$4^+ \rightarrow 2^+$]*

^{*}Bhabha Atomic Research Centre

^{*}**EXPT** B(E2) = $21 \pm 2.3 e^2$ fm⁴

E2 transition widths / EXPT

- \triangleright We attempt to evaluate a number of E2 transitions (predictions not shown in the figure)
- \triangleright Complications are due to large cancellations among large m.e.'s \rightarrow E2s very sensitive to small components
- \triangleright One more complication: make sure that the first and second $(J^{\pi}, T) = (2^+, 0)$ states are orthogonal $\overline{0}$

* We orthogonalize the second $(J^{\pi}, T) = (2^+, 0)$ via

$$
|\Psi^{2^+_2}(\text{ortho})\rangle_G=|\Psi^{2^+_2}\rangle_G-{}_G\langle\Psi^{2^+_2}|\Psi^{2^+}\rangle_V|\Psi^{2^+}\rangle_G
$$

Anomalous magnetic moment of ${}^{9}C$

Mirror nuclei spin expectation value

► Charge Symmetry Conserving (CSC) picture ($p \leftrightarrow n$)

$$
<\sigma_z> = \frac{\mu(T_z = +T) + \mu(T_z = -T) - J}{(g_s^p + g_s^n - 1)/2} = \frac{2\mu(\text{IS}) - J}{0.3796}
$$

- For $A = 9$, $T = 3/2$ mirror nuclei: ⁹C and ⁹Li $EXP < \sigma$ ₇ >= 1.44 while THEORY < σ ₇ > \sim 1 (assuming CSC) possible cause: Charge Symmetry Breaking (CSB)
- Three different predictions for $\langle \sigma_z \rangle$ with CSC w.f.'s (*) and CSB w.f.'s

► Need both CSB in the w.f.'s and MEC!

 \degree Utsuno – PRC70, 011303(R) (2004)

Currents from nuclear interactions ∗- Marcucci *et al.* PRC72, 014001 (2005)

- ◮ Current operator j constructed so as to satisfy the continuity equation with a realistic Hamiltonian
- ▶ Short- and intermediate-behavior of the EM operators inferred from the nuclear two- and three-body potentials

∗ also referred to as Standard Nuclear Physics Approach (SNPA) currents

 \triangleright Long range part of $\mathbf{j}(v)$ corresponds to OPE seagull and pion-in-flight EM currents

Currents from nuclear interactions - Marcucci *et al.* PRC72, 014001 (2005)

$$
v^{\text{ME}} = \left\{\n \begin{array}{ccc}\n & \text{PS} \\
 & \text{PS} \\
 \text{k}, m_a\n \end{array}\n \right\}\n + \left\{\n \begin{array}{c}\n & \text{V} \\
 & \text{V} \\
 \text{-}\n \end{array}\n \right.
$$

- \triangleright Exploiting the meson exchange (ME) mechanism, one assumes that the static part v_0 of v is due to pseudoscalar (PS) and vector (V) exchanges
- ► *υ*^{ME} is expressed in terms of 'effective propagators' *υ_{PS}*, *υ_V*, *υ_{VS}*, fixed such to reproduce v_0 , for example

$$
\mathbf{v}_{PS} = [\mathbf{v}^{\sigma \tau}(k) - 2\mathbf{v}^{\tau \tau}(k)]/3
$$

with $v^{\sigma \tau}$ and $v^{t \tau}$ components of v_0

 \triangleright The current operator is obtained by taking the non relativistic reduction of the ME Feynman amplitudes and replacing the bare propagators with the 'effective' ones

$$
\mathbf{j}^{(2)}(v_0) = \begin{matrix} \mathbf{ps}, \mathbf{v} \\ \mathbf{ps}, \mathbf{v} \\ \mathbf{v}^{\mathbf{p}^{\mathbf{p}^{\mathbf{p}^{\mathbf{p}^{\mathbf{p}^{\mathbf{p}^{\mathbf{p}^{\mathbf{p}}}}}}}} & + & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} \end{matrix}
$$

Currents from nuclear interactions - Marcucci *et al.* PRC72, 014001 (2005) Satisfactory description of a variety of nuclear EM properties [see Marcucci *et al.* (2005) and (2008)]

 2 H(p, γ)³He capture

▶ Isoscalar magnetic moments are a few % off (10% in A=7 nuclei)

courtesy of R.B.Wiringa

THREE-NUCLEON POTENTIALS

Urbana $V_{ijk} = V_{ijk}^{2\pi P} + V_{ijk}^R$ $\left|\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix}\right|$

Carlson, Pandharipande, & Wiringa, NP **A401**, 59 (1983)

Illinois $V_{ijk} = V_{ijk}^{2\pi P} + V_{ijk}^{2\pi S} + V_{ijk}^{3\pi \Delta R} + V_{ijk}^{R}$ \mathbb{R}^2 and \mathbb{R}^2

Pieper, Pandharipande, Wiringa, & Carlson, PRC **64**, 014001 (2001)

Illinois-7 has 4 strength parameters fit to 23 energy levels in $A \le 10$ nuclei. In light nuclei we find (thanks to large cancellation between $\langle K \rangle \& \langle v_{ij} \rangle$):

 $\langle V_{iik} \rangle \sim (0.02 \text{ to } 0.07) \langle v_{ij} \rangle \sim (0.15 \text{ to } 0.5) \langle H \rangle$ We expect $\langle V_{ijkl}\rangle \sim 0.05 \langle V_{ijk}\rangle \sim (0.01 \text{ to } 0.03) \langle H\rangle \sim 1 \text{ MeV in }^{12}\text{C}$.

Transition amplitude in time-ordered perturbation theory

$$
T_{\rm fi} = \langle f | T | i \rangle = \langle f | H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i\eta} H_1 \right)^{n-1} | i \rangle
$$

$$
= \langle f | H_1 | i \rangle + \sum_{|I\rangle} \langle f | H_1 | I \rangle \frac{1}{E_i - E_I} \langle I | H_1 | i \rangle + ...
$$

 \triangleright A contribution with N interaction vertices and L loops scales as

 α_i = number of derivatives in *H*₁ and β_i = number of π 's at each vertex N_K = number of pure nucleonic intermediate states

 \triangleright Due to the chiral expansion, the transition amplitude T_f can be expanded as

$$
T_{\text{fi}} = T^{\text{LO}} + T^{\text{NLO}} + T^{\text{N2LO}} + \dots
$$
 and $T^{\text{NnLO}} \sim (Q/\Lambda_{\chi})^n T^{\text{LO}}$

Power counting

- \triangleright *N_K* energy denominators scale as Q^{-2} 1 $\frac{1}{E_i - E_I} |I\rangle = \frac{1}{E_i - \frac{1}{2}}$ $\frac{1}{E_i - E_N}$ |*I* $\rangle \sim Q^{-2}$ |*I* \rangle
- \blacktriangleright $(N N_K 1)$ energy denominators scale Q^{-1} in the <u>static limit</u>; they can be further expanded in powers of $(E_i - E_N)/\omega_\pi \sim Q$

$$
\frac{1}{E_i - E_I} |I\rangle = \frac{1}{E_i - E_N - \omega_{\pi}} |I\rangle \sim -\left[\underbrace{\frac{1}{\omega_{\pi}}}_{Q^{-1}} + \underbrace{\frac{E_i - E_N}{\omega_{\pi}^2}}_{Q^0} + \underbrace{\frac{(E_i - E_N)^2}{\omega_{\pi}^3}}_{Q^1} + \dots\right] |I\rangle
$$

- ► Terms accounted into the Lippmann-Schwinger Eq. are subtracted from the reducible amplitude
- ◮ EM operators depend on the off-the-energy shell prescription adopted for the non-static OPE and TPE potentials
- ▶ Ultimately, the EM operators are unitarily equivalent: Description of physical systems is not affected by this ambiguity

Magnetic moment at N³LO

 \blacktriangleright Magnetic moment operator due to two-body current density $J(x)$

$$
\mu(R,r)=\frac{1}{2}\Bigg[R\times\int\!dx\,J(x)\!+\!\int\!dx\,(x\!-\!R)\!\times\!J(x)\Bigg]
$$

▶ Sachs' and translationally invariant magnetic moments

$$
\mu_{\text{Sachs}}(\mathbf{R}, \mathbf{r}) = -i \frac{\mathbf{R}}{2} \times \int \mathrm{d}\mathbf{x} \mathbf{x} \left[\rho(\mathbf{x}), v_{12} \right]
$$

$$
\mu_{\text{T}}(\mathbf{r}) = -\frac{i}{2} \int_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{r}} \nabla_{q} \times \mathbf{j}(\mathbf{q}, \mathbf{k}) \Big|_{\mathbf{q} = 0}
$$

OPEP beyond the static limit

On-the-energy-shell, non-static OPEP at N2LO (Q^2) can be equivalently written as

$$
v_{\pi}^{(2)}(v=0) = v_{\pi}^{(0)}(\mathbf{k}) \frac{(E_1' - E_1)^2 + (E_2' - E_2)^2}{2 \omega_k^2}
$$

$$
v_{\pi}^{(2)}(v=1) = -v_{\pi}^{(0)}(\mathbf{k}) \frac{(E_1' - E_1)(E_2' - E_2)}{\omega_k^2}
$$

$$
v_{\pi}^{(0)}(\mathbf{k}) = -\frac{g_A^2}{F_{\pi}^2} \tau_1 \cdot \tau_2 \frac{\sigma_1 \cdot \mathbf{k} \sigma_2 \cdot \mathbf{k}}{\omega_k^2}
$$

 $v_{\pi}^{(2)}(v)$ corrections are different off-the-energy-shell $(E_1 + E_2 \neq E'_1 + E'_2)$ \triangleright TPE contributions are affected by the choice made for the parameter \triangleright

From amplitudes to potentials

The two-nucleon potential $v = v^{(0)} + v^{(1)} + v^{(2)} + \dots$ (with $v^{(n)} \sim Q^n$) is iterated into the Lippmann-Schwinger (LS) equation *i.e.*

$$
v + v G_0 v + v G_0 v G_0 v + ... ,
$$
 $G_0 = 1/(E_i - E_I + i \eta)$

 $v^{(n)}$ is obtained subtracting from the transition amplitude $T_{\text{fi}}^{(n)}$ terms already accounted for into the LS equation

$$
v^{(0)} = T^{(0)},
$$

\n
$$
v^{(1)} = T^{(1)} - [v^{(0)} G_0 v^{(0)}],
$$

\n
$$
v^{(2)} = T^{(2)} - [v^{(0)} G_0 v^{(0)} G_0 v^{(0)}] - [v^{(1)} G_0 v^{(0)} + v^{(0)} G_0 v^{(1)}],
$$

\n
$$
v^{(3)}(v) = T^{(3)} - [v^{(0)} G_0 v^{(0)} G_0 v^{(0)} G_0 v^{(0)}] - [v^{(1)} G_0 v^{(0)} G_0 v^{(0)} + \text{permutations}] - [v^{(1)} G_0 v^{(1)}] - [v^{(2)}(v) G_0 v^{(0)} + v^{(0)} G_0 v^{(2)}(v)]
$$

LS terms

From amplitudes to potentials: an example with OPE and TPE only

► To each $v_{\pi}^{(2)}(v)$ corresponds a $v_{2\pi}^{(3)}(v)$

Unitary equivalence of $v_{\pi}^{(2)}(v)$ and $v_{2\pi}^{(3)}$ $\chi_{2\pi}^{(3)}(\mathbf{v})$

▶ Different off-the-energy-shell parameterizations lead to unitarily equivalent two-nucleon Hamiltonians

$$
H(v) = t^{(-1)} + v_{\pi}^{(0)} + v_{2\pi}^{(2)} + v_{\pi}^{(2)}(v) + v_{2\pi}^{(3)}(v)
$$

 $t^{(-1)}$ is the kinetic energy, $v_{\pi}^{(0)}$ and $v_{2\pi}^{(2)}$ are the static OPEP and TPEP

 \triangleright The Hamiltonians are related to each other via

$$
H(v) = e^{-iU(v)} H(v=0) e^{+iU(v)}, \qquad iU(v) \simeq iU^{(0)}(v) + iU^{(1)}(v)
$$

from which it follows

$$
H(v) = H(v = 0) + \left[t^{(-1)} + v_{\pi}^{(0)}, i U^{(0)}(v) \right] + \left[t^{(-1)}, i U^{(1)}(v) \right]
$$

▶ Predictions for physical observables are unaffected by off-the-energy-shell effects

Technical issue II - Recoil corrections at N^3LO

 \blacktriangleright Reducible contributions

$$
\begin{array}{lll}\n\mathbf{j}_{\text{red}} & \sim & \int \mathbf{v}^{\pi}(\mathbf{q}_2) \, \frac{1}{E_i - E_I} \, \mathbf{j}^{\text{NLO}}(\mathbf{q}_1) \\
& & \quad - & \int 2 \, \frac{\omega_1 + \omega_2}{\omega_1 \, \omega_2} \, V_{\pi NN}(2, \mathbf{q}_2) \, V_{\pi NN}(2, \mathbf{q}_1) \, V_{\pi NN}(1, \mathbf{q}_2) \, V_{\gamma \pi NN}(1, \mathbf{q}_1)\n\end{array}
$$

 \blacktriangleright Irreducible contributions

$$
\begin{array}{rcl}\n\mathbf{j}_{irr} & = & \int 2 \frac{\omega_1 + \omega_2}{\omega_1 \omega_2} V_{\pi NN}(2, \mathbf{q}_2) V_{\pi NN}(2, \mathbf{q}_1) V_{\pi NN}(1, \mathbf{q}_2) V_{\gamma \pi NN}(1, \mathbf{q}_1) \\
& & - & \int 2 \frac{\omega_1^2 + \omega_2^2 + \omega_1 \omega_2}{\omega_1 \omega_2 (\omega_1 + \omega_2)} [V_{\pi NN}(2, \mathbf{q}_2), V_{\pi NN}(2, \mathbf{q}_1)]_ - V_{\pi NN}(1, \mathbf{q}_2) V_{\gamma \pi NN}(1, \mathbf{q}_1)\n\end{array}
$$

 \triangleright Observed partial cancellations at N³LO between recoil corrections to reducible diagrams and irreducible contributions

The box diagram: an example at $N³LO$

$$
- f_c(\omega_1, \omega_2)[V_a, V_b] - V_c V_d
$$

Transition amplitude in time-ordered perturbation theory

$$
T_{\rm fi} = \langle f | T | i \rangle = \langle f | H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i \eta} H_1 \right)^{n-1} | i \rangle
$$

$$
= \langle f | H_1 | i \rangle + \sum_{|I\rangle} \langle f | H_1 | I \rangle \frac{1}{E_i - E_I} \langle I | H_1 | i \rangle + ...
$$

 \triangleright A contribution with N interaction vertices and L loops scales as

- α_i = number of derivatives in H_1 and β_i = number of π 's at each vertex N_K = number of pure nucleonic intermediate states
- \blacktriangleright (*N* − *N_K* − 1) energy denominators expanded in powers of $(E_i E_N)/\omega_\pi \sim Q$ 1 $\frac{1}{E_i - E_I} |I\rangle = \frac{1}{E_i - E_N}$ $\frac{1}{E_i - E_N - \omega_{\pi}} |I\rangle \sim -\left[\frac{1}{\omega}\right]$ $\frac{\omega_{\pi}}{2}$ *Q*−¹ $+\underbrace{\frac{E_i - E_N}{\omega_{\pi}^2}}$ *Q*⁰ $+\frac{(E_i - E_N)^2}{\omega^3}$ $\frac{\omega_{\pi}^3}{\omega_{\pi}}$ ϱ ¹ $+ \ldots \Big| |I\rangle$

Due to the chiral expansion, the transition amplitude T_f can be expanded as $T_{\text{fi}} = T^{\text{LO}} + T^{\text{NLO}} + T^{\text{N2LO}} + \dots$ and $T^{\text{NnLO}} \sim (Q/\Lambda_{\chi})^n T^{\text{LO}}$ 52 / 29 EM charge up to $n = 0$ (or up to N3LO)

►
$$
n = -3
$$

\n $\rho^{(-3)}(\mathbf{q}) = e(2\pi)^3 \delta(\mathbf{p}_1 + \mathbf{q} - \mathbf{p}'_1)(1 + \tau_{1,z})/2 + 1 \rightleftharpoons 2$
\n► $n = -1$:
\n $(Q/m_N)^2$ relativistic correction to $\rho^{(-3)}$
\n► $n = 0$:

i) 'static' tree-level current (originates from a γπ*N* vertex of order *eQ*)

ii) 'non-static' OPE charge operators, $\rho_{\pi}^{(0)}(v)$ depends on $v_{\pi}^{(2)}(v)$

 $\rightharpoonup \rho_{\pi}^{(0)}(\nu)$'s are unitarily equivalent

$$
\rho_{\pi}^{(0)}(v) = \rho_{\pi}^{(0)}(v=0) + \left[\rho^{(-3)}, i U^{(0)}(v)\right]
$$

 \triangleright No unknown LECs up to this order (g_A , F_{π})

EM charge ω $n = 1$ (or N4LO) 1.

- \blacktriangleright (a), (f), (d), and (i) vanish
- Divergencies associated with (b) + (g), (c) + (h), and (e) + (j) cancel out—as they must since there are no counter-terms at N4LO
- $\rho_h^{(1)}(v)$ depends on the parametrization adopted for $v_\pi^{(2)}(v)$ and $v_{2\pi}^{(3)}(v)$
- $\rightharpoonup \rho_h^{(1)}(v)$'s are unitarily equivalent

$$
\rho_{\rm h}^{(1)}(v) = \rho_{\rm h}^{(1)}(v=0) + \left[\rho^{(-3)}, i U^{(1)}(v)\right]
$$

EM charge ω $n = 1$ (or N4LO) 2.

• Charge operators (*v*-dependent included) up to $n = 1$ satisfy the condition

$$
\rho^{(n>-3)}({\bf q}=0)=0
$$

which follows from charge conservation

$$
\rho(\mathbf{q} = 0) = \int d\mathbf{x} \rho(\mathbf{x}) = e^{\frac{(1 + \tau_{1,z})}{2}} + 1 \rightleftharpoons 2 = \rho^{(-3)}(\mathbf{q} = 0)
$$

 $\rho^{(1)}$ does not depend on unknown LECs and it is purely isovector