

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Ab Initio Unified Approach to Nuclear Structure and Reactions

INT Program INT 16-1 Nuclear Physics from Lattice QCD April 5, 2016

Petr Navratil | TRIUMF

Collabrorators: Sofia Quaglioni, Carolina Romero-Redondo (LLNL) Guillaume Hupin (CEA/DAM) Jeremy Dohet-Eraly, Angelo Calci (TRIUMF) Francesco Raimondi (Surrey), Wataru Horiuchi (Hokkaido) Robert Roth (TU Darmstadt)

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadien

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canad

- No-Core Shell Model with Continuum (NCSMC) approach
- Connection to nuclear lattice EFT
- N-⁴He scattering

- ⁶Li structure & d-⁴He scattering
- ¹¹Be as a laboratory for testing of nuclear forces
- ¹¹N and ¹⁰C-p scattering
- ³He-⁴He and ³H-⁴He radiative capture

From QCD to nuclei

Nuclear structure and reactions

Chiral Effective Field Theory

- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD $(m_u \approx m_d \approx 0)$, spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_x)
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

Chiral symmetry breaking scale

From QCD to nuclei

RIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

Harmonic oscillator basis

From QCD to nuclei

RIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

Harmonic oscillator basis

TRIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

Harmonic oscillator basis

- ...with resonating group method ۲
 - Bound & scattering states, reactions
 - Cluster dynamics, long-range correlations

Unified approach to bound & continuum states; to nuclear structure & reactions

- *Ab initio* no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

- ...with resonating group method
 - Bound & scattering states, reactions
 - Cluster dynamics, long-range correlations

S. Baroni, P. Navratil, and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

Coupled NCSMC equations

Scattering matrix (and observables) from matching solutions to known asymptotic with microscopic *R*-matrix on Lagrange mesh

Connection to nuclear lattice EFT

doi:10.1038/nature16067

Scattering states

Lattice EFT – hard spherical wall

Ab initio alpha-alpha scattering

Serdar Elhatisari¹, Dean Lee², Gautam Rupak³, Evgeny Epelbaum⁴, Hermann Krebs⁴, Timo A. Lähde⁵, Thomas Luu^{1,5} & Ulf–G. Meißner^{1,5,6}

p-⁴He scattering within NCSMC

p-⁴He scattering phase-shifts for NN+3N potential: Convergence

Differential *p*-⁴He cross section with NN+3N potentials

n-⁴He scattering within NCSMC

n-⁴He scattering phase-shifts for chiral NN and NN+3N potential

Total *n*-⁴He cross section with NN and NN+3N potentials

Petr Navrátil¹, Sofia Quaglioni², Guillaume Hupin^{3,4} Carolina Romero-Redondo² and Angelo Calci¹

Guillaume Hupin,^{1,*} Joachim Langhammer,^{2,†} Petr Navrátil,^{3,‡} Sofia Quaglioni,^{1,§} Angelo Calci,^{2,¶} and Robert Roth^{2,¶}

Unified description of ⁶Li structure and d+⁴He dynamics

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

29 MAY 2014

with Chiral Two- and Three-Nucleon Forces Guillaume Hupin,^{1,*} Sofia Quaglioni,^{1,†} and Petr Navrátil^{2,‡}

PHYSICAL REVIEW LETTERS

Unified Description of ⁶Li Structure and Deuterium-⁴He Dynamics

PRL 114, 212502 (2015)

Unified description of ⁶Li structure and d+⁴He dynamics

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

Unified description of ⁶Li structure and d+⁴He dynamics

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

29 MAY 2014

with Chiral Two- and Three-Nucleon Forces Guillaume Hupin,1,* Sofia Quaglioni,1,† and Petr Navrátil2,#

Unified Description of ⁶Li Structure and Deuterium-⁴He Dynamics

PRL 114, 212502 (2015)

Unified description of ⁶Li structure and d+⁴He dynamics

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

Guillaume Hupin,1,* Sofia Quaglioni,1,† and Petr Navrátil2,#

 E_d [MeV]

Unified description of ⁶Li structure and d+⁴He dynamics

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

Guillaume Hupin,1,* Sofia Quaglioni,1,† and Petr Navrátil2,‡

Unified description of ⁶Li structure and d+⁴He dynamics

• S- and *D*-wave asymptotic normalization constants

PRL 114, 212502 (2015)	PHYSICAL REVIEW LETTERS	week ending 29 MAY 2015						
Unified Description of ⁶ Li Structure and Deuterium- ⁴ He Dynamics								
with Chiral Two- and Three-Nucleon Forces								
C	uillaume Hunin ^{1,*} Sofia Quaglioni ^{1,†} and Petr Navrátil ^{2,‡}							

NCSMC		Experiment	
$C_0 \; [{\rm fm}^{-1/2}]$	2.695	2.91(9) [39]	2.93(15) [38]
$C_2 [\mathrm{fm}^{-1/2}]$	-0.074	-0.077(18) [39]	
C_2/C_0	-0.027	-0.025(6)(10) [39]	0.0003(9) [41]

- [38] L. D. Blokhintsev, V. I. Kukulin, A. A. Sakharuk, D. A. Savin, and E. V. Kuznetsova, Phys. Rev. C 48, 2390 (1993).
- [39] E. A. George and L. D. Knutson, Phys. Rev. C 59, 598 (1999).
- [41] K. D. Veal, C. R. Brune, W. H. Geist, H. J. Karwowski, E. J. Ludwig, A. J. Mendez, E. E. Bartosz, P. D. Cathers, T. L. Drummer, K. W. Kemper, A. M. Eiró, F. D. Santos, B. Kozlowska, H. J. Maier, and I. J. Thompson, Phys. Rev. Lett. 81, 1187 (1998).

Neutron-rich halo nucleus ¹¹Be

• Z=4, N=7

- In the shell model picture g.s. expected to be $J^{\pi}=1/2^{-1}$
 - Z=6, N=7 ¹³C and Z=8, N=7 ¹⁵O have $J^{\pi}=1/2^{-}$ g.s.
- In reality, ¹¹Be g.s. is $J^{\pi}=1/2^{+}$ parity inversion
- Very weakly bound: E_{th}=-0.5 MeV
 - Halo state dominated by ¹⁰Be-n in the S-wave
- The 1/2⁻ state also bound only by 180 keV
- Can we describe ¹¹Be in *ab initio* calculations?
 - Continuum must be included
 - Does the 3N interaction play a role in the parity inversion?

1s_{1/2} 0p_{1/2}

0p_{3/2} 0s_{1/2}

¹⁰C(p,p) @ IRIS with solid H₂ target

- New experiment at ISAC TRIUMF with reaccelerated ¹⁰C
 - The first ever ¹⁰C beam at TRIUMF
 - Angular distributions measured at $E_{\rm CM}$ ~ 4.16 MeV and 4.4 MeV

p+¹⁰C scattering: structure of ¹¹N resonances

- NCSMC calculations with chiral NN+3N (N³LO NN+N²LO 3NF400, NNLOsat)
 - $p^{-10}C + {}^{11}N$
 - ¹⁰C: 0⁺, 2⁺, 2⁺ NCSM eigenstates

• ¹¹N: $\geq 4 \pi = -1$ and $\geq 3 \pi = +1$ NCSM eigenstates

p+¹⁰C scattering: structure of ¹¹N resonances

RIUMF

A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth et al with IRIS collaboration, in preparation

24

p+¹⁰C scattering: structure of ¹¹N resonances

TRIUMF

Structure of ¹¹Be from chiral NN+3N forces

- NCSMC calculations including chiral 3N (N³LO NN+N²LO 3NF400)
 - n-¹⁰Be + ¹¹Be

🥸 + 🐝 👘

- ¹⁰Be: 0⁺, 2⁺, 2⁺ NCSM eigenstates
- ¹¹Be: $\geq 6 \pi = -1$ and $\geq 3 \pi = +1$ NCSM eigenstates

A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth et al., in preparation

27

A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth et al., in preparation

A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth et al., in preparation

29

p+¹⁰C scattering: structure of ¹¹N resonances

A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth et al with IRIS collaboration, in preparation

31

Mirror nuclei ¹¹Be and ¹¹N

NCSMC wave function

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\Longrightarrow}, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \, \gamma_{\nu}(\vec{r}) \, \hat{A}_{\nu} \left| \stackrel{\overrightarrow{r}}{\underbrace{}}_{(A-a)} \stackrel{(A)}{\underbrace{}}_{(A)}, \nu \right\rangle$$

$$\begin{split} \left| \Psi_{A}^{J^{\pi}T} \right\rangle &= \sum_{\lambda} \left| A\lambda J^{\pi}T \right\rangle \bigg[\sum_{\lambda'} (N^{-\frac{1}{2}})^{\lambda\lambda'} \bar{c}_{\lambda'} + \sum_{\nu'} \int dr' \, r'^2 (N^{-\frac{1}{2}})^{\lambda}_{\nu'r'} \frac{\bar{\chi}_{\nu'}(r')}{r'} \bigg] \\ &+ \sum_{\nu\nu'} \int dr \, r^2 \int dr' \, r'^2 \hat{\mathcal{A}}_{\nu} \left| \Phi_{\nu r}^{J^{\pi}T} \right\rangle \mathcal{N}_{\nu\nu'}^{-\frac{1}{2}}(r,r') \left[\sum_{\lambda'} (N^{-\frac{1}{2}})^{\lambda'}_{\nu'r'} \bar{c}_{\lambda'} + \sum_{\nu''} \int dr'' \, r''^2 (N^{-\frac{1}{2}})_{\nu'r'\nu''r''} \frac{\bar{\chi}_{\nu''}(r'')}{r''} \right]. \end{split}$$

Asymptotic behavior $r \rightarrow \infty$:

$$\overline{\chi}_{v}(r) \sim C_{v}W(k_{v}r) \qquad \overline{\chi}_{v}(r) \sim v_{v}^{-\frac{1}{2}} \Big[\delta_{vi}I_{v}(k_{v}r) - U_{vi}O_{v}(k_{v}r) \Big]$$

Bound state

Scattering state

Scattering matrix

E1 transitions in NCSMC

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\Longrightarrow}, \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \gamma_{\nu}(\vec{r}) \hat{A}_{\nu} \left| \stackrel{\overrightarrow{r}}{\underbrace{\textcircled{}}}_{(A-a)} \stackrel{(a)}{\underbrace{}}, \nu \right\rangle$$

$$\vec{E1} = e \sum_{i=1}^{A-a} \frac{1 + \tau_i^{(3)}}{2} \left(\vec{r_i} - \vec{R}_{\text{c.m.}}^{(A-a)} \right) + e \sum_{j=A-a+1}^{A} \frac{1 + \tau_j^{(3)}}{2} \left(\vec{r_i} - \vec{R}_{\text{c.m.}}^{(a)} \right) + e \frac{Z_{(A-a)}a - Z_{(a)}(A-a)}{A} \vec{r}_{A-a,a}.$$

$$\begin{aligned} \mathcal{B}_{fi}^{E1} &= \sum_{\lambda\lambda'} c_{\lambda'}^{*f} \langle A\lambda' J_{f}^{\pi_{f}} T_{f} || \mathcal{M}_{1}^{E} || A\lambda J_{i}^{\pi_{i}} T_{i} \rangle c_{\lambda}^{i} \\ &+ \sum_{\lambda'\nu} \int dr r^{2} c_{\lambda'}^{*f} \langle A\lambda' J_{f}^{\pi_{f}} T_{f} || \mathcal{M}_{1}^{E} \hat{\mathcal{A}}_{\nu} || \Phi_{\nu r}^{i} \rangle \frac{\gamma_{\nu}^{i}(r)}{r} \\ &+ \sum_{\lambda\nu'} \int dr' r'^{2} \frac{\gamma_{\nu'}^{*f}(r')}{r'} \langle \Phi_{\nu'r'}^{f} || \hat{\mathcal{A}}_{\nu'} \mathcal{M}_{1}^{E} || A\lambda J_{i}^{\pi_{i}} T_{i} \rangle c_{\lambda}^{i} \\ &+ \sum_{\nu\nu'} \int dr' r'^{2} \int dr r^{2} \frac{\gamma_{\nu'}^{*f}(r')}{r'} \langle \Phi_{\nu'r'}^{f} || \hat{\mathcal{A}}_{\nu'} \mathcal{M}_{1}^{E} \hat{\mathcal{A}}_{\nu} || \Phi_{\nu r}^{i} \rangle \frac{\gamma_{\nu}^{i}(r)}{r} \end{aligned}$$

$$\mathcal{M}_{1\mu}^{E} = e \sum_{j=1}^{A} \frac{1 + \tau_{j}^{(3)}}{2} \left| \vec{r_{j}} - \vec{R}_{\text{c.m.}}^{(A)} \right| Y_{1\mu}(r_{j} - \vec{R}_{\text{c.m.}}^{(A)})$$

34

Photo-disassociation of ¹¹Be

Bound to bound	NCSM	NCSMC-phenom	Expt.
B(E1; $1/2^+ \rightarrow 1/2^-$) [$e^2 \text{ fm}^2$]	5x10 ⁻⁶	0.118	0.102(2)

NCSMC phenomenology

Photo-disassociation of ¹¹Be

OTRIUMF

Capture reactions important for astrophysics

³He-⁴He and ³H-⁴He scattering

J. Dohet-Eraly, P.N., S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, arXiv:1510.07717 [nucl-th]

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

³He, ³H, ⁴He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of ⁷Be and ⁷Li

Preliminary: N_{max} =12, h Ω =20 MeV

³He-⁴He and ³H-⁴He scattering

TRIUMF

J. Dohet-Eraly, P.N., S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, arXiv:1510.07717 [nucl-th]

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

³He, ³H, ⁴He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of ⁷Be and ⁷Li

Preliminary: N_{max} =12, h Ω =20 MeV

³He-⁴He and ³H-⁴He capture

J. Dohet-Eraly, P.N., S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, arXiv:1510.07717 [nucl-th]

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

³He, ³H, ⁴He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of ⁷Be and ⁷Li

Preliminary: N_{max} =12, h Ω =20 MeV

Theoretical calculations suggest that the most recent and precise 7Be and 7Li data are inconsistent

³He-⁴He S-wave phase shifts

J. Dohet-Eraly, P.N., S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, arXiv:1510.07717 [nucl-th]

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

³He, ³H, ⁴He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of ⁷Be and ⁷Li

Preliminary: N_{max} =12, h Ω =20 MeV

Conclusions and Outlook

- *Ab initio* calculations of nuclear structure and reactions is a dynamic field with significant advances
- We developed a new unified approach to nuclear bound and unbound states
 - Merging of the NCSM and the NCSM/RGM = NCSMC
 - Inclusion of three-nucleon interactions in reaction calculations for A>5 systems
 - Extension to three-body clusters (${}^{6}\text{He} \sim {}^{4}\text{He}+n+n$): NCSMC in progress

• Ongoing projects:

- Transfer reactions
- Sensitivity analysis of nuclear interactions for halo ¹¹Be and exotic ¹¹N
- Applications to capture reactions important for astrophysics
- Bremsstrahlung

Outlook

- Alpha-clustering (⁴He projectile)
 - ¹²C and Hoyle state: ⁸Be+⁴He
 - ¹⁶O: ¹²C+⁴He