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•  No-Core Shell Model with Continuum (NCSMC) approach 
•  Connection to nuclear lattice EFT 

•  N-4He scattering 

•  6Li structure & d-4He scattering 

•  11Be as a laboratory for testing of nuclear forces 

•  11N and 10C-p scattering 

•  3He-4He and 3H-4He radiative capture 
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From QCD to nuclei 
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Low-energy QCD 

Nuclear structure and reactions 

NN+3N interactions  
from chiral EFT 

…or accurate 
meson-exchange 

potentials 
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To develop such an ab initio nuclear theory we: 
 1) Start with accurate nuclear forces (and currents) 

+ ... + ... + ... 

NN force NNN force NNNN force 

Q0 

LO 

Q2 

NLO 

Q3 

N2LO 

Q4 

N3LO 

Worked out by Van Kolck, Keiser, 
Meissner, Epelbaum, Machleidt, ... 

"  Two- plus three-nucleon (NN+3N) 
forces from chiral effective field 
theory (EFT) 

 

Chiral Effective Field Theory 

•  Inter-nucleon forces from chiral 
effective field theory 
–  Based on the symmetries of QCD 

•  Chiral symmetry of QCD 
(mu≈md≈0), spontaneously broken 
with pion as the Goldstone boson 

•  Degrees of freedom: nucleons + 
pions 

–  Systematic low-momentum 
expansion to a given order (Q/Λχ) 

–  Hierarchy 
–  Consistency 
–  Low energy constants (LEC) 

•  Fitted to data 
•  Can be calculated by lattice QCD 

Λχ~1 GeV :  
Chiral symmetry breaking scale 



From QCD to nuclei 
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Low-energy QCD 

Nuclear structure and reactions 

NN+3N interactions  
from chiral EFT 

…or accurate 
meson-exchange 

potentials 

Many-Body methods H Ψ = E Ψ
NCSM, NCSM/RGM,  
NCSMC, CCM, SCGF, 
GFMC, HH, Nuclear 

Lattice EFT… 



Unified approach to bound & continuum states; 
to nuclear structure & reactions 

•  Ab initio no-core shell model 
–  Short- and medium range correlations 
–  Bound-states, narrow resonances 

1max += NN

NCSM 

Unknowns 

Ψ (A) = cλ
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∑ ,λ + dr γ v (
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Harmonic oscillator basis 
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Unified approach to bound & continuum states; 
to nuclear structure & reactions 

•  Ab initio no-core shell model 
–  Short- and medium range correlations 
–  Bound-states, narrow resonances 

1max += NN

NCSM 

•  …with resonating group method 
–  Bound & scattering states, reactions 
–  Cluster dynamics, long-range correlations 

NCSM/RGM 
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Unified approach to bound & continuum states; 
to nuclear structure & reactions 

•  Ab initio no-core shell model 
–  Short- and medium range correlations 
–  Bound-states, narrow resonances 

1max += NN

NCSM 

•  …with resonating group method 
–  Bound & scattering states, reactions 
–  Cluster dynamics, long-range correlations 

NCSM/RGM 

•  Most efficient: ab initio no-core shell model with continuum NCSMC 

Ψ (A) = cλ
λ

∑ ,λ + dr γ v (
r )∫ Âν

ν

∑ ,ν
A− a( )

a( )

r

Unknowns 

NCSM eigenstates 
NCSM/RGM 

channel states 

S. Baroni, P. Navratil, and S. Quaglioni,  
PRL 110, 022505 (2013); PRC 87, 034326 (2013). 
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Coupled NCSMC equations 
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… to be simultaneously determined  
by solving the coupled NCSMC equations 
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Connection to nuclear lattice EFT  
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Ab initio alpha–alpha scattering
Serdar Elhatisari1, Dean Lee2, Gautam Rupak3, Evgeny Epelbaum4, Hermann Krebs4, Timo A. Lähde5, Thomas Luu1,5 &  
Ulf-G. Meißner1,5,6

Processes such as the scattering of alpha particles (4He), the 
triple-alpha reaction, and alpha capture play a major role in 
stellar nucleosynthesis. In particular, alpha capture on carbon 
determines the ratio of carbon to oxygen during helium burning, 
and affects subsequent carbon, neon, oxygen, and silicon burning 
stages. It also substantially affects models of thermonuclear type Ia 
supernovae, owing to carbon detonation in accreting carbon–oxygen 
white-dwarf stars1–3. In these reactions, the accurate calculation 
of the elastic scattering of alpha particles and alpha-like nuclei—
nuclei with even and equal numbers of protons and neutrons—is 
important for understanding background and resonant scattering 
contributions. First-principles calculations of processes involving 
alpha particles and alpha-like nuclei have so far been impractical, 
owing to the exponential growth of the number of computational 
operations with the number of particles. Here we describe an  
ab initio calculation of alpha–alpha scattering that uses lattice Monte 
Carlo simulations. We use lattice effective field theory to describe 
the low-energy interactions of protons and neutrons, and apply a 
technique called the ‘adiabatic projection method’ to reduce the 
eight-body system to a two-cluster system. We take advantage of 
the computational efficiency and the more favourable scaling with 
system size of auxiliary-field Monte Carlo simulations to compute 
an ab initio effective Hamiltonian for the two clusters. We find 
promising agreement between lattice results and experimental phase 
shifts for s-wave and d-wave scattering. The approximately quadratic 
scaling of computational operations with particle number suggests 
that it should be possible to compute alpha scattering and capture 
on carbon and oxygen in the near future. The methods described 
here can be applied to ultracold atomic few-body systems as well 
as to hadronic systems using lattice quantum chromodynamics to 
describe the interactions of quarks and gluons.

In recent years there has been much progress in ab initio scattering 
and reactions involving light4–6 and medium-mass7,8 nuclei. However, 
for most numerical methods, the number of computational operations 
increases markedly when the projectile nucleus has more than a few 
nucleons. Therefore it remains a challenge to study many important 
processes that are relevant for stellar astrophysics such as alpha–alpha 
scattering, alpha–carbon scattering and radiative capture, as well as car-
bon and oxygen burning in massive star evolution and thermo nuclear 
supernovae9.

We describe lattice calculations for which the number of compu-
tational (floating point) operations for the A1-body +  A2-body prob-
lem scales as roughly (A1 +  A2)2; this scaling is mild enough to make 
first-principles calculations of alpha processes possible. We use the 
formalism of lattice effective field theory10–12 (EFT) and a technique 
for elastic scattering and inelastic reactions on the lattice called the 
‘adiabatic projection method’13–17.

Chiral EFT is a framework for organizing the low-energy nuclear 
interactions of protons and neutrons according to powers of momenta 
and factors of the mass of the pion; see ref. 18 for a review of the theory. 

The important interactions are at leading order (LO), the next largest 
contributions are at next-to-leading order (NLO), and then follows 
next-to-next-to-leading order (NNLO). We present an ab initio calcula-
tion of  4He +  4He scattering going up to NNLO terms in chiral EFT. We 
find promising agreement with experimental data19–22 for the s-wave 
and d-wave phase shifts; improvements can be achieved by including 
higher-order terms in the chiral expansion.

The adiabatic projection method addresses the cluster–cluster scat-
tering problem on the lattice by using Euclidean time projection to 
construct an effective two-cluster Hamiltonian. By Euclidean time pro-
jection we mean multiplication by exp(−Hτ), where H is the underly-
ing microscopic Hamiltonian and τ is Euclidean time. We use natural 
units, where the reduced Planck constant ћ and the speed of light c 
are set to one. Even though the actual lattice calculations use discrete 
time steps, we refer to the continuous Euclidean time parameter τ  for 
notational simplicity.

Our starting point is a three-dimensional spatial lattice that is peri-
odic with length L in each dimension. We take a set of initial two-alpha 
states | 〉R , labelled by their separation vector R, as illustrated in Fig. 1. 
We take the initial alpha wavefunctions to be Gaussian wave packets, 
so that at large separations they factorize as a tensor product of two 
individual alpha clusters:

∑| 〉 = | + 〉 ⊗ | 〉R r R r
r

1 2

where r is a summation variable corresponding to the location of the 
second cluster. The summation over r produces two-alpha states with 
total momentum equal to zero. Rather than dealing with a large array 
of three-dimensional vectors R, we project onto spherical harmonics 
ℓ ℓY , z

 with angular momentum quantum numbers ℓ ℓ, z:

∑ δ| 〉 = ( ′) | ′〉
′

| |′
ℓ ℓ

ℓ ℓ RR Y R
R

RR
,

, ,
z

z

where δ is the Kronecker delta function. We only consider cases where 
R =  | R|  <  L/2.

On the lattice, the symmetry group of spatial rotations is broken down 
to a cubic subgroup. Nevertheless, at low scattering energies, this approx-
imate rotational symmetry is very accurate, provided that artefacts due  
to the periodic volume are removed. We remove these artefacts using a 
hard spherical wall boundary; the spherical harmonic projection tech-
nique is useful for extracting data for selected partial waves. This method 
has been extended to particles with spin and partial wave mixing, and 
shows excellent agreement with continuous-space calculations23.

We use Euclidean time projection to form dressed cluster states:

τ| 〉 = (− )| 〉τ
ℓ ℓ ℓ ℓR H Rexp, ,z z

The evolution in Euclidean time automatically incorporates the 
induced deformation and polarization of the alpha clusters as they 
approach each other. The deformation and polarization are due to the 
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interactions of individual nucleons between the two alpha clusters, as 
well as to repulsion as a result of the Pauli exclusion principle for iden-
tical fermions.

With these dressed cluster states, we compute matrix elements of the 
full microscopic Hamiltonian with respect to the dressed cluster states:

= 〈 | | ′〉 ( )τ τ τ′
ℓ ℓ ℓ ℓ ℓ ℓH R H R[ ] 1R R,
, , ,z z z

Because the dressed cluster states are not orthogonal, we construct a 
norm matrix:

= 〈 | ′〉τ τ τ′
ℓ ℓ ℓ ℓ ℓ ℓN R R[ ]R R,
, , ,z z z

The radial adiabatic Hamiltonian is defined as a matrix product:

= ( )τ τ τ τ
− / − /

′ ′
ℓ ℓ ℓ ℓH N H N[ ] [ ] 2a
R R R R,
, 1 2 1 2

,
,z z

In the limit of large projection time τ , the spectrum of the adiabatic 
Hamiltonian reproduces the low-energy finite-volume spectrum of the 
microscopic Hamiltonian H. In ref. 17, it is shown that in the asymp-
totic region where the alpha clusters are widely separated, the adiabatic 
Hamiltonian reduces to a simple two-cluster Hamiltonian with only 
infinite-range interactions such as the Coulomb interaction between 
the otherwise non-interacting clusters. Although this may seem an 
obvious result, it is a non-trivial statement that the dependence on the 
projection time τ drops out from the adiabatic Hamiltonian at large 
distances.

We study 4He +  4He scattering using the same lattice action that is 
used to study the Hoyle state of 12C (ref. 11). The spatial lattice spacing 
is a =  1.97 fm and the Euclidean-time, or temporal, lattice spacing is 
at =  1.32 fm. Revisiting these calculations in the future with different 
lattice spacings and including higher-order terms in the chiral expan-
sion will provide a useful measure of systematic errors in lattice calcu-
lations of larger nuclear systems.

We perform projection Monte Carlo simulations with auxiliary fields 
to compute the matrices τ ′

ℓ ℓH[ ]R R,
, z  and τ ′

ℓ ℓN[ ]R R,
, z  on a periodic cubic lattice 

with volume L3 =  (16 fm)3; see ref. 24 for an overview of methods used 
in lattice EFT. The total projection time for the initial and final dressed 
cluster states together is 2τ, which is equal to the product of the number 
of time steps Lt and the temporal lattice spacing at. We determine 
τ ′
ℓ ℓN[ ]R R,
, z  from calculations with Lt time steps and τ ′

ℓ ℓH[ ]R R,
, z  from calcula-

tions with Lt +  1 time steps. The extra time step for τ ′
ℓ ℓH[ ]R R,
, z  is needed 

to calculate the matrix elements of H in equation (1). For these calcu-
lations, a new algorithm is used to allow for Monte Carlo updates of the 
auxiliary fields as well as updates of the alpha cluster positions.

We compute the radial adiabatic Hamiltonian using equation (2) and 
extend it to a much larger volume of (120 fm)3. This is done by 

 computing matrix elements of = ( )τ τ τ τ
− / − /

′ ′
ℓ ℓ ℓ ℓH N H N[ ] [ ] 2a
R R R R,
, 1 2 1 2

,
,z z at large separation (large R  

and R′ ) from single-alpha lattice simulations, and then including the 
Coulomb interaction between the otherwise non-interacting clusters. 
This process also allows us to define a ‘trivial’ two-cluster Hamiltonian 
in which the two alpha clusters are non-interacting except for the 
infinite-range Coulomb interaction.

With the radial adiabatic Hamiltonian defined in the large (120 fm)3 
box, we extract the scattering phase shifts by imposing a hard spherical 
wall boundary at some radius Rwall and determining the standing wave 
modes. In Fig. 2 we show s-wave radial functions for two different 
radial excitations (2s and 3s) at NNLO using chiral EFT. The error bars 
show 1-standard deviation (s.d.) Monte Carlo errors calculated using 
a jackknife analysis of the lattice data. We could extract the phase shift 
by fitting to the asymptotic behaviour of the radial wavefunction as in 
ref. 17; however, it is more accurate to extract the phase shifts from the 
energy of the standing wave, as discussed in ref. 25.

Figure 3 shows the phase shifts for s-wave scattering versus labo-
ratory energy at LO, NLO, and NNLO in chiral EFT, compared with 
experimental data19–22. The green dashed (LO), blue short-dashed 
(NLO), and red solid lines (NNLO) are determined from fits to the 
lattice data using the effective range expansion (see Methods). For 
further comparison, the inset of Fig. 3 shows NLO results using 
halo EFT with point-like alpha particles26. Halo EFT is an effec-
tive theory in which clusters of tightly bound nucleons are treated 
as point particles. Our LO results do not include Coulomb effects 
and so have substantially different behaviour near the alpha–alpha 
scattering threshold. The NLO and NNLO phase shifts are quite 
similar, and both agree fairly well with the experimental data. The 
close agreement between NLO and NNLO results is probably acci-
dental: several contributions appearing at NNLO seem to cancel 
each other out. The same does not occur for the d-wave phase shifts. 
The results and error bars shown in Fig. 3 are computed from lat-
tice phase-shift data for Lt =  4 to Lt =  10 and extrapolating to the 
limit Lt →  ∞. Details of the extrapolation fit and all associated 
error estimates are discussed in Methods. The observed energy of 
the s-wave resonance in the centre-of-mass frame is 0.09184 MeV 
above threshold. For the lattice results, we find that the ground 
state is 0.79(9) MeV below threshold at LO, and 0.11(1) MeV below 
threshold at both NLO and NNLO (the errors in parentheses here 
and elsewhere represent 1 s.d.).

R 

Figure 1 | Initial state clusters. Initial state | 〉R  composed of two alpha-
particle wave packets on the lattice separated by the displacement vector R. 
Each alpha-particle wave packet consists of four nucleons. Protons are red; 
neutrons are blue; spins are represented as arrows.
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−1.5

−1.0

−0.5

 0

 0.5

 1.0

 1.5

 0  5  10  15  20  25  30  35  40

\
(r)

r (fm)

Rwall

Figure 2 | s-wave scattering radial wavefunctions. The second-lowest-
energy (red squares) and third-lowest-energy (blue circles) s-wave radial 
wavefunctions for spherical wall radius Rwall ≈  36 fm (grey dashed line) at 
NNLO plotted versus radial distance. The dashed and double-dot-dashed 
lines show the fits to a Coulomb wavefunction for the second and third 
radial states, respectively. The error bars indicate 1-s.d. Monte Carlo errors 
calculated using a jackknife analysis of the lattice data.
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Processes such as the scattering of alpha particles (4He), the 
triple-alpha reaction, and alpha capture play a major role in 
stellar nucleosynthesis. In particular, alpha capture on carbon 
determines the ratio of carbon to oxygen during helium burning, 
and affects subsequent carbon, neon, oxygen, and silicon burning 
stages. It also substantially affects models of thermonuclear type Ia 
supernovae, owing to carbon detonation in accreting carbon–oxygen 
white-dwarf stars1–3. In these reactions, the accurate calculation 
of the elastic scattering of alpha particles and alpha-like nuclei—
nuclei with even and equal numbers of protons and neutrons—is 
important for understanding background and resonant scattering 
contributions. First-principles calculations of processes involving 
alpha particles and alpha-like nuclei have so far been impractical, 
owing to the exponential growth of the number of computational 
operations with the number of particles. Here we describe an  
ab initio calculation of alpha–alpha scattering that uses lattice Monte 
Carlo simulations. We use lattice effective field theory to describe 
the low-energy interactions of protons and neutrons, and apply a 
technique called the ‘adiabatic projection method’ to reduce the 
eight-body system to a two-cluster system. We take advantage of 
the computational efficiency and the more favourable scaling with 
system size of auxiliary-field Monte Carlo simulations to compute 
an ab initio effective Hamiltonian for the two clusters. We find 
promising agreement between lattice results and experimental phase 
shifts for s-wave and d-wave scattering. The approximately quadratic 
scaling of computational operations with particle number suggests 
that it should be possible to compute alpha scattering and capture 
on carbon and oxygen in the near future. The methods described 
here can be applied to ultracold atomic few-body systems as well 
as to hadronic systems using lattice quantum chromodynamics to 
describe the interactions of quarks and gluons.

In recent years there has been much progress in ab initio scattering 
and reactions involving light4–6 and medium-mass7,8 nuclei. However, 
for most numerical methods, the number of computational operations 
increases markedly when the projectile nucleus has more than a few 
nucleons. Therefore it remains a challenge to study many important 
processes that are relevant for stellar astrophysics such as alpha–alpha 
scattering, alpha–carbon scattering and radiative capture, as well as car-
bon and oxygen burning in massive star evolution and thermo nuclear 
supernovae9.

We describe lattice calculations for which the number of compu-
tational (floating point) operations for the A1-body +  A2-body prob-
lem scales as roughly (A1 +  A2)2; this scaling is mild enough to make 
first-principles calculations of alpha processes possible. We use the 
formalism of lattice effective field theory10–12 (EFT) and a technique 
for elastic scattering and inelastic reactions on the lattice called the 
‘adiabatic projection method’13–17.

Chiral EFT is a framework for organizing the low-energy nuclear 
interactions of protons and neutrons according to powers of momenta 
and factors of the mass of the pion; see ref. 18 for a review of the theory. 

The important interactions are at leading order (LO), the next largest 
contributions are at next-to-leading order (NLO), and then follows 
next-to-next-to-leading order (NNLO). We present an ab initio calcula-
tion of  4He +  4He scattering going up to NNLO terms in chiral EFT. We 
find promising agreement with experimental data19–22 for the s-wave 
and d-wave phase shifts; improvements can be achieved by including 
higher-order terms in the chiral expansion.

The adiabatic projection method addresses the cluster–cluster scat-
tering problem on the lattice by using Euclidean time projection to 
construct an effective two-cluster Hamiltonian. By Euclidean time pro-
jection we mean multiplication by exp(−Hτ), where H is the underly-
ing microscopic Hamiltonian and τ is Euclidean time. We use natural 
units, where the reduced Planck constant ћ and the speed of light c 
are set to one. Even though the actual lattice calculations use discrete 
time steps, we refer to the continuous Euclidean time parameter τ  for 
notational simplicity.

Our starting point is a three-dimensional spatial lattice that is peri-
odic with length L in each dimension. We take a set of initial two-alpha 
states | 〉R , labelled by their separation vector R, as illustrated in Fig. 1. 
We take the initial alpha wavefunctions to be Gaussian wave packets, 
so that at large separations they factorize as a tensor product of two 
individual alpha clusters:

∑| 〉 = | + 〉 ⊗ | 〉R r R r
r

1 2

where r is a summation variable corresponding to the location of the 
second cluster. The summation over r produces two-alpha states with 
total momentum equal to zero. Rather than dealing with a large array 
of three-dimensional vectors R, we project onto spherical harmonics 
ℓ ℓY , z

 with angular momentum quantum numbers ℓ ℓ, z:

∑ δ| 〉 = ( ′) | ′〉
′

| |′
ℓ ℓ

ℓ ℓ RR Y R
R

RR
,

, ,
z

z

where δ is the Kronecker delta function. We only consider cases where 
R =  | R|  <  L/2.

On the lattice, the symmetry group of spatial rotations is broken down 
to a cubic subgroup. Nevertheless, at low scattering energies, this approx-
imate rotational symmetry is very accurate, provided that artefacts due  
to the periodic volume are removed. We remove these artefacts using a 
hard spherical wall boundary; the spherical harmonic projection tech-
nique is useful for extracting data for selected partial waves. This method 
has been extended to particles with spin and partial wave mixing, and 
shows excellent agreement with continuous-space calculations23.

We use Euclidean time projection to form dressed cluster states:

τ| 〉 = (− )| 〉τ
ℓ ℓ ℓ ℓR H Rexp, ,z z

The evolution in Euclidean time automatically incorporates the 
induced deformation and polarization of the alpha clusters as they 
approach each other. The deformation and polarization are due to the 

1Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany. 2Department of Physics, North Carolina State University, 
Raleigh, North Carolina 27695, USA. 3Department of Physics and Astronomy and the HPC2 Center for Computational Sciences, Mississippi State University, Mississippi State, Mississippi 39762, 
USA. 4Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44870 Bochum, Germany. 5Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, 
Forschungszentrum Jülich, D-52425 Jülich, Germany. 6JARA—High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich, Germany.

© 2015 Macmillan Publishers Limited. All rights reserved

3  D E C E M B E R  2 0 1 5  |  V O L  5 2 8  |  N A T U R E  |  1 1 1

LETTER
doi:10.1038/nature16067

Ab initio alpha–alpha scattering
Serdar Elhatisari1, Dean Lee2, Gautam Rupak3, Evgeny Epelbaum4, Hermann Krebs4, Timo A. Lähde5, Thomas Luu1,5 &  
Ulf-G. Meißner1,5,6

Processes such as the scattering of alpha particles (4He), the 
triple-alpha reaction, and alpha capture play a major role in 
stellar nucleosynthesis. In particular, alpha capture on carbon 
determines the ratio of carbon to oxygen during helium burning, 
and affects subsequent carbon, neon, oxygen, and silicon burning 
stages. It also substantially affects models of thermonuclear type Ia 
supernovae, owing to carbon detonation in accreting carbon–oxygen 
white-dwarf stars1–3. In these reactions, the accurate calculation 
of the elastic scattering of alpha particles and alpha-like nuclei—
nuclei with even and equal numbers of protons and neutrons—is 
important for understanding background and resonant scattering 
contributions. First-principles calculations of processes involving 
alpha particles and alpha-like nuclei have so far been impractical, 
owing to the exponential growth of the number of computational 
operations with the number of particles. Here we describe an  
ab initio calculation of alpha–alpha scattering that uses lattice Monte 
Carlo simulations. We use lattice effective field theory to describe 
the low-energy interactions of protons and neutrons, and apply a 
technique called the ‘adiabatic projection method’ to reduce the 
eight-body system to a two-cluster system. We take advantage of 
the computational efficiency and the more favourable scaling with 
system size of auxiliary-field Monte Carlo simulations to compute 
an ab initio effective Hamiltonian for the two clusters. We find 
promising agreement between lattice results and experimental phase 
shifts for s-wave and d-wave scattering. The approximately quadratic 
scaling of computational operations with particle number suggests 
that it should be possible to compute alpha scattering and capture 
on carbon and oxygen in the near future. The methods described 
here can be applied to ultracold atomic few-body systems as well 
as to hadronic systems using lattice quantum chromodynamics to 
describe the interactions of quarks and gluons.

In recent years there has been much progress in ab initio scattering 
and reactions involving light4–6 and medium-mass7,8 nuclei. However, 
for most numerical methods, the number of computational operations 
increases markedly when the projectile nucleus has more than a few 
nucleons. Therefore it remains a challenge to study many important 
processes that are relevant for stellar astrophysics such as alpha–alpha 
scattering, alpha–carbon scattering and radiative capture, as well as car-
bon and oxygen burning in massive star evolution and thermo nuclear 
supernovae9.

We describe lattice calculations for which the number of compu-
tational (floating point) operations for the A1-body +  A2-body prob-
lem scales as roughly (A1 +  A2)2; this scaling is mild enough to make 
first-principles calculations of alpha processes possible. We use the 
formalism of lattice effective field theory10–12 (EFT) and a technique 
for elastic scattering and inelastic reactions on the lattice called the 
‘adiabatic projection method’13–17.

Chiral EFT is a framework for organizing the low-energy nuclear 
interactions of protons and neutrons according to powers of momenta 
and factors of the mass of the pion; see ref. 18 for a review of the theory. 

The important interactions are at leading order (LO), the next largest 
contributions are at next-to-leading order (NLO), and then follows 
next-to-next-to-leading order (NNLO). We present an ab initio calcula-
tion of  4He +  4He scattering going up to NNLO terms in chiral EFT. We 
find promising agreement with experimental data19–22 for the s-wave 
and d-wave phase shifts; improvements can be achieved by including 
higher-order terms in the chiral expansion.

The adiabatic projection method addresses the cluster–cluster scat-
tering problem on the lattice by using Euclidean time projection to 
construct an effective two-cluster Hamiltonian. By Euclidean time pro-
jection we mean multiplication by exp(−Hτ), where H is the underly-
ing microscopic Hamiltonian and τ is Euclidean time. We use natural 
units, where the reduced Planck constant ћ and the speed of light c 
are set to one. Even though the actual lattice calculations use discrete 
time steps, we refer to the continuous Euclidean time parameter τ  for 
notational simplicity.

Our starting point is a three-dimensional spatial lattice that is peri-
odic with length L in each dimension. We take a set of initial two-alpha 
states | 〉R , labelled by their separation vector R, as illustrated in Fig. 1. 
We take the initial alpha wavefunctions to be Gaussian wave packets, 
so that at large separations they factorize as a tensor product of two 
individual alpha clusters:

∑| 〉 = | + 〉 ⊗ | 〉R r R r
r

1 2

where r is a summation variable corresponding to the location of the 
second cluster. The summation over r produces two-alpha states with 
total momentum equal to zero. Rather than dealing with a large array 
of three-dimensional vectors R, we project onto spherical harmonics 
ℓ ℓY , z

 with angular momentum quantum numbers ℓ ℓ, z:

∑ δ| 〉 = ( ′) | ′〉
′

| |′
ℓ ℓ

ℓ ℓ RR Y R
R

RR
,

, ,
z

z

where δ is the Kronecker delta function. We only consider cases where 
R =  | R|  <  L/2.

On the lattice, the symmetry group of spatial rotations is broken down 
to a cubic subgroup. Nevertheless, at low scattering energies, this approx-
imate rotational symmetry is very accurate, provided that artefacts due  
to the periodic volume are removed. We remove these artefacts using a 
hard spherical wall boundary; the spherical harmonic projection tech-
nique is useful for extracting data for selected partial waves. This method 
has been extended to particles with spin and partial wave mixing, and 
shows excellent agreement with continuous-space calculations23.

We use Euclidean time projection to form dressed cluster states:

τ| 〉 = (− )| 〉τ
ℓ ℓ ℓ ℓR H Rexp, ,z z

The evolution in Euclidean time automatically incorporates the 
induced deformation and polarization of the alpha clusters as they 
approach each other. The deformation and polarization are due to the 
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Processes such as the scattering of alpha particles (4He), the 
triple-alpha reaction, and alpha capture play a major role in 
stellar nucleosynthesis. In particular, alpha capture on carbon 
determines the ratio of carbon to oxygen during helium burning, 
and affects subsequent carbon, neon, oxygen, and silicon burning 
stages. It also substantially affects models of thermonuclear type Ia 
supernovae, owing to carbon detonation in accreting carbon–oxygen 
white-dwarf stars1–3. In these reactions, the accurate calculation 
of the elastic scattering of alpha particles and alpha-like nuclei—
nuclei with even and equal numbers of protons and neutrons—is 
important for understanding background and resonant scattering 
contributions. First-principles calculations of processes involving 
alpha particles and alpha-like nuclei have so far been impractical, 
owing to the exponential growth of the number of computational 
operations with the number of particles. Here we describe an  
ab initio calculation of alpha–alpha scattering that uses lattice Monte 
Carlo simulations. We use lattice effective field theory to describe 
the low-energy interactions of protons and neutrons, and apply a 
technique called the ‘adiabatic projection method’ to reduce the 
eight-body system to a two-cluster system. We take advantage of 
the computational efficiency and the more favourable scaling with 
system size of auxiliary-field Monte Carlo simulations to compute 
an ab initio effective Hamiltonian for the two clusters. We find 
promising agreement between lattice results and experimental phase 
shifts for s-wave and d-wave scattering. The approximately quadratic 
scaling of computational operations with particle number suggests 
that it should be possible to compute alpha scattering and capture 
on carbon and oxygen in the near future. The methods described 
here can be applied to ultracold atomic few-body systems as well 
as to hadronic systems using lattice quantum chromodynamics to 
describe the interactions of quarks and gluons.

In recent years there has been much progress in ab initio scattering 
and reactions involving light4–6 and medium-mass7,8 nuclei. However, 
for most numerical methods, the number of computational operations 
increases markedly when the projectile nucleus has more than a few 
nucleons. Therefore it remains a challenge to study many important 
processes that are relevant for stellar astrophysics such as alpha–alpha 
scattering, alpha–carbon scattering and radiative capture, as well as car-
bon and oxygen burning in massive star evolution and thermo nuclear 
supernovae9.

We describe lattice calculations for which the number of compu-
tational (floating point) operations for the A1-body +  A2-body prob-
lem scales as roughly (A1 +  A2)2; this scaling is mild enough to make 
first-principles calculations of alpha processes possible. We use the 
formalism of lattice effective field theory10–12 (EFT) and a technique 
for elastic scattering and inelastic reactions on the lattice called the 
‘adiabatic projection method’13–17.

Chiral EFT is a framework for organizing the low-energy nuclear 
interactions of protons and neutrons according to powers of momenta 
and factors of the mass of the pion; see ref. 18 for a review of the theory. 

The important interactions are at leading order (LO), the next largest 
contributions are at next-to-leading order (NLO), and then follows 
next-to-next-to-leading order (NNLO). We present an ab initio calcula-
tion of  4He +  4He scattering going up to NNLO terms in chiral EFT. We 
find promising agreement with experimental data19–22 for the s-wave 
and d-wave phase shifts; improvements can be achieved by including 
higher-order terms in the chiral expansion.

The adiabatic projection method addresses the cluster–cluster scat-
tering problem on the lattice by using Euclidean time projection to 
construct an effective two-cluster Hamiltonian. By Euclidean time pro-
jection we mean multiplication by exp(−Hτ), where H is the underly-
ing microscopic Hamiltonian and τ is Euclidean time. We use natural 
units, where the reduced Planck constant ћ and the speed of light c 
are set to one. Even though the actual lattice calculations use discrete 
time steps, we refer to the continuous Euclidean time parameter τ  for 
notational simplicity.

Our starting point is a three-dimensional spatial lattice that is peri-
odic with length L in each dimension. We take a set of initial two-alpha 
states | 〉R , labelled by their separation vector R, as illustrated in Fig. 1. 
We take the initial alpha wavefunctions to be Gaussian wave packets, 
so that at large separations they factorize as a tensor product of two 
individual alpha clusters:

∑| 〉 = | + 〉 ⊗ | 〉R r R r
r
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where r is a summation variable corresponding to the location of the 
second cluster. The summation over r produces two-alpha states with 
total momentum equal to zero. Rather than dealing with a large array 
of three-dimensional vectors R, we project onto spherical harmonics 
ℓ ℓY , z

 with angular momentum quantum numbers ℓ ℓ, z:
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where δ is the Kronecker delta function. We only consider cases where 
R =  | R|  <  L/2.

On the lattice, the symmetry group of spatial rotations is broken down 
to a cubic subgroup. Nevertheless, at low scattering energies, this approx-
imate rotational symmetry is very accurate, provided that artefacts due  
to the periodic volume are removed. We remove these artefacts using a 
hard spherical wall boundary; the spherical harmonic projection tech-
nique is useful for extracting data for selected partial waves. This method 
has been extended to particles with spin and partial wave mixing, and 
shows excellent agreement with continuous-space calculations23.

We use Euclidean time projection to form dressed cluster states:

τ| 〉 = (− )| 〉τ
ℓ ℓ ℓ ℓR H Rexp, ,z z

The evolution in Euclidean time automatically incorporates the 
induced deformation and polarization of the alpha clusters as they 
approach each other. The deformation and polarization are due to the 
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interactions of individual nucleons between the two alpha clusters, as 
well as to repulsion as a result of the Pauli exclusion principle for iden-
tical fermions.

With these dressed cluster states, we compute matrix elements of the 
full microscopic Hamiltonian with respect to the dressed cluster states:

= 〈 | | ′〉 ( )τ τ τ′
ℓ ℓ ℓ ℓ ℓ ℓH R H R[ ] 1R R,
, , ,z z z

Because the dressed cluster states are not orthogonal, we construct a 
norm matrix:

= 〈 | ′〉τ τ τ′
ℓ ℓ ℓ ℓ ℓ ℓN R R[ ]R R,
, , ,z z z

The radial adiabatic Hamiltonian is defined as a matrix product:

= ( )τ τ τ τ
− / − /

′ ′
ℓ ℓ ℓ ℓH N H N[ ] [ ] 2a
R R R R,
, 1 2 1 2

,
,z z

In the limit of large projection time τ , the spectrum of the adiabatic 
Hamiltonian reproduces the low-energy finite-volume spectrum of the 
microscopic Hamiltonian H. In ref. 17, it is shown that in the asymp-
totic region where the alpha clusters are widely separated, the adiabatic 
Hamiltonian reduces to a simple two-cluster Hamiltonian with only 
infinite-range interactions such as the Coulomb interaction between 
the otherwise non-interacting clusters. Although this may seem an 
obvious result, it is a non-trivial statement that the dependence on the 
projection time τ drops out from the adiabatic Hamiltonian at large 
distances.

We study 4He +  4He scattering using the same lattice action that is 
used to study the Hoyle state of 12C (ref. 11). The spatial lattice spacing 
is a =  1.97 fm and the Euclidean-time, or temporal, lattice spacing is 
at =  1.32 fm. Revisiting these calculations in the future with different 
lattice spacings and including higher-order terms in the chiral expan-
sion will provide a useful measure of systematic errors in lattice calcu-
lations of larger nuclear systems.

We perform projection Monte Carlo simulations with auxiliary fields 
to compute the matrices τ ′

ℓ ℓH[ ]R R,
, z  and τ ′

ℓ ℓN[ ]R R,
, z  on a periodic cubic lattice 

with volume L3 =  (16 fm)3; see ref. 24 for an overview of methods used 
in lattice EFT. The total projection time for the initial and final dressed 
cluster states together is 2τ, which is equal to the product of the number 
of time steps Lt and the temporal lattice spacing at. We determine 
τ ′
ℓ ℓN[ ]R R,
, z  from calculations with Lt time steps and τ ′

ℓ ℓH[ ]R R,
, z  from calcula-

tions with Lt +  1 time steps. The extra time step for τ ′
ℓ ℓH[ ]R R,
, z  is needed 

to calculate the matrix elements of H in equation (1). For these calcu-
lations, a new algorithm is used to allow for Monte Carlo updates of the 
auxiliary fields as well as updates of the alpha cluster positions.

We compute the radial adiabatic Hamiltonian using equation (2) and 
extend it to a much larger volume of (120 fm)3. This is done by 

 computing matrix elements of = ( )τ τ τ τ
− / − /

′ ′
ℓ ℓ ℓ ℓH N H N[ ] [ ] 2a
R R R R,
, 1 2 1 2

,
,z z at large separation (large R  

and R′ ) from single-alpha lattice simulations, and then including the 
Coulomb interaction between the otherwise non-interacting clusters. 
This process also allows us to define a ‘trivial’ two-cluster Hamiltonian 
in which the two alpha clusters are non-interacting except for the 
infinite-range Coulomb interaction.

With the radial adiabatic Hamiltonian defined in the large (120 fm)3 
box, we extract the scattering phase shifts by imposing a hard spherical 
wall boundary at some radius Rwall and determining the standing wave 
modes. In Fig. 2 we show s-wave radial functions for two different 
radial excitations (2s and 3s) at NNLO using chiral EFT. The error bars 
show 1-standard deviation (s.d.) Monte Carlo errors calculated using 
a jackknife analysis of the lattice data. We could extract the phase shift 
by fitting to the asymptotic behaviour of the radial wavefunction as in 
ref. 17; however, it is more accurate to extract the phase shifts from the 
energy of the standing wave, as discussed in ref. 25.

Figure 3 shows the phase shifts for s-wave scattering versus labo-
ratory energy at LO, NLO, and NNLO in chiral EFT, compared with 
experimental data19–22. The green dashed (LO), blue short-dashed 
(NLO), and red solid lines (NNLO) are determined from fits to the 
lattice data using the effective range expansion (see Methods). For 
further comparison, the inset of Fig. 3 shows NLO results using 
halo EFT with point-like alpha particles26. Halo EFT is an effec-
tive theory in which clusters of tightly bound nucleons are treated 
as point particles. Our LO results do not include Coulomb effects 
and so have substantially different behaviour near the alpha–alpha 
scattering threshold. The NLO and NNLO phase shifts are quite 
similar, and both agree fairly well with the experimental data. The 
close agreement between NLO and NNLO results is probably acci-
dental: several contributions appearing at NNLO seem to cancel 
each other out. The same does not occur for the d-wave phase shifts. 
The results and error bars shown in Fig. 3 are computed from lat-
tice phase-shift data for Lt =  4 to Lt =  10 and extrapolating to the 
limit Lt →  ∞. Details of the extrapolation fit and all associated 
error estimates are discussed in Methods. The observed energy of 
the s-wave resonance in the centre-of-mass frame is 0.09184 MeV 
above threshold. For the lattice results, we find that the ground 
state is 0.79(9) MeV below threshold at LO, and 0.11(1) MeV below 
threshold at both NLO and NNLO (the errors in parentheses here 
and elsewhere represent 1 s.d.).

R 

Figure 1 | Initial state clusters. Initial state | 〉R  composed of two alpha-
particle wave packets on the lattice separated by the displacement vector R. 
Each alpha-particle wave packet consists of four nucleons. Protons are red; 
neutrons are blue; spins are represented as arrows.
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Figure 2 | s-wave scattering radial wavefunctions. The second-lowest-
energy (red squares) and third-lowest-energy (blue circles) s-wave radial 
wavefunctions for spherical wall radius Rwall ≈  36 fm (grey dashed line) at 
NNLO plotted versus radial distance. The dashed and double-dot-dashed 
lines show the fits to a Coulomb wavefunction for the second and third 
radial states, respectively. The error bars indicate 1-s.d. Monte Carlo errors 
calculated using a jackknife analysis of the lattice data.

© 2015 Macmillan Publishers Limited. All rights reserved

LETTERRESEARCH

1 1 2  |  N A T U R E  |  V O L  5 2 8  |  3  D E C E M B E R  2 0 1 5

interactions of individual nucleons between the two alpha clusters, as 
well as to repulsion as a result of the Pauli exclusion principle for iden-
tical fermions.

With these dressed cluster states, we compute matrix elements of the 
full microscopic Hamiltonian with respect to the dressed cluster states:

= 〈 | | ′〉 ( )τ τ τ′
ℓ ℓ ℓ ℓ ℓ ℓH R H R[ ] 1R R,
, , ,z z z

Because the dressed cluster states are not orthogonal, we construct a 
norm matrix:

= 〈 | ′〉τ τ τ′
ℓ ℓ ℓ ℓ ℓ ℓN R R[ ]R R,
, , ,z z z

The radial adiabatic Hamiltonian is defined as a matrix product:

= ( )τ τ τ τ
− / − /

′ ′
ℓ ℓ ℓ ℓH N H N[ ] [ ] 2a
R R R R,
, 1 2 1 2

,
,z z

In the limit of large projection time τ , the spectrum of the adiabatic 
Hamiltonian reproduces the low-energy finite-volume spectrum of the 
microscopic Hamiltonian H. In ref. 17, it is shown that in the asymp-
totic region where the alpha clusters are widely separated, the adiabatic 
Hamiltonian reduces to a simple two-cluster Hamiltonian with only 
infinite-range interactions such as the Coulomb interaction between 
the otherwise non-interacting clusters. Although this may seem an 
obvious result, it is a non-trivial statement that the dependence on the 
projection time τ drops out from the adiabatic Hamiltonian at large 
distances.

We study 4He +  4He scattering using the same lattice action that is 
used to study the Hoyle state of 12C (ref. 11). The spatial lattice spacing 
is a =  1.97 fm and the Euclidean-time, or temporal, lattice spacing is 
at =  1.32 fm. Revisiting these calculations in the future with different 
lattice spacings and including higher-order terms in the chiral expan-
sion will provide a useful measure of systematic errors in lattice calcu-
lations of larger nuclear systems.

We perform projection Monte Carlo simulations with auxiliary fields 
to compute the matrices τ ′

ℓ ℓH[ ]R R,
, z  and τ ′

ℓ ℓN[ ]R R,
, z  on a periodic cubic lattice 

with volume L3 =  (16 fm)3; see ref. 24 for an overview of methods used 
in lattice EFT. The total projection time for the initial and final dressed 
cluster states together is 2τ, which is equal to the product of the number 
of time steps Lt and the temporal lattice spacing at. We determine 
τ ′
ℓ ℓN[ ]R R,
, z  from calculations with Lt time steps and τ ′

ℓ ℓH[ ]R R,
, z  from calcula-

tions with Lt +  1 time steps. The extra time step for τ ′
ℓ ℓH[ ]R R,
, z  is needed 

to calculate the matrix elements of H in equation (1). For these calcu-
lations, a new algorithm is used to allow for Monte Carlo updates of the 
auxiliary fields as well as updates of the alpha cluster positions.

We compute the radial adiabatic Hamiltonian using equation (2) and 
extend it to a much larger volume of (120 fm)3. This is done by 

 computing matrix elements of = ( )τ τ τ τ
− / − /

′ ′
ℓ ℓ ℓ ℓH N H N[ ] [ ] 2a
R R R R,
, 1 2 1 2

,
,z z at large separation (large R  

and R′ ) from single-alpha lattice simulations, and then including the 
Coulomb interaction between the otherwise non-interacting clusters. 
This process also allows us to define a ‘trivial’ two-cluster Hamiltonian 
in which the two alpha clusters are non-interacting except for the 
infinite-range Coulomb interaction.

With the radial adiabatic Hamiltonian defined in the large (120 fm)3 
box, we extract the scattering phase shifts by imposing a hard spherical 
wall boundary at some radius Rwall and determining the standing wave 
modes. In Fig. 2 we show s-wave radial functions for two different 
radial excitations (2s and 3s) at NNLO using chiral EFT. The error bars 
show 1-standard deviation (s.d.) Monte Carlo errors calculated using 
a jackknife analysis of the lattice data. We could extract the phase shift 
by fitting to the asymptotic behaviour of the radial wavefunction as in 
ref. 17; however, it is more accurate to extract the phase shifts from the 
energy of the standing wave, as discussed in ref. 25.

Figure 3 shows the phase shifts for s-wave scattering versus labo-
ratory energy at LO, NLO, and NNLO in chiral EFT, compared with 
experimental data19–22. The green dashed (LO), blue short-dashed 
(NLO), and red solid lines (NNLO) are determined from fits to the 
lattice data using the effective range expansion (see Methods). For 
further comparison, the inset of Fig. 3 shows NLO results using 
halo EFT with point-like alpha particles26. Halo EFT is an effec-
tive theory in which clusters of tightly bound nucleons are treated 
as point particles. Our LO results do not include Coulomb effects 
and so have substantially different behaviour near the alpha–alpha 
scattering threshold. The NLO and NNLO phase shifts are quite 
similar, and both agree fairly well with the experimental data. The 
close agreement between NLO and NNLO results is probably acci-
dental: several contributions appearing at NNLO seem to cancel 
each other out. The same does not occur for the d-wave phase shifts. 
The results and error bars shown in Fig. 3 are computed from lat-
tice phase-shift data for Lt =  4 to Lt =  10 and extrapolating to the 
limit Lt →  ∞. Details of the extrapolation fit and all associated 
error estimates are discussed in Methods. The observed energy of 
the s-wave resonance in the centre-of-mass frame is 0.09184 MeV 
above threshold. For the lattice results, we find that the ground 
state is 0.79(9) MeV below threshold at LO, and 0.11(1) MeV below 
threshold at both NLO and NNLO (the errors in parentheses here 
and elsewhere represent 1 s.d.).
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Figure 1 | Initial state clusters. Initial state | 〉R  composed of two alpha-
particle wave packets on the lattice separated by the displacement vector R. 
Each alpha-particle wave packet consists of four nucleons. Protons are red; 
neutrons are blue; spins are represented as arrows.
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Figure 2 | s-wave scattering radial wavefunctions. The second-lowest-
energy (red squares) and third-lowest-energy (blue circles) s-wave radial 
wavefunctions for spherical wall radius Rwall ≈  36 fm (grey dashed line) at 
NNLO plotted versus radial distance. The dashed and double-dot-dashed 
lines show the fits to a Coulomb wavefunction for the second and third 
radial states, respectively. The error bars indicate 1-s.d. Monte Carlo errors 
calculated using a jackknife analysis of the lattice data.
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interactions of individual nucleons between the two alpha clusters, as 
well as to repulsion as a result of the Pauli exclusion principle for iden-
tical fermions.

With these dressed cluster states, we compute matrix elements of the 
full microscopic Hamiltonian with respect to the dressed cluster states:

= 〈 | | ′〉 ( )τ τ τ′
ℓ ℓ ℓ ℓ ℓ ℓH R H R[ ] 1R R,
, , ,z z z

Because the dressed cluster states are not orthogonal, we construct a 
norm matrix:

= 〈 | ′〉τ τ τ′
ℓ ℓ ℓ ℓ ℓ ℓN R R[ ]R R,
, , ,z z z

The radial adiabatic Hamiltonian is defined as a matrix product:

= ( )τ τ τ τ
− / − /

′ ′
ℓ ℓ ℓ ℓH N H N[ ] [ ] 2a
R R R R,
, 1 2 1 2

,
,z z

In the limit of large projection time τ , the spectrum of the adiabatic 
Hamiltonian reproduces the low-energy finite-volume spectrum of the 
microscopic Hamiltonian H. In ref. 17, it is shown that in the asymp-
totic region where the alpha clusters are widely separated, the adiabatic 
Hamiltonian reduces to a simple two-cluster Hamiltonian with only 
infinite-range interactions such as the Coulomb interaction between 
the otherwise non-interacting clusters. Although this may seem an 
obvious result, it is a non-trivial statement that the dependence on the 
projection time τ drops out from the adiabatic Hamiltonian at large 
distances.

We study 4He +  4He scattering using the same lattice action that is 
used to study the Hoyle state of 12C (ref. 11). The spatial lattice spacing 
is a =  1.97 fm and the Euclidean-time, or temporal, lattice spacing is 
at =  1.32 fm. Revisiting these calculations in the future with different 
lattice spacings and including higher-order terms in the chiral expan-
sion will provide a useful measure of systematic errors in lattice calcu-
lations of larger nuclear systems.

We perform projection Monte Carlo simulations with auxiliary fields 
to compute the matrices τ ′

ℓ ℓH[ ]R R,
, z  and τ ′

ℓ ℓN[ ]R R,
, z  on a periodic cubic lattice 

with volume L3 =  (16 fm)3; see ref. 24 for an overview of methods used 
in lattice EFT. The total projection time for the initial and final dressed 
cluster states together is 2τ, which is equal to the product of the number 
of time steps Lt and the temporal lattice spacing at. We determine 
τ ′
ℓ ℓN[ ]R R,
, z  from calculations with Lt time steps and τ ′

ℓ ℓH[ ]R R,
, z  from calcula-

tions with Lt +  1 time steps. The extra time step for τ ′
ℓ ℓH[ ]R R,
, z  is needed 

to calculate the matrix elements of H in equation (1). For these calcu-
lations, a new algorithm is used to allow for Monte Carlo updates of the 
auxiliary fields as well as updates of the alpha cluster positions.

We compute the radial adiabatic Hamiltonian using equation (2) and 
extend it to a much larger volume of (120 fm)3. This is done by 

 computing matrix elements of = ( )τ τ τ τ
− / − /

′ ′
ℓ ℓ ℓ ℓH N H N[ ] [ ] 2a
R R R R,
, 1 2 1 2

,
,z z at large separation (large R  

and R′ ) from single-alpha lattice simulations, and then including the 
Coulomb interaction between the otherwise non-interacting clusters. 
This process also allows us to define a ‘trivial’ two-cluster Hamiltonian 
in which the two alpha clusters are non-interacting except for the 
infinite-range Coulomb interaction.

With the radial adiabatic Hamiltonian defined in the large (120 fm)3 
box, we extract the scattering phase shifts by imposing a hard spherical 
wall boundary at some radius Rwall and determining the standing wave 
modes. In Fig. 2 we show s-wave radial functions for two different 
radial excitations (2s and 3s) at NNLO using chiral EFT. The error bars 
show 1-standard deviation (s.d.) Monte Carlo errors calculated using 
a jackknife analysis of the lattice data. We could extract the phase shift 
by fitting to the asymptotic behaviour of the radial wavefunction as in 
ref. 17; however, it is more accurate to extract the phase shifts from the 
energy of the standing wave, as discussed in ref. 25.

Figure 3 shows the phase shifts for s-wave scattering versus labo-
ratory energy at LO, NLO, and NNLO in chiral EFT, compared with 
experimental data19–22. The green dashed (LO), blue short-dashed 
(NLO), and red solid lines (NNLO) are determined from fits to the 
lattice data using the effective range expansion (see Methods). For 
further comparison, the inset of Fig. 3 shows NLO results using 
halo EFT with point-like alpha particles26. Halo EFT is an effec-
tive theory in which clusters of tightly bound nucleons are treated 
as point particles. Our LO results do not include Coulomb effects 
and so have substantially different behaviour near the alpha–alpha 
scattering threshold. The NLO and NNLO phase shifts are quite 
similar, and both agree fairly well with the experimental data. The 
close agreement between NLO and NNLO results is probably acci-
dental: several contributions appearing at NNLO seem to cancel 
each other out. The same does not occur for the d-wave phase shifts. 
The results and error bars shown in Fig. 3 are computed from lat-
tice phase-shift data for Lt =  4 to Lt =  10 and extrapolating to the 
limit Lt →  ∞. Details of the extrapolation fit and all associated 
error estimates are discussed in Methods. The observed energy of 
the s-wave resonance in the centre-of-mass frame is 0.09184 MeV 
above threshold. For the lattice results, we find that the ground 
state is 0.79(9) MeV below threshold at LO, and 0.11(1) MeV below 
threshold at both NLO and NNLO (the errors in parentheses here 
and elsewhere represent 1 s.d.).

R 

Figure 1 | Initial state clusters. Initial state | 〉R  composed of two alpha-
particle wave packets on the lattice separated by the displacement vector R. 
Each alpha-particle wave packet consists of four nucleons. Protons are red; 
neutrons are blue; spins are represented as arrows.

2s state
3s state
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Figure 2 | s-wave scattering radial wavefunctions. The second-lowest-
energy (red squares) and third-lowest-energy (blue circles) s-wave radial 
wavefunctions for spherical wall radius Rwall ≈  36 fm (grey dashed line) at 
NNLO plotted versus radial distance. The dashed and double-dot-dashed 
lines show the fits to a Coulomb wavefunction for the second and third 
radial states, respectively. The error bars indicate 1-s.d. Monte Carlo errors 
calculated using a jackknife analysis of the lattice data.
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In Fig. 4 we show phase shifts for d-wave scattering versus laboratory 
energy at LO, NLO and NNLO, compared with experimental data19–22. 
The green dashed (LO), blue short-dashed (NLO), and red solid lines 
(NNLO) are determined from fits to the lattice data using the effective 
range expansion. Although there are differences, the NNLO results 
agree fairly with the experimental results. As in the s-wave case, we 
show the extrapolated values and errors in the limit Lt →  ∞, using 
lattice data for Lt =  4 to Lt =  10. Details of the extrapolation fit and all 
associated error estimates are discussed in Methods. We determined 
the centre-of-mass energy and the decay width of the d-wave reso-
nance of the phase shift data from ref. 22 to be ER =  2.92(18) MeV and 
Γ =  1.34(50) MeV, respectively. Owing to the large decay width, there 
is some model dependence in the definitions of the resonance param-
eters; we discuss several different definitions and determinations in 
Methods. At LO we find ER =  1.10(12) MeV and Γ =  0.32(10) MeV, 
at NLO ER =  3.84(16) MeV and Γ =  3.22(21) MeV, and at NNLO 
ER =  3.27(12) MeV and Γ =  2.09(16) MeV.

To summarize, we present an ab initio calculation of 4He +  4He scat-
tering. We use lattice EFT and the adiabatic projection method to com-
pute phase shifts for s-wave and d-wave scattering up to NNLO, and 
find promising agreement with experimental data. To perform these 
calculations, we used spherical wave projections of the lattice initial 
states and a new algorithm that performs updates of both the auxiliary 
field configurations and alpha cluster positions. A schematic of the 
method is given in Extended Data Fig. 1.

Perhaps the most notable outcome of this study is a numerical 
method for simulating scattering and reactions that has a very favour-
able scaling with particle number. The number of computational oper-
ations needed for the A1-body +  A2-body problem scales roughly as 
(A1 +  A2)2 for light and medium-mass nuclei, and the algorithm does 
not require the projectile to be very light. Because sign oscillations 
are greatly suppressed for alpha-like nuclei12,27, our approach appears 
to be a viable method for studying important processes such as alpha 
scattering and capture on 12C. Direct experimental data for alpha cap-
ture on 12C is not possible, owing to Coulomb barrier suppression at 
energies relevant for stellar nucleosynthesis, and extrapolations from 

higher energies have uncertainties that exceed the 10% accuracy needed 
for stellar evolution models.

Nevertheless, there has been progress in measuring the contribu-
tion from subthreshold states28 and cumulative R-matrix analyses 
using multiple data sources such as beta-delayed alpha-decay of 16N 
and 4He +  12C elastic scattering29. Ab initio lattice calculations can con-
tribute to these efforts by calculating asymptotic normalization coeffi-
cients for subthreshold states, determining the direct capture rate onto 
the ground state, and providing low-energy data on 4He +  12C elastic 
scattering. For these future calculations, we expect that about four times 
as much computing time as the roughly two million core hours used 
for this work will be required; the computational resources available 
appear sufficient to keep stochastic errors under control. To reduce 
systematic errors, we are currently working on including lattice nuclear 
forces at the next-higher order in the chiral expansion, reducing the 
lattice spacing, improving the lattice action, and doing precision tests 
of systematic errors in the adiabatic projection method. If necessary, 
the ab initio lattice results will be further improved by including short-
range operators in the adiabatic Hamiltonian to make fine adjustments 
to the energies of near-threshold states of 16O.

There is an obvious overlap between lattice calculations using the 
adiabatic projection method and halo EFT. Therefore it might be 
fruitful to look for synergies between the two methods. In cases where 
there is a large scale separation between the low-energy scattering and 
high-energy internal excitations, benchmark tests can be made between 
halo EFT and lattice calculations. Furthermore, ab initio calculations 
can be used to determine input data for halo EFT, as done in ref. 30. 
In cases where the separation of scales is not large, lattice calculations 
can be used to guide improvement of halo EFT to include nuclear 
core excitations. It also might be useful to treat the lattice adiabatic 
Hamiltonian as a halo EFT for clusters, and explore extensions to three- 
and four-cluster systems. This method could potentially be used to 
investigate multi-alpha-cluster structures in 12C and 16O.

It would be exciting to extend the methods presented here to lat-
tice quantum chromodynamics (QCD) and construct adiabatic 
Hamiltonians for hadronic systems. All of the techniques used in our 
lattice simulations have immediate analogues in lattice QCD. The initial 
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Figure 3 | s-wave phase shifts. s-wave phase shifts δ0 at LO (green 
triangles), NLO (blue circles), and NNLO (red squares) versus laboratory 
energy ELab, compared with experimental data19–22 (black asterisks). The 
theoretical error bars indicate 1 s.d. uncertainty due to Monte Carlo errors 
and the extrapolation of that data to infinite projection time. The green 
dashed (LO), blue short-dashed (NLO), and red solid (NNLO) lines are 
determined from fits to the lattice data using the effective range expansion. 
The black dot-dashed line in the inset shows NLO results using halo EFT 
with point-like alpha particles26.
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determined from fits to the lattice data using the effective range expansion.
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Unified approach to bound & continuum states; 
to nuclear structure & reactions 

•  Ab initio no-core shell model 
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NCSM/RGM 

Ψ (A) = cλ
λ

∑ ,λ + dr γ v (
r )∫ Âν
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2

The 4He and 5Li states of Eqs. (1) and (2), identified
respectively by the energy labels �↵ and �, are anti-
symmetric under exchange of internal nucleons. They
are obtained ahead of time by means of the ab initio

no-core shell model [25] through the diagonalization of
their respective microscopic Hamiltonians in finite bases
constructed from many-body harmonic oscillator (HO)
wave functions with up to N

max

HO quanta and fre-
quency ~⌦. The index ⌫ collects the quantum num-
bers {4He �↵J

⇡↵
↵ T↵; p

1

2

+
1

2

; s`} associated with the con-
tinuous basis states of Eq. (1), and the operator A⌫ =
1p
5

(1 � P
4

i=1

Pi,5), with Pi,5 the permutation between

a nucleon belonging to the 4He nucleus and the proton,
ensures the full antisymmetrization of the five-nucleon
system. The discrete coe�cients, c�, and the continuous
amplitudes of relative motion, �⌫(r) = (N�1/2�)⌫(r), are
the unknowns of the problem and are obtained as solu-
tions, in the interaction region, of the coupled equations

✓
H5

Li

h̄
h̄ H

◆✓
c
�

◆
= E

✓
I5

Li

ḡ
ḡ I

◆✓
c
�

◆
. (3)

Here, E denotes the total energy of the system and
the two by two block-matrices on the left- and right-
hand side of the equation represent, respectively, the
NCSMC Hamiltonian and norm kernels. In the up-
per diagonal block one can recognize the matrix ele-
ments of the Hamiltonian H (identity I) over the dis-
crete 5Li states, (H5

Li

)��0 = ���0E� [(I5
Li

)��0 = ���0 ].
Similarly, those over the orthonormalized p-4He por-
tion of the basis, H⌫⌫0(r, r0) = (N�1/2HN�1/2)⌫⌫0(r, r0)
[I⌫⌫0(r, r0) = �⌫⌫0�(r � r0)/(rr0)], which are obtained
from N⌫⌫0(r, r0)= h�J⇡T

⌫r |A⌫A⌫0 |�J⇡T
⌫0r0 i and H⌫⌫0(r, r0)=

h�J⇡T
⌫r |A⌫HA⌫0 |�J⇡T

⌫0r0 i, appear in the lower diagonal
block. The couplings between the two sectors of the ba-
sis are described by the overlap, ḡ�⌫(r)=(gN�1/2)�⌫(r),
and Hamiltonian, h̄�⌫(r) = (hN�1/2)�⌫(r), form fac-
tors, with g�⌫(r) = h5Li�J⇡T |A⌫ |�J⇡T

⌫r i and h�⌫(r) =
h5Li�J⇡T |HA⌫ |�J⇡T

⌫r i. The scattering matrix (and from
it any scattering observable) is then obtained by match-
ing the solutions of Eq. (3) with the known asymptotic
behavior of the wave function at large distances by means
of the microscopic R-matrix method [26, 27].

Results. Di↵erent from Refs. [24], where the NCSMC
was introduced and applied to the description of the un-
bound 7He nucleus starting from an accurate NN po-
tential, here we employ this approach for the first time
with an Hamiltonian that also includes in addition ex-
plicit 3N forces. This is, from an ab initio standpoint,
necessary to obtain a truly accurate and quantitative
description of the scattering process [28, 29]. In par-
ticular, we adopt an Hamiltonian based on the chiral
N3LO NN interaction of Ref. [30] and N2LO 3N force of
Ref. [31], constrained to provide an accurate description
of the A = 2 and 3 [32] systems and unitarily softened via
the similarity-renormalization-group (SRG) method [33–
37] to minimize the influence of momenta higher than 2
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FIG. 1. (Color online) Calculated p-4He phase shifts at
N

max

= 13 and ~⌦ = 20 MeV obtained with up to four-
teen states of the compound 5Li nucleus as a function of the
number of 4He states included in the calculation. The solid
red lines represent our most complete results. Also shown
(brown dashed lines) are the results of Ref. [23], i.e. without
5Li square intregrable eigenstates, as well as the phase shifts
of Ref. [38] (crosses), previously shown in Ref. [23] as a term
of reference. All values in this and the subsequent figures are
in the laboratory frame.

fm�1.

An ab initio investigation of elastic scattering of pro-
tons on 4He using the present Hamiltonian was recently
obtained within the continuous sector only of the model
space considered here [corresponding to the second term
in the right-hand side of Eq. (2)], i.e. by solving H� =
E� [23]. There, a careful analysis of the computed scat-
tering phase shifts showed that independence with re-
spect to the parameters characterizing the HO basis is
approached at N

max

= 13 (currently our computational
limit) and ~⌦ = 20 MeV, and that small variations of
the SRG momentum scale around the value chosen here
do not lead to significant di↵erences in the results. By
far the largest variation in the obtained phase shifts was
observed as a function of the number of states used to de-
scribe the helium nucleus, particularly in the 2P

3/2 and
2P

1/2 partial waves, where even the inclusion of up to the
first seven (J⇡↵

↵ T↵ = 0+
1

0, 0+
2

0, 0-0, 2-0, 2-1, 1-1 and 1-0)
4He eigenstates proved to be insu�cient for the accurate
description of the resonances below Ep ⇠ 5 MeV proton
incident energy (see Fig. 10 of Ref. [23]).

Rather than adding higher helium excitations, which
would lead to a computationally unbearable problem,
here we augment the model space adopted in Ref. [23] by
coupling the first fourteen (of which three 3/2- and two
1/2-) square-integrable eigenstates of the 5Li compound
nucleus. As illustrated in Fig. 1, and previously demon-
strated with a two-body Hamiltonian for neutron-6He
scattering [24], this substantially mitigates the depen-
dence on the number of eigenstates of the target so that

p-4He scattering within NCSMC 

p-4He scattering phase-shifts for NN+3N potential:  
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FIG. 2. (Color online) Computed (lines) 4He(p, p)4H angular
di↵erential cross section at forward scattering angle ✓p = 25�

(a) and backscattering angle ✓p = 141� (b) as a function of the
proton incident energy compared with measurements (sym-
bols) from Refs. [3–6, 10]. The red solid line corresponds
to the most complete results of Fig. 1. Also shown (brown
dashed lines) are the results of Ref. [23], i.e. without 5Li
square intregrable eigenstates.

even a model space including only the ground state (g.s.)
of 4He is already su�cient to provide a reasonable de-
scription of the significant elastic scattering phase shifts.
Still, to reach the high accuracy we seek in the present
work higher helium excitations cannot be neglected. This
is because in spite of the correlations added by the 5Li
compound states, the J⇡↵

↵ T↵ = 0-0, 2-0, 2-1 and 1-1
(respectively the third, fourth, fifth and sixth) states do
play a role, particularly in determining the 3/2- and 1/2-

resonance energies and widths.
In Fig. 2 our most complete results (including the first

seven low-lying states of 4He) for the 4He(p, p)4He an-
gular di↵erential cross section at the laboratory proton-
scattering angles of ✓p = 25� and 141� are compared
to measurements in the range of incident energies up to
12 MeV [3–6, 10] . The agreement with data is excel-
lent both at forward and backward angles. The high en-
ergy tail of the cross section was already well described
within the more limited model space of Ref. [23], shown
as a brown dashed line. The e↵ect of the additional 5Li
states, included in the present calculation, is essentially
confined around their eigenenergies. The first 3/2- and
1/2- states play the largest role, substantially improving
the agreement with experiment at lower energies. Indeed,
we see in Fig. 2 that the calculated di↵erential cross sec-
tion lies within the experimental error bars in the peak
region dominated by the resonances, though the width of
the peak is somewhat overestimated.

In Table I, we compare the present results for the
centroids and widths of the 5Li ground and first ex-
cited states to those from an extended R-matrix anal-

TABLE I. Centroids ER, obtained as the values of the kinetic
energy in the center of mass for which the first derivative
�0(E

kin

) of the phase shift is maximal [20], and widths � =
2/�0(ER) of the 5Li ground and first excited states. The R-
matrix results are taken from Ref. [20] and correspond to the
evaluation of Ref. [39]. Units are in MeV.

R-matrix Present results

J⇡ ER � ER �

3/2� 1.67 1.37 1.77(1) 1.70(5)

1/2� 3.35 9.40 3.11(2) 7.90(50)

ysis of data [20]. The resonance positions are in
fairly good agreement. The largest deviation occurs for
the 1/2- state, which is 240 keV below the energy re-
ported in Ref. [20]. However we find larger di↵erences
for the widths, particularly for the 5Li g.s., which is
24% broader than in the R-matrix analysis. The com-
puted widths, particularly that of the 1/2- resonance,
present the largest uncertainty in terms of number of 4He
states included in the calculation (indicated in parenthe-
sis). In Fig. 3, we zoom to energies near the resonances
at the proton scattering angle of 169�, of interest for
non-Rutherford backscattering spectroscopy, where the
R-matrix analysis of Ref. [16] leads to an overestimation
of the cross section and triggered the search for new fit-
ting parameters [15]. Except for the 2.4 MeV Ep  3.5
MeV energy interval, where there is a minor disagreement
with experiment in line with our previous discussion, the
computed cross section is in overall satisfactory agree-
ment with data and shows that the present theory could
provide accurate guidance for ion beam analyses at ener-
gies/angles where measurements are not available. The
theoretical uncertainty associated with the treatment of
the helium excitations can be estimated from Fig 3, by
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FIG. 3. (Color online) Same as Fig. 2 but at the backscat-
tering angle of ✓p = 169� and in the range of proton incident
energies near the 5Li resonances. Calculations including 5
and 6 4He states are shown in addition to the most complete
results. Experimental data are from Refs. [5, 8, 10, 40].
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FIG. 4. (Color online) Computed (lines) 1H(↵, p)4He angular di↵erential cross section at the proton recoil angles 'p =
4�, 16�, 20�, and 30� as a function of the incident 4He energy compared with data (symbols) from Refs. [9–15, 41, 42]. Panel
(b) focuses on the proton recoil angle 'p = 30�, and shows, in addition to the most complete results, calculations including 5
and 6 4He states.

studying the convergence of the cross section with respect
to the last three 4He states included in the calculation.
The three curves are all within 5% one from another and
di↵erences between the results with 6 and 7 states are
minimal. This and the results of Table I earlier point to
remaining deficiencies in the nuclear interaction (and in
particular 3N force) used in this work. In fact, refine-
ment of the chiral 3N force (which a↵ects the spin-orbit
splitting between 2P

3/2 and 2P
1/2 phase shifts) is a cur-

rent topic of interest in nuclear physics [43–45].

Another kinematic setting of interest is the elastic re-
coil of protons at forward angles by incident 4He nuclei.
In Fig. 4(a), the computed 1H(↵, p)4He angular di↵er-
ential cross section at the proton recoil angles 'p = 4�,
15�, 20� and 30� is compared to various data sets over a
wide range of helium incident energies, E↵. For all four
angles the agreement with experiment is excellent close
to the Rutherford threshold (particularly at the base of
the cross section) and above E↵ ⇠ 13 MeV, but once
again deteriorates at intermediate energies due to the
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FIG. 5. (Color online) Relative di↵erence (in percent) be-
tween the calculated elastic recoil cross section at N

max

= 13
and 11 as a function of the proton angle 'p for the helium
incident energies E↵ = 3.2, 6.0 and 9.5 MeV. Only the first
two 4He states are accounted for in this study.

overestimated width of the 3/2- resonance. In Fig. 4(b),
we concentrate on the well-studied proton recoil angle of
⇠ 30�. In the dip near E↵ = 3 MeV, where the cross sec-
tion is fairly insensitive to the recoil angle, measurements
di↵er up to 40%. On the contrary our results, which lie
in between the data of Baglin et al. [9] and those of Kim
et al. [12], are very stable with respect to the number
of helium states included in the calculation at this en-
ergy. Here the uncertainty associated with the size of
the HO basis, estimated conservatively as the relative
di↵erence between the cross section at N

max

= 13 and
11 shown in Fig. 5, is less than 10%. Based on the find-
ings of Ref. [37] for the g.s. of 6Li, and the substantially
improved convergence of the present results compared to
those of Ref. [23], we also expect a very small dependence
on the SRG momentum scale. However, di↵erent from
the trend observed at the smaller recoil angles, our cal-
culation here underestimates measurements in the peak
region. The extent of this deviation goes beyond the nu-
merical error due to our finite model space and is likely
to be associated with the remaining uncertainties in the
nuclear Hamiltonian.

Conclusions. We presented the most advanced ab ini-

tio calculation of p-4He elastic scattering and provided
accurate predictions for proton backscattering and recoil
cross sections at various energies and angles of interests to
ion beam spectroscopy. Our statistical error, due to the
finite size of the model space, is within 9%. This is of the
same order as experimental uncertainties. An in depth
investigation of the systematic error associated with the
nuclear Hamiltonian is beyond the scope of the present
work. However, we found evidence that the present in-
teraction leads to an overestimation of the width of the
5Li g.s. resonance as well as to a somewhat insu�cient
splitting between this and the 1/2- excited state. With
the ability to further reduce and control the theoretical
uncertainties spurred by the development of optimized

NCSM/RGM 
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Predictive theory for elastic scattering and recoil of protons from 4He
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Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles)
are calculated directly by solving the Schrödinger equation for five nucleons interacting through accurate two-
and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of
these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of
numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same
elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and
depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that
direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets
and can be used to predict these cross sections when measurements are not available.
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Introduction. The 4He(p,p)4He proton elastic scattering
and 1H(α,p)4He proton elastic recoil reactions are the leading
means for determining the concentrations and depth profiles of
helium and hydrogen, respectively, at the surface of materials
or in thin films. Such analyses, known among specialists
as (non-)Rutherford backscattering spectroscopy and elastic
recoil detection analysis, are very important for characterizing
the physical, chemical, and electrical behavior of materials, for
which hydrogen is one of the most common impurities, and for
studying the implantation of helium for applications in, e.g.,
waveguides or fusion energy research [1,2]. To achieve good
resolution, e.g., in the case of thick samples, measurements
are often performed at energies above the Rutherford threshold
where the purely Coulomb elastic scattering paradigm does not
hold anymore. In this regime, in which the incident particle
energy is of the order of a few mega–electron volts per nucleon,
nuclear physics becomes the main driver of the scattering
process, particularly near low-lying resonances where the
cross section can be enhanced by orders of magnitude with
respect to the Rutherford rate. Therefore, the availability of
accurate reference differential cross sections for a variety of
proton/4He incident energies and detection angles is key to the
feasibility and quality of these analyses.

Experimentally the elastic scattering of protons on 4He
has been studied extensively in the past [3–8], but only a
somewhat limited number of measurements were performed in
the energy range of interest for ion-beam analysis, and incon-
sistencies among data sets remain [9–15]. Consequently, cross
sections deduced from R-matrix analyses of data usually stand
as references [8,15–17]. However, there can be discrepancies
as large as 10% [15] among fits based on different data
sets in the critical region near the 3/2− and 1/2− low-lying
resonances of 5Li. An alternative way of fitting p-4He data,

*Present address: Department of Physics, University of Notre Dame,
Notre Dame, Indiana 46556-5670, USA; ghupin@nd.edu
†quaglioni1@llnl.gov
‡navratil@triumf.ca

based on controlled and systematic effective-field theory
expansions, was introduced in Ref. [18]. Other theoretical
investigations of p-4He scattering include microscopic cal-
culations with phenomenological interactions [19–21] as well
as ab initio calculations based on accurate nucleon-nucleon
(NN ) [22] and three-nucleon (3N ) [23] forces. However,
both sets of calculations have limited predictive power. The
former make use of effective interactions with parameters
adjusted to reproduce the experimental nucleon-4He phase
shifts [21] and a simplified description of the 4He. In the
latter, an accurate convergence was only achieved for energies
above the 5Li resonance. In this paper we report on the most
complete ab initio calculation of p-4He scattering and provide
accurate predictions for proton backscattering and recoil cross
sections at various energies and angles of interest for ion-beam
applications.

Formalism. We solve the Schrödinger equation for A = 5
interacting nucleons by means of the no-core shell model with
continuum (NCSMC) [24]. For each channel of total angular
momentum, parity, and isospin (J πT ) we expand the five-
nucleon wave function on an overcomplete basis that consists
of (i) square-integrable energy eigenstates of the 5Li compound
system, |5Li λJ πT ⟩, and (ii) continuous states built from a
proton and a 4He (or α) nucleus (in a J πα

α Tα eigenstate) whose
centers of mass are separated by the relative coordinate r⃗α,p

and that are moving in a 2s+1ℓJ partial wave of relative motion,

∣∣%J π T
νr

〉
=

[(∣∣4He λαJ πα
α Tα

〉∣∣∣∣p
1
2

+ 1
2

〉)(sT )

Yℓ(r̂α,p)
](J π T )

× δ(r−rα,p)
rrα,p

. (1)

The resulting NCSMC translational-invariant ansatz is

∣∣(J π T
A=5

〉
=

∑

λ

cλ|5Li λJ πT ⟩ +
∑

ν

∫
dr r2 γν(r)

r
Aν

∣∣%J π T
νr

〉
.

(2)
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Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces
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We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N )
interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions
for the 3N -force integration kernels, and discuss computational aspects of two alternative implementations. The
extended theoretical framework is then applied to nucleon-4He elastic scattering using similarity-renormalization-
group (SRG)-evolved nucleon-nucleon plus 3N potentials derived from chiral effective field theory. We analyze
the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution
parameter. We include up to six excited states of the 4He target and find significant effects from the inclusion of
the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2−and 1/2− resonances and leads to
an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon
experimental data. We find remarkably good agreement with measured differential cross sections at various
energies below the d-3H threshold, while analyzing powers manifest larger deviations from experiment for
certain energies and angles.

DOI: 10.1103/PhysRevC.88.054622 PACS number(s): 21.60.De, 25.10.+s, 27.10.+h, 27.20.+n

I. INTRODUCTION

Recent progress in ab initio nuclear theory has been helping
us reach a basic understanding of nuclear properties while
paving the way to accurate predictions in the domain of
light nuclei. This has been made possible by simultaneous
advances in the fundamental description of the nuclear
interaction, many-body techniques, and scientific computing.
Today, accurate nucleon-nucleon (NN ) and three-nucleon
(3N ) interactions from chiral effective field theory (χEFT)
[1,2] offer a much-desired link to the underlying theory of
quantum chromodynamics at low energies. At the same time,
a first-principles solution of the many-body problem starting
from realistic Hamiltonians is not only being achieved for well-
bound states [3–7], but also is becoming possible for scattering
and reactions as successful ab initio bound-state techniques
are being extended to the description of dynamical processes
between light nuclei [8–11]. In techniques based on large-scale
expansions over many-body basis states, this success is in
part enabled by the use of similarity-renormalization-group
(SRG) [12–15] transformations of the input Hamiltonian,
where interactions can be softened in exchange for induced
many-body terms [16–19].

One of the emerging techniques in the area of ab initio
light-nucleus reactions is the no-core shell model combined
with the resonating-group method, or NCSM/RGM [9,20].
Here RGM [21–26] expansions in (A−a, a) binary-cluster
wave functions, where each cluster of nucleons is described

*hupin1@llnl.gov
†joachim.langhammer@physik.tu-darmstadt.de
‡navratil@triumf.ca
§quaglioni1@llnl.gov
∥angelo.calci@physik.tu-darmstadt.de
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within the ab initio NCSM [27–30], are used to describe the
dynamics between nuclei made of interacting nucleons starting
from realistic Hamiltonians. In the recent past, this technique
has been successfully applied to compute nucleon [31] and
deuteron [32] scattering on light nuclei, based on accurate
NN potentials obtained by SRG softening of the χEFT NN
potential at next-to-next-to-next-to-leading order (N3LO) by
Entem and Machleidt [33]. In these first applications, the
omission of many-body forces induced by the renormalization
of the input NN potential introduced a dependence on the SRG
resolution scale λ. Also neglected was the 3N component
of the initial chiral Hamiltonian. Nevertheless, by choosing
an appropriate value of λ that reproduced the observed
particle separation energies, the NCSM/RGM was capable
of providing a promising realistic description of scattering
data and even complex reactions such as the 7Be(p,γ )8B
radiative capture [34] or the 3H(d,n)4He and 3He(d,p)4He
fusion rates [35]. In addition, nucleon-nucleus NCSM/RGM
wave functions combined with NCSM eigenstates of the com-
posite A-nucleon system have been successfully used to
compute the low-lying spectrum of the unbound 7He nucleus
within the more complete framework of the no-core shell
model with continuum (NCSMC) [11,36]. However, a truly
accurate ab initio description demands the inclusion of both
induced and initial chiral 3N interactions.

In this paper we present an extension of the ab initio
NCSM/RGM to include explicit 3N -force components of the
Hamiltonian in the description of nucleon-nucleus collisions,
and discuss two alternative implementations of the approach.
The extended formalism is then applied to the study of nucleon-
4He scattering using SRG-evolved NN + 3N Hamiltonians
derived from the N3LO NN interaction of Ref. [33] along with
the local form of the chiral 3N force at next-to-next-to-leading
order (N2LO) of Ref. [37] entirely constrained in the NN and
3N systems [38]. We account for target-polarization effects

054622-10556-2813/2013/88(5)/054622(16) ©2013 American Physical Society
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Abstract
The description of nuclei starting from the constituent nucleons and the realistic interactions
among them has been a long-standing goal in nuclear physics. In addition to the complex nature
of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces
the quantum-mechanical many-nucleon problem governed by an interplay between bound and
continuum states. In recent years, significant progress has been made in ab initio nuclear
structure and reaction calculations based on input from QCD-employing Hamiltonians
constructed within chiral effective field theory. After a brief overview of the field, we focus on
ab initio many-body approaches—built upon the no-core shell model—that are capable of
simultaneously describing both bound and scattering nuclear states, and present results for
resonances in light nuclei, reactions important for astrophysics and fusion research. In particular,
we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon
scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of
9Be. Further, we discuss applications to the 7Be p, B8( )H radiative capture. Finally, we highlight
our efforts to describe transfer reactions including the 3H d, n 4( ) He fusion.

Keywords: ab initio methods, many-body nuclear reaction theory, nuclear reactions involving
few-nucleon systems, three-nucleon forces, radiative capture

(SQ1 Some figures may appear in colour only in the online journal)

1. Introduction

Understanding the structure and the dynamics of nuclei as
many-body systems of protons and neutrons interacting
through the strong (as well as electromagnetic and weak)
forces is one of the central goals of nuclear physics. One of
the major reasons why this goal has yet to be accomplished
lies in the complex nature of the strong nuclear force, emer-
ging form the underlying theory of quantum chromodynamics
(QCD). At the low energies relevant to the structure and
dynamics of nuclei, QCD is non-perturbative and very diffi-
cult to solve. The relevant degrees of freedom for nuclei are

nucleons, i.e., protons and neutrons, that are not fundamental
particles but rather complex objects made of quarks, anti-
quarks and gluons. Consequently, the strong interactions
among nucleons is only an ‘effective’ interaction emerging
non-perturbatively from QCD. Our knowledge of the
nucleon–nucleon (NN) interactions is limited at present to
models. The most advanced and most fundamental of these
models rely on a low-energy effective field theory (EFT) of
the QCD, chiral EFT [1]. This theory is built on the sym-
metries of QCD, most notably the approximate chiral sym-
metry. However, it is not renormalizable and has an infinite
number of terms. Chiral EFT involves unknown parameters,
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FIG. 3. (Color online) S-, 3P0- and D-wave d-4He phase shifts
computed with the NN-only, NN+3N-ind and NN+3N
Hamiltonians (lines) compared to those extracted from R-
matrix analyses of data [27, 28] (symbols). More details in
the text.

convergence for the HO expansions at Nmax = 11. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].

We start by discussing the influence of 3N forces –
those induced by the SRG transformation of the NN po-
tential (NN+3N -ind) as well as those initially present in
the chiral Hamiltonian (NN+3N). In Fig. 3 we compare
our computed d-4He S-, 3P0- and D-wave phase shifts
with those of the R-matrix analyses of Refs. [27, 28]. The
results based on the two-body part of the evolved NN
force (NN -only) resemble those obtained with a softer
potential [14]. Once the SRG unitary equivalence is re-
stored via the induced 3N force, the resonance centroids
are systematically shifted to higher energies. By con-
trast, the agreement with data is much improved in the
NN+3N case and, in particular, the splitting between
the 3D3 and 3D2 partial waves is comparable to the mea-
sured one.

In Fig. 4, the resonance centroids and widths ex-
tracted [36] from the phase shifts of Fig. 3 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths
of the NCSMC resonances, which tend to become nar-
rower (in closer agreement with experiment) when this
force is present in the initial Hamiltonian. Overall, the
closest agreement with the observed spectrum is obtained
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(Nmax = 12) and extrapolated [37] NCSM energy levels. The
zero energy is set to the respective computed (experimental)
d+4He breakup thresholds.

with the NN+3N Hamiltonian working within the NC-
SMC, i.e. by including the continuum degrees of freedom.
Compared to the best (Nmax = 12) NCSM values, all
resonances are shifted to lower energies commensurately
with their distance from the d+4He breakup threshold.
For the 3+, which is a narrow resonance, the effect is
not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly

TABLE I. Absolute 6Li g.s. energy, S- (C0) and D-wave (C2)
asymptotic normalization constants and their ratio using the
NN + 3N Hamiltonian compared to experiment. Indicated
in parenthesis is the Nmax value of the respective calculation.
The error estimates quoted in the extrapolated (∞) NCSM
results include uncertainties due to the SRG evolution of the
Hamiltonian and !Ω dependence [13].

Ground-State Eg.s. C0 C2 C2/C0

Properties [MeV] [fm−1/2] [fm−1/2]

NCSM (10) -30.84 − − −

NCSM (12) -31.52 − − −

NCSM (∞) [37] -32.2(3) − − −

NCSMC (10) -32.01 2.695 -0.074 -0.027

Expt.[1, 39, 40] -31.99 2.91(9) -0.077(18) -0.025(6)(10)

Expt. [38, 41] − 2.93(15) − 0.0003(9)

Unified description of 6Li structure and d+4He dynamics 
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quantum numbers {4HeλαJ
πα

α Tα; 2HλdJ
πd

d Td; sℓ} asso-
ciated with the continuous basis states of Eq. (2), and
the operator (with Pi,j exchanging particles i and j)

Aν =
1√
15

(

1−
4

∑

i=1

6
∑

j=5

Pi,j +
4

∑

i<j=1

Pi,5Pj,6

)

,

ensures its full antisymmetrization. Finally, the unknown
discrete coefficients, cλ, and continuous amplitudes of rel-
ative motion, γν(r), are obtained by solving the six-body
Schrödinger equation in the Hilbert space spanned by the
basis states |6LiλJπT ⟩ and Aν |ΦJπT

νr ⟩ [15]. The bound
state and the elements of the scattering matrix are then
obtained from matching the solutions of Eq. (1) with the
known asymptotic behavior of the wave function using
an extension of the microscopic R-matrix theory [22, 23].
The deuteron is only bound by 2.224 MeV. For relative

kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the
virtual scattering to the energetically closed 4He+p+n
channels accounts for the distortion of the projectile.
Here we address this by discretizing the continuum of
2H in the 3S1−3D1, 3D2 and 3D3−3G3 channels identi-
fied in our earlier study of Ref. [14]. At the same time,
fifteen (among which two 1+, two 2+, and one 3+) square-
integrable six-body eigenstates of 6Li also contribute to
the description of the deuteron distortion. More impor-
tantly, they address the swelling of the α particle [16],
of which we only include the g.s. in Eq. (2). The typical
convergence behavior of our computed d-4He phase shifts
with respect to the number of deuteron pseudostates (or
d⋆, with Ed⋆>0) included in Eq. (2) is shown in Fig. 1.

FIG. 2. (Color online) Dia-
grammatic representation of
one of the 3N-force matrix el-
ements between basis states
of Eq. (2).

Stable results are found with as little as three deuteron
pseudostates per channel. This is a strong reduction of
the d⋆ influence with respect to the more limited study
of Ref. [14], lacking the coupling of square-integrable 6Li
eigenstates. Nonetheless, above the 2H breakup thresh-
old, our approach is approximated and a rigorous treat-
ment would require the more complicated task of includ-
ing three-cluster basis states [24] in the ansazt of Eq. (1).

The treatment of 3N forces within the NCSMC for-
malism to compute deuteron-nucleus collisions involves
major technical and computational challenges. The first
is the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven
independent 3N -force terms, five of which involve the
exchange of one or two nucleons belonging to the pro-
jectile with those of the target. A typical example is
the diagram of Fig. 2, which for the present application
corresponds to ⟨ΦJπT

ν′r′ |P3,5P4,6V
3N
123 |ΦJπT

νr ⟩, with V 3N
123 the

3N interaction among particles 1, 2 and 3. To calculate
this contribution, we need the four-nucleon density ma-
trix of the target. For 4He, this can be precomputed and
stored in a factorized form [14, 25]. An additional dif-
ficulty is represented by the exorbitant number of input
3N -force matrix elements (see Fig. 1 of Ref. [26]), which
we have to limit by specifying a maximum three-nucleon
HO model space size E3max [25]. To minimize the ef-
fects of such truncation we included 3N -force matrix el-
ements up to E3max = 17. The ⟨6LiλJπT |V 3N

346 |ΦJπT
νr ⟩

and ⟨6LiλJπT |V 3N
456 |ΦJπT

νr ⟩ couplings between discrete
and continuous states are comparatively less demanding.
Results. We adopt an Hamiltonian based on the chi-

ral N3LO NN interaction of Ref. [29] and N2LO 3N
force of Ref. [30], constrained to provide an accurate de-
scription of the A=2 and 3 [31] systems. These inter-
actions are additionally softened by means of a unitary
transformation that decouples high- and low-momentum
components of the Hamiltonian, working within the sim-
ilarity renormalization group (SRG) method [26, 32–
35]. To minimize the occurrence of induced four-nucleon
forces, we work with the SRG momentum scale Λ = 2.0
fm−1 [25, 34, 35]. All calculations are carried out using
the ansatz of Eq. (1) with fifteen discrete eigenstates of
the 6Li system and continuous d-4He(g.s.) binary-cluster
states with up to seven deuteron pseudostates in the
3S1−3D1, 3D2 and 3D3−3G3 channels. Similar to our
earlier study of d-4He scattering [14] [performed with a
softer NN interaction but in a model space spanned only
by the continuous basis states of Eq. (2)], we approach
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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FIG. 5. (Color online) Computed (lines) 2H(↵, d)4He (a) and 4He(d, d)4He (b) angular di↵erential cross sections at the recoil
and backscattered angles of, respectively, 'd = 30� and ✓d = 164� as a function of the incident ↵ and d energies compared with
data (symbols) from Refs. [23–29].

binding for the 1+ ground state. This can be under-
stood as stemming from a more e�cient description of
the clusterization of 6Li into a deuteron and an ↵ parti-
cle at long distances, which is harder to describe within
a finite NCSM model space, or – more simply – from
the increased size of the model space. Indeed, as shown
in Table I for the absolute value of the 6Li g.s. energy,
extrapolating to N

max

! 1 brings the NCSM result
in good agreement with the NCSMC. However, while the
extrapolation procedure yields comparable energies, only
the NCSMC wave function presents the correct Whit-
taker asymptotic. This will be very important for the
description of the 2H(↵, �)6Li radiative capture. Con-
versely, the square-integrable |6Li g.s. 1+0i component of
the ansatz (1) for the g.s. allows for the e�cient descrip-
tion of the short-range six-body correlations, and ad-
dresses the polarization of the 4He core. Describing these
correlation exclusively within continuous basis states of
the type of Eq. (2) would require the computationally un-
feasible inclusion of a large number of 4He excited states.

Next, in Fig. 5, we concentrate on di↵erential cross
sections of interest for ion beam analysis in two di↵erent
kinematic settings, i.e. the 2H(↵, d)4He deuteron elastic
recoil [panel (a)], and the 4He(d, d)4He deuteron elastic
backscattering [panel (b)]. We compare our computed
results using the NN+3N Hamiltonian to the data of
Refs. [23–29]. Aside from the position of the 3+ reso-
nance, the calculated cross sections at N

max

= 11 are
in fair agreement with experiment, particularly in the
low-energy region of interest for the 2H(↵, �)6Li radiative
capture, where we reproduce the data of Besenbacher et
al. [23] and those of Quillet et al. [27]. The 500 KeV
region below the resonance is also important for elastic
recoil detection. At higher energies, in the region were
the the 2+ and 1+ resonances overlap, the computed elas-
tic di↵erential cross section at ✓d = 164� reproduces the
data of Galonsky et al. [28] and Mani et al. [29], while
we find disagreement with the data of Ref. [24] in the

same setting but in the elastic recoil configuration. At
even higher energies, the cross section is overestimated
because the computed width of the 1+ state is twice as
large as in experiment. While an N

max

= 13 calculation
(currently out of reach) may change the present picture
somewhat, we expect that the di↵erences with respect to
the present results would not be substantial, particularly
concerning the description of the narrow 3+ resonance.
Indeed, much as in the case of the g.s. energy, here the
NCSMC centroid at N

max

= 11 is in good agreement
with the extrapolated value (0.99 MeV) of the NCSM
excitation energy.

Conclusions. We presented the first application of the
NCSMC formalism for a reaction involving a two-nucleon
projectile. In this ab initio calculation of d-4He elastic
scattering, we illustrated the importance of the coupling
to square-integrable 6Li states and of the three-nucleon
force. We used data for deuterium backscattering and re-
coil cross sections of interests to ion beam spectroscopy
to validate our calculations and found a good agreement
in particular at low energy. The overestimation by about
300 KeV of the position of the 3+ state is an indication
of remaining deficiencies of the nuclear Hamiltonian em-
ployed here. This work sets the stage for the first ab

initio study of the 2H(↵, �)6Li radiative capture as well
as the unified investigation of other bound and continu-
ous properties of the 6Li nucleus.

Computing support for this work came from the
LLNL institutional Computing Grand Challenge pro-
gram. Prepared in part by LLNL under Contract DE-
AC52-07NA27344. This material is based upon work
supported by the U.S. Department of Energy, O�ce of
Science, O�ce of Nuclear Physics, under Work Proposal
Number SCW1158, and by the NSERC Grant Number
401945-2011. TRIUMF receives funding via a contribu-
tion through the Canadian National Research Council.
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binding for the 1+ ground state. This can be under-
stood as stemming from a more e�cient description of
the clusterization of 6Li into a deuteron and an ↵ parti-
cle at long distances, which is harder to describe within
a finite NCSM model space, or – more simply – from
the increased size of the model space. Indeed, as shown
in Table I for the absolute value of the 6Li g.s. energy,
extrapolating to N

max

! 1 brings the NCSM result
in good agreement with the NCSMC. However, while the
extrapolation procedure yields comparable energies, only
the NCSMC wave function presents the correct Whit-
taker asymptotic. This will be very important for the
description of the 2H(↵, �)6Li radiative capture. Con-
versely, the square-integrable |6Li g.s. 1+0i component of
the ansatz (1) for the g.s. allows for the e�cient descrip-
tion of the short-range six-body correlations, and ad-
dresses the polarization of the 4He core. Describing these
correlation exclusively within continuous basis states of
the type of Eq. (2) would require the computationally un-
feasible inclusion of a large number of 4He excited states.

Next, in Fig. 5, we concentrate on di↵erential cross
sections of interest for ion beam analysis in two di↵erent
kinematic settings, i.e. the 2H(↵, d)4He deuteron elastic
recoil [panel (a)], and the 4He(d, d)4He deuteron elastic
backscattering [panel (b)]. We compare our computed
results using the NN+3N Hamiltonian to the data of
Refs. [23–29]. Aside from the position of the 3+ reso-
nance, the calculated cross sections at N

max

= 11 are
in fair agreement with experiment, particularly in the
low-energy region of interest for the 2H(↵, �)6Li radiative
capture, where we reproduce the data of Besenbacher et
al. [23] and those of Quillet et al. [27]. The 500 KeV
region below the resonance is also important for elastic
recoil detection. At higher energies, in the region were
the the 2+ and 1+ resonances overlap, the computed elas-
tic di↵erential cross section at ✓d = 164� reproduces the
data of Galonsky et al. [28] and Mani et al. [29], while
we find disagreement with the data of Ref. [24] in the

same setting but in the elastic recoil configuration. At
even higher energies, the cross section is overestimated
because the computed width of the 1+ state is twice as
large as in experiment. While an N

max

= 13 calculation
(currently out of reach) may change the present picture
somewhat, we expect that the di↵erences with respect to
the present results would not be substantial, particularly
concerning the description of the narrow 3+ resonance.
Indeed, much as in the case of the g.s. energy, here the
NCSMC centroid at N

max

= 11 is in good agreement
with the extrapolated value (0.99 MeV) of the NCSM
excitation energy.

Conclusions. We presented the first application of the
NCSMC formalism for a reaction involving a two-nucleon
projectile. In this ab initio calculation of d-4He elastic
scattering, we illustrated the importance of the coupling
to square-integrable 6Li states and of the three-nucleon
force. We used data for deuterium backscattering and re-
coil cross sections of interests to ion beam spectroscopy
to validate our calculations and found a good agreement
in particular at low energy. The overestimation by about
300 KeV of the position of the 3+ state is an indication
of remaining deficiencies of the nuclear Hamiltonian em-
ployed here. This work sets the stage for the first ab

initio study of the 2H(↵, �)6Li radiative capture as well
as the unified investigation of other bound and continu-
ous properties of the 6Li nucleus.
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest

PRL 114, 212502 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
29 MAY 2015

0031-9007=15=114(21)=212502(5) 212502-1 © 2015 American Physical Society

-135

-90

-45

0

45

90

135

180

�
[d
eg
]

0 2 4 6

Ekin [MeV]

expt.
N N+3N
N N+3N - ind

3 S1

3D1

d- 4He

D2
3

P 0
3

3D3

2

-135

-90

-45

0

45

90

135

180

δ
[d
eg
]

0 2 4 6

Ekin [MeV]

7
6
5
4

3
2
1

3S1

3D1

3D2

3D3

d-4He d⋆ pseudostates

FIG. 1. (Color online) Computed d-4He S- and D-wave phase
shifts at Nmax = 9 and !Ω = 20 MeV, obtained fifteen square-
integrable 6Li eigenstates, as a function of the number of 2H
pseudostates (up to seven) in each of the 3S1−

3D1,
3D2 and

3D3−
3G3 channels. The two-body part of the SRG-evolved

N3LO NN potential (NN-only) with Λ = 2.0 fm−1 was used.

quantum numbers {4HeλαJ
πα

α Tα; 2HλdJ
πd

d Td; sℓ} asso-
ciated with the continuous basis states of Eq. (2), and
the operator (with Pi,j exchanging particles i and j)

Aν =
1√
15

(

1−
4

∑

i=1

6
∑

j=5

Pi,j +
4

∑

i<j=1

Pi,5Pj,6

)

,

ensures its full antisymmetrization. Finally, the unknown
discrete coefficients, cλ, and continuous amplitudes of rel-
ative motion, γν(r), are obtained by solving the six-body
Schrödinger equation in the Hilbert space spanned by the
basis states |6LiλJπT ⟩ and Aν |ΦJπT

νr ⟩ [15]. The bound
state and the elements of the scattering matrix are then
obtained from matching the solutions of Eq. (1) with the
known asymptotic behavior of the wave function using
an extension of the microscopic R-matrix theory [22, 23].
The deuteron is only bound by 2.224 MeV. For relative

kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the
virtual scattering to the energetically closed 4He+p+n
channels accounts for the distortion of the projectile.
Here we address this by discretizing the continuum of
2H in the 3S1−3D1, 3D2 and 3D3−3G3 channels identi-
fied in our earlier study of Ref. [14]. At the same time,
fifteen (among which two 1+, two 2+, and one 3+) square-
integrable six-body eigenstates of 6Li also contribute to
the description of the deuteron distortion. More impor-
tantly, they address the swelling of the α particle [16],
of which we only include the g.s. in Eq. (2). The typical
convergence behavior of our computed d-4He phase shifts
with respect to the number of deuteron pseudostates (or
d⋆, with Ed⋆>0) included in Eq. (2) is shown in Fig. 1.

FIG. 2. (Color online) Dia-
grammatic representation of
one of the 3N-force matrix el-
ements between basis states
of Eq. (2).

Stable results are found with as little as three deuteron
pseudostates per channel. This is a strong reduction of
the d⋆ influence with respect to the more limited study
of Ref. [14], lacking the coupling of square-integrable 6Li
eigenstates. Nonetheless, above the 2H breakup thresh-
old, our approach is approximated and a rigorous treat-
ment would require the more complicated task of includ-
ing three-cluster basis states [24] in the ansazt of Eq. (1).

The treatment of 3N forces within the NCSMC for-
malism to compute deuteron-nucleus collisions involves
major technical and computational challenges. The first
is the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven
independent 3N -force terms, five of which involve the
exchange of one or two nucleons belonging to the pro-
jectile with those of the target. A typical example is
the diagram of Fig. 2, which for the present application
corresponds to ⟨ΦJπT

ν′r′ |P3,5P4,6V
3N
123 |ΦJπT

νr ⟩, with V 3N
123 the

3N interaction among particles 1, 2 and 3. To calculate
this contribution, we need the four-nucleon density ma-
trix of the target. For 4He, this can be precomputed and
stored in a factorized form [14, 25]. An additional dif-
ficulty is represented by the exorbitant number of input
3N -force matrix elements (see Fig. 1 of Ref. [26]), which
we have to limit by specifying a maximum three-nucleon
HO model space size E3max [25]. To minimize the ef-
fects of such truncation we included 3N -force matrix el-
ements up to E3max = 17. The ⟨6LiλJπT |V 3N

346 |ΦJπT
νr ⟩

and ⟨6LiλJπT |V 3N
456 |ΦJπT

νr ⟩ couplings between discrete
and continuous states are comparatively less demanding.
Results. We adopt an Hamiltonian based on the chi-

ral N3LO NN interaction of Ref. [29] and N2LO 3N
force of Ref. [30], constrained to provide an accurate de-
scription of the A=2 and 3 [31] systems. These inter-
actions are additionally softened by means of a unitary
transformation that decouples high- and low-momentum
components of the Hamiltonian, working within the sim-
ilarity renormalization group (SRG) method [26, 32–
35]. To minimize the occurrence of induced four-nucleon
forces, we work with the SRG momentum scale Λ = 2.0
fm−1 [25, 34, 35]. All calculations are carried out using
the ansatz of Eq. (1) with fifteen discrete eigenstates of
the 6Li system and continuous d-4He(g.s.) binary-cluster
states with up to seven deuteron pseudostates in the
3S1−3D1, 3D2 and 3D3−3G3 channels. Similar to our
earlier study of d-4He scattering [14] [performed with a
softer NN interaction but in a model space spanned only
by the continuous basis states of Eq. (2)], we approach
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convergence for the HO expansions at Nmax = 11. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].

We start by discussing the influence of 3N forces –
those induced by the SRG transformation of the NN po-
tential (NN+3N -ind) as well as those initially present in
the chiral Hamiltonian (NN+3N). In Fig. 3 we compare
our computed d-4He S-, 3P0- and D-wave phase shifts
with those of the R-matrix analyses of Refs. [27, 28]. The
results based on the two-body part of the evolved NN
force (NN -only) resemble those obtained with a softer
potential [14]. Once the SRG unitary equivalence is re-
stored via the induced 3N force, the resonance centroids
are systematically shifted to higher energies. By con-
trast, the agreement with data is much improved in the
NN+3N case and, in particular, the splitting between
the 3D3 and 3D2 partial waves is comparable to the mea-
sured one.

In Fig. 4, the resonance centroids and widths ex-
tracted [36] from the phase shifts of Fig. 3 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths
of the NCSMC resonances, which tend to become nar-
rower (in closer agreement with experiment) when this
force is present in the initial Hamiltonian. Overall, the
closest agreement with the observed spectrum is obtained
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with the NN+3N Hamiltonian working within the NC-
SMC, i.e. by including the continuum degrees of freedom.
Compared to the best (Nmax = 12) NCSM values, all
resonances are shifted to lower energies commensurately
with their distance from the d+4He breakup threshold.
For the 3+, which is a narrow resonance, the effect is
not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly

TABLE I. Absolute 6Li g.s. energy, S- (C0) and D-wave (C2)
asymptotic normalization constants and their ratio using the
NN + 3N Hamiltonian compared to experiment. Indicated
in parenthesis is the Nmax value of the respective calculation.
The error estimates quoted in the extrapolated (∞) NCSM
results include uncertainties due to the SRG evolution of the
Hamiltonian and !Ω dependence [13].

Ground-State Eg.s. C0 C2 C2/C0

Properties [MeV] [fm−1/2] [fm−1/2]

NCSM (10) -30.84 − − −

NCSM (12) -31.52 − − −

NCSM (∞) [37] -32.2(3) − − −

NCSMC (10) -32.01 2.695 -0.074 -0.027

Expt.[1, 39, 40] -31.99 2.91(9) -0.077(18) -0.025(6)(10)

Expt. [38, 41] − 2.93(15) − 0.0003(9)
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quantum numbers {4HeλαJ
πα

α Tα; 2HλdJ
πd

d Td; sℓ} asso-
ciated with the continuous basis states of Eq. (2), and
the operator (with Pi,j exchanging particles i and j)

Aν =
1√
15

(

1−
4

∑

i=1

6
∑

j=5

Pi,j +
4

∑

i<j=1

Pi,5Pj,6

)

,

ensures its full antisymmetrization. Finally, the unknown
discrete coefficients, cλ, and continuous amplitudes of rel-
ative motion, γν(r), are obtained by solving the six-body
Schrödinger equation in the Hilbert space spanned by the
basis states |6LiλJπT ⟩ and Aν |ΦJπT

νr ⟩ [15]. The bound
state and the elements of the scattering matrix are then
obtained from matching the solutions of Eq. (1) with the
known asymptotic behavior of the wave function using
an extension of the microscopic R-matrix theory [22, 23].
The deuteron is only bound by 2.224 MeV. For relative

kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the
virtual scattering to the energetically closed 4He+p+n
channels accounts for the distortion of the projectile.
Here we address this by discretizing the continuum of
2H in the 3S1−3D1, 3D2 and 3D3−3G3 channels identi-
fied in our earlier study of Ref. [14]. At the same time,
fifteen (among which two 1+, two 2+, and one 3+) square-
integrable six-body eigenstates of 6Li also contribute to
the description of the deuteron distortion. More impor-
tantly, they address the swelling of the α particle [16],
of which we only include the g.s. in Eq. (2). The typical
convergence behavior of our computed d-4He phase shifts
with respect to the number of deuteron pseudostates (or
d⋆, with Ed⋆>0) included in Eq. (2) is shown in Fig. 1.

FIG. 2. (Color online) Dia-
grammatic representation of
one of the 3N-force matrix el-
ements between basis states
of Eq. (2).

Stable results are found with as little as three deuteron
pseudostates per channel. This is a strong reduction of
the d⋆ influence with respect to the more limited study
of Ref. [14], lacking the coupling of square-integrable 6Li
eigenstates. Nonetheless, above the 2H breakup thresh-
old, our approach is approximated and a rigorous treat-
ment would require the more complicated task of includ-
ing three-cluster basis states [24] in the ansazt of Eq. (1).

The treatment of 3N forces within the NCSMC for-
malism to compute deuteron-nucleus collisions involves
major technical and computational challenges. The first
is the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven
independent 3N -force terms, five of which involve the
exchange of one or two nucleons belonging to the pro-
jectile with those of the target. A typical example is
the diagram of Fig. 2, which for the present application
corresponds to ⟨ΦJπT

ν′r′ |P3,5P4,6V
3N
123 |ΦJπT

νr ⟩, with V 3N
123 the

3N interaction among particles 1, 2 and 3. To calculate
this contribution, we need the four-nucleon density ma-
trix of the target. For 4He, this can be precomputed and
stored in a factorized form [14, 25]. An additional dif-
ficulty is represented by the exorbitant number of input
3N -force matrix elements (see Fig. 1 of Ref. [26]), which
we have to limit by specifying a maximum three-nucleon
HO model space size E3max [25]. To minimize the ef-
fects of such truncation we included 3N -force matrix el-
ements up to E3max = 17. The ⟨6LiλJπT |V 3N

346 |ΦJπT
νr ⟩

and ⟨6LiλJπT |V 3N
456 |ΦJπT

νr ⟩ couplings between discrete
and continuous states are comparatively less demanding.
Results. We adopt an Hamiltonian based on the chi-

ral N3LO NN interaction of Ref. [29] and N2LO 3N
force of Ref. [30], constrained to provide an accurate de-
scription of the A=2 and 3 [31] systems. These inter-
actions are additionally softened by means of a unitary
transformation that decouples high- and low-momentum
components of the Hamiltonian, working within the sim-
ilarity renormalization group (SRG) method [26, 32–
35]. To minimize the occurrence of induced four-nucleon
forces, we work with the SRG momentum scale Λ = 2.0
fm−1 [25, 34, 35]. All calculations are carried out using
the ansatz of Eq. (1) with fifteen discrete eigenstates of
the 6Li system and continuous d-4He(g.s.) binary-cluster
states with up to seven deuteron pseudostates in the
3S1−3D1, 3D2 and 3D3−3G3 channels. Similar to our
earlier study of d-4He scattering [14] [performed with a
softer NN interaction but in a model space spanned only
by the continuous basis states of Eq. (2)], we approach
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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FIG. 5. (Color online) Computed (lines) 2H(↵, d)4He (a) and 4He(d, d)4He (b) angular di↵erential cross sections at the recoil
and backscattered angles of, respectively, 'd = 30� and ✓d = 164� as a function of the incident ↵ and d energies compared with
data (symbols) from Refs. [23–29].

binding for the 1+ ground state. This can be under-
stood as stemming from a more e�cient description of
the clusterization of 6Li into a deuteron and an ↵ parti-
cle at long distances, which is harder to describe within
a finite NCSM model space, or – more simply – from
the increased size of the model space. Indeed, as shown
in Table I for the absolute value of the 6Li g.s. energy,
extrapolating to N

max

! 1 brings the NCSM result
in good agreement with the NCSMC. However, while the
extrapolation procedure yields comparable energies, only
the NCSMC wave function presents the correct Whit-
taker asymptotic. This will be very important for the
description of the 2H(↵, �)6Li radiative capture. Con-
versely, the square-integrable |6Li g.s. 1+0i component of
the ansatz (1) for the g.s. allows for the e�cient descrip-
tion of the short-range six-body correlations, and ad-
dresses the polarization of the 4He core. Describing these
correlation exclusively within continuous basis states of
the type of Eq. (2) would require the computationally un-
feasible inclusion of a large number of 4He excited states.

Next, in Fig. 5, we concentrate on di↵erential cross
sections of interest for ion beam analysis in two di↵erent
kinematic settings, i.e. the 2H(↵, d)4He deuteron elastic
recoil [panel (a)], and the 4He(d, d)4He deuteron elastic
backscattering [panel (b)]. We compare our computed
results using the NN+3N Hamiltonian to the data of
Refs. [23–29]. Aside from the position of the 3+ reso-
nance, the calculated cross sections at N

max

= 11 are
in fair agreement with experiment, particularly in the
low-energy region of interest for the 2H(↵, �)6Li radiative
capture, where we reproduce the data of Besenbacher et
al. [23] and those of Quillet et al. [27]. The 500 KeV
region below the resonance is also important for elastic
recoil detection. At higher energies, in the region were
the the 2+ and 1+ resonances overlap, the computed elas-
tic di↵erential cross section at ✓d = 164� reproduces the
data of Galonsky et al. [28] and Mani et al. [29], while
we find disagreement with the data of Ref. [24] in the

same setting but in the elastic recoil configuration. At
even higher energies, the cross section is overestimated
because the computed width of the 1+ state is twice as
large as in experiment. While an N

max

= 13 calculation
(currently out of reach) may change the present picture
somewhat, we expect that the di↵erences with respect to
the present results would not be substantial, particularly
concerning the description of the narrow 3+ resonance.
Indeed, much as in the case of the g.s. energy, here the
NCSMC centroid at N

max

= 11 is in good agreement
with the extrapolated value (0.99 MeV) of the NCSM
excitation energy.

Conclusions. We presented the first application of the
NCSMC formalism for a reaction involving a two-nucleon
projectile. In this ab initio calculation of d-4He elastic
scattering, we illustrated the importance of the coupling
to square-integrable 6Li states and of the three-nucleon
force. We used data for deuterium backscattering and re-
coil cross sections of interests to ion beam spectroscopy
to validate our calculations and found a good agreement
in particular at low energy. The overestimation by about
300 KeV of the position of the 3+ state is an indication
of remaining deficiencies of the nuclear Hamiltonian em-
ployed here. This work sets the stage for the first ab

initio study of the 2H(↵, �)6Li radiative capture as well
as the unified investigation of other bound and continu-
ous properties of the 6Li nucleus.

Computing support for this work came from the
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gram. Prepared in part by LLNL under Contract DE-
AC52-07NA27344. This material is based upon work
supported by the U.S. Department of Energy, O�ce of
Science, O�ce of Nuclear Physics, under Work Proposal
Number SCW1158, and by the NSERC Grant Number
401945-2011. TRIUMF receives funding via a contribu-
tion through the Canadian National Research Council.
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binding for the 1+ ground state. This can be under-
stood as stemming from a more e�cient description of
the clusterization of 6Li into a deuteron and an ↵ parti-
cle at long distances, which is harder to describe within
a finite NCSM model space, or – more simply – from
the increased size of the model space. Indeed, as shown
in Table I for the absolute value of the 6Li g.s. energy,
extrapolating to N

max

! 1 brings the NCSM result
in good agreement with the NCSMC. However, while the
extrapolation procedure yields comparable energies, only
the NCSMC wave function presents the correct Whit-
taker asymptotic. This will be very important for the
description of the 2H(↵, �)6Li radiative capture. Con-
versely, the square-integrable |6Li g.s. 1+0i component of
the ansatz (1) for the g.s. allows for the e�cient descrip-
tion of the short-range six-body correlations, and ad-
dresses the polarization of the 4He core. Describing these
correlation exclusively within continuous basis states of
the type of Eq. (2) would require the computationally un-
feasible inclusion of a large number of 4He excited states.

Next, in Fig. 5, we concentrate on di↵erential cross
sections of interest for ion beam analysis in two di↵erent
kinematic settings, i.e. the 2H(↵, d)4He deuteron elastic
recoil [panel (a)], and the 4He(d, d)4He deuteron elastic
backscattering [panel (b)]. We compare our computed
results using the NN+3N Hamiltonian to the data of
Refs. [23–29]. Aside from the position of the 3+ reso-
nance, the calculated cross sections at N

max

= 11 are
in fair agreement with experiment, particularly in the
low-energy region of interest for the 2H(↵, �)6Li radiative
capture, where we reproduce the data of Besenbacher et
al. [23] and those of Quillet et al. [27]. The 500 KeV
region below the resonance is also important for elastic
recoil detection. At higher energies, in the region were
the the 2+ and 1+ resonances overlap, the computed elas-
tic di↵erential cross section at ✓d = 164� reproduces the
data of Galonsky et al. [28] and Mani et al. [29], while
we find disagreement with the data of Ref. [24] in the

same setting but in the elastic recoil configuration. At
even higher energies, the cross section is overestimated
because the computed width of the 1+ state is twice as
large as in experiment. While an N

max

= 13 calculation
(currently out of reach) may change the present picture
somewhat, we expect that the di↵erences with respect to
the present results would not be substantial, particularly
concerning the description of the narrow 3+ resonance.
Indeed, much as in the case of the g.s. energy, here the
NCSMC centroid at N

max

= 11 is in good agreement
with the extrapolated value (0.99 MeV) of the NCSM
excitation energy.

Conclusions. We presented the first application of the
NCSMC formalism for a reaction involving a two-nucleon
projectile. In this ab initio calculation of d-4He elastic
scattering, we illustrated the importance of the coupling
to square-integrable 6Li states and of the three-nucleon
force. We used data for deuterium backscattering and re-
coil cross sections of interests to ion beam spectroscopy
to validate our calculations and found a good agreement
in particular at low energy. The overestimation by about
300 KeV of the position of the 3+ state is an indication
of remaining deficiencies of the nuclear Hamiltonian em-
ployed here. This work sets the stage for the first ab

initio study of the 2H(↵, �)6Li radiative capture as well
as the unified investigation of other bound and continu-
ous properties of the 6Li nucleus.
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We provide a unified ab initio description of the 6Li ground state and elastic scattering of deuterium (d)
on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence
of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying
spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic
D- to S-state ratio of the 6Li wave function in the dþ α configuration of −0.027, in agreement with a
determination from 6Li-4He elastic scattering, but overestimates the excitation energy of the 3þ state by
350 keV. The bulk of the computed differential cross section is in good agreement with data. These results
endorse the application of the present approach to the evaluation of the 2Hðα; γÞ6Li radiative capture,
responsible for the big-bang nucleosynthesis of 6Li.
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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FIG. 1. (Color online) Computed d-4He S- and D-wave phase
shifts at Nmax = 9 and !Ω = 20 MeV, obtained fifteen square-
integrable 6Li eigenstates, as a function of the number of 2H
pseudostates (up to seven) in each of the 3S1−

3D1,
3D2 and

3D3−
3G3 channels. The two-body part of the SRG-evolved

N3LO NN potential (NN-only) with Λ = 2.0 fm−1 was used.

quantum numbers {4HeλαJ
πα

α Tα; 2HλdJ
πd

d Td; sℓ} asso-
ciated with the continuous basis states of Eq. (2), and
the operator (with Pi,j exchanging particles i and j)

Aν =
1√
15

(

1−
4

∑

i=1

6
∑

j=5

Pi,j +
4

∑

i<j=1

Pi,5Pj,6

)

,

ensures its full antisymmetrization. Finally, the unknown
discrete coefficients, cλ, and continuous amplitudes of rel-
ative motion, γν(r), are obtained by solving the six-body
Schrödinger equation in the Hilbert space spanned by the
basis states |6LiλJπT ⟩ and Aν |ΦJπT

νr ⟩ [15]. The bound
state and the elements of the scattering matrix are then
obtained from matching the solutions of Eq. (1) with the
known asymptotic behavior of the wave function using
an extension of the microscopic R-matrix theory [22, 23].
The deuteron is only bound by 2.224 MeV. For relative

kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the
virtual scattering to the energetically closed 4He+p+n
channels accounts for the distortion of the projectile.
Here we address this by discretizing the continuum of
2H in the 3S1−3D1, 3D2 and 3D3−3G3 channels identi-
fied in our earlier study of Ref. [14]. At the same time,
fifteen (among which two 1+, two 2+, and one 3+) square-
integrable six-body eigenstates of 6Li also contribute to
the description of the deuteron distortion. More impor-
tantly, they address the swelling of the α particle [16],
of which we only include the g.s. in Eq. (2). The typical
convergence behavior of our computed d-4He phase shifts
with respect to the number of deuteron pseudostates (or
d⋆, with Ed⋆>0) included in Eq. (2) is shown in Fig. 1.

FIG. 2. (Color online) Dia-
grammatic representation of
one of the 3N-force matrix el-
ements between basis states
of Eq. (2).

Stable results are found with as little as three deuteron
pseudostates per channel. This is a strong reduction of
the d⋆ influence with respect to the more limited study
of Ref. [14], lacking the coupling of square-integrable 6Li
eigenstates. Nonetheless, above the 2H breakup thresh-
old, our approach is approximated and a rigorous treat-
ment would require the more complicated task of includ-
ing three-cluster basis states [24] in the ansazt of Eq. (1).

The treatment of 3N forces within the NCSMC for-
malism to compute deuteron-nucleus collisions involves
major technical and computational challenges. The first
is the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven
independent 3N -force terms, five of which involve the
exchange of one or two nucleons belonging to the pro-
jectile with those of the target. A typical example is
the diagram of Fig. 2, which for the present application
corresponds to ⟨ΦJπT

ν′r′ |P3,5P4,6V
3N
123 |ΦJπT

νr ⟩, with V 3N
123 the

3N interaction among particles 1, 2 and 3. To calculate
this contribution, we need the four-nucleon density ma-
trix of the target. For 4He, this can be precomputed and
stored in a factorized form [14, 25]. An additional dif-
ficulty is represented by the exorbitant number of input
3N -force matrix elements (see Fig. 1 of Ref. [26]), which
we have to limit by specifying a maximum three-nucleon
HO model space size E3max [25]. To minimize the ef-
fects of such truncation we included 3N -force matrix el-
ements up to E3max = 17. The ⟨6LiλJπT |V 3N

346 |ΦJπT
νr ⟩

and ⟨6LiλJπT |V 3N
456 |ΦJπT

νr ⟩ couplings between discrete
and continuous states are comparatively less demanding.
Results. We adopt an Hamiltonian based on the chi-

ral N3LO NN interaction of Ref. [29] and N2LO 3N
force of Ref. [30], constrained to provide an accurate de-
scription of the A=2 and 3 [31] systems. These inter-
actions are additionally softened by means of a unitary
transformation that decouples high- and low-momentum
components of the Hamiltonian, working within the sim-
ilarity renormalization group (SRG) method [26, 32–
35]. To minimize the occurrence of induced four-nucleon
forces, we work with the SRG momentum scale Λ = 2.0
fm−1 [25, 34, 35]. All calculations are carried out using
the ansatz of Eq. (1) with fifteen discrete eigenstates of
the 6Li system and continuous d-4He(g.s.) binary-cluster
states with up to seven deuteron pseudostates in the
3S1−3D1, 3D2 and 3D3−3G3 channels. Similar to our
earlier study of d-4He scattering [14] [performed with a
softer NN interaction but in a model space spanned only
by the continuous basis states of Eq. (2)], we approach
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FIG. 5. (Color online) Computed (a) 2H(α, d)4He laboratory-frame and (b) 4He(d, d)4He center-of-mass frame angular
differential cross sections (lines) using the NN+3N Hamiltonian at the deuteron recoil and backscattered angles of, respectively,
ϕd = 30◦ and θd = 164◦ as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data
(symbols) from Refs. [7–9, 42–45]. In panel (c), calculated (lines) and measured (symbols) center-of-mass angular distributions
at Ed = 2.93, 6.96, 8.97 [46], and 12 MeV [47] are scaled by a factor of 20, 5, 2, and 1, respectively. All positive- and negative-
parity partial waves up to J = 3 were included in the calculations.

concerning the strength of the spin-orbit interaction.
The inclusion of the d+4He states of Eq. (2) results

also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 4 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
Nmax → ∞ [37] brings the NCSM results in good agree-
ment with the NCSMC, particularly for bound states
and narrow resonances. However, while the extrapolation
procedure yields comparable energies, only the NCSMC
wave functions present the correct asymptotic, which for
the g.s. is a Whittaker function. This is essential for
the extraction of the asymptotic normalization constants
and a future description of the 2H(α, γ)6Li radiative cap-
ture [5]. The obtained asymptotic D- to S-state ratio is
not compatible with the near zero value of Ref. [41], but
rather is in good agreement with the determination of
Ref. [39], stemming from an analysis of 6Li+4He elastic
scattering. Further, based on the extrapolated NCSM
energies, one could erroneously conclude that the mea-
sured splitting between 2+ and 3+ state is reproduced
with the NN+3N Hamiltonian. Conversely, the square-
integrable |6LiλJπT ⟩ components of Eq. (1) are key to
achieving an efficient description of the short-range six-
body correlations, and compensate for computationally
arduous to include 4He excited states.
Next, in Figs. 5(a) and 5(b), respectively, we compare

the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian to the measured
energy distributions of Refs. [7–9, 42–45]. Aside from
the position of the 3+ resonance, the calculations are in
fair agreement with experiment, particularly in the low-

energy region of interest for the Big-bang nucleosynthe-
sis of 6Li, where we reproduce the data of Besenbacher
et al. [42] and those of Quillet et al. [8]. The 500 keV
region below the resonance in Fig. 5(a) is also important
for material science, where the elastic recoil of deuterium
knocked by incident α particles is used to analyze the
presence of this element. At higher energies, near the
2+ and 1+ resonances, the computed cross section at the
center-of-mass deuteron scattering angle of θd = 164◦ re-
produces the data of Galonsky et al. [44] and Mani et
al. [45], while we find slight disagreement with the data
of Ref. [9] in the elastic recoil configuration at the labora-
tory angle of ϕd = 30◦. At even higher energies, the mea-
sured cross section of Fig. 5(b) lies below the calculated
one. This is due to the overestimated width of the 1+2
state, which is twice as large as in experiment. The over-
all good agreement with experiment is also corroborated
by Fig. 5(c), presenting 4He(d, d)4He angular distribu-
tions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident
energies. In particular, the theoretical curves reproduce
the data at 2.93 and 6.96 MeV, while some deviations
are visible at the two higher energies, in line with our
previous discussion. Nevertheless, in general the present
results with 3N forces provide a much more realistic de-
scription of the scattering process than our earlier study
of Ref. [14]. Finally, we expect that an Nmax = 13 cal-
culation (currently out of reach) would not significantly
change the present picture, particularly concerning the
narrow 3+ resonance. Indeed, much as in the case of the
g.s. energy, here the NCSMC centroid is in good agree-
ment with the NCSM extrapolated value, 0.99(9) MeV.
Conclusions. We presented the first application of

the ab initio NCSMC formalism to the description of
deuteron-nucleus dynamics. We illustrated the role of
the chiral 3N force and continuous degrees of freedom in
determining the bound-state properties of 6Li and d-4He
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ensures its full antisymmetrization. Finally, the unknown
discrete coefficients, cλ, and continuous amplitudes of rel-
ative motion, γν(r), are obtained by solving the six-body
Schrödinger equation in the Hilbert space spanned by the
basis states |6LiλJπT ⟩ and Aν |ΦJπT

νr ⟩ [15]. The bound
state and the elements of the scattering matrix are then
obtained from matching the solutions of Eq. (1) with the
known asymptotic behavior of the wave function using
an extension of the microscopic R-matrix theory [22, 23].
The deuteron is only bound by 2.224 MeV. For relative

kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the
virtual scattering to the energetically closed 4He+p+n
channels accounts for the distortion of the projectile.
Here we address this by discretizing the continuum of
2H in the 3S1−3D1, 3D2 and 3D3−3G3 channels identi-
fied in our earlier study of Ref. [14]. At the same time,
fifteen (among which two 1+, two 2+, and one 3+) square-
integrable six-body eigenstates of 6Li also contribute to
the description of the deuteron distortion. More impor-
tantly, they address the swelling of the α particle [16],
of which we only include the g.s. in Eq. (2). The typical
convergence behavior of our computed d-4He phase shifts
with respect to the number of deuteron pseudostates (or
d⋆, with Ed⋆>0) included in Eq. (2) is shown in Fig. 1.

FIG. 2. (Color online) Dia-
grammatic representation of
one of the 3N-force matrix el-
ements between basis states
of Eq. (2).

Stable results are found with as little as three deuteron
pseudostates per channel. This is a strong reduction of
the d⋆ influence with respect to the more limited study
of Ref. [14], lacking the coupling of square-integrable 6Li
eigenstates. Nonetheless, above the 2H breakup thresh-
old, our approach is approximated and a rigorous treat-
ment would require the more complicated task of includ-
ing three-cluster basis states [24] in the ansazt of Eq. (1).

The treatment of 3N forces within the NCSMC for-
malism to compute deuteron-nucleus collisions involves
major technical and computational challenges. The first
is the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven
independent 3N -force terms, five of which involve the
exchange of one or two nucleons belonging to the pro-
jectile with those of the target. A typical example is
the diagram of Fig. 2, which for the present application
corresponds to ⟨ΦJπT

ν′r′ |P3,5P4,6V
3N
123 |ΦJπT

νr ⟩, with V 3N
123 the

3N interaction among particles 1, 2 and 3. To calculate
this contribution, we need the four-nucleon density ma-
trix of the target. For 4He, this can be precomputed and
stored in a factorized form [14, 25]. An additional dif-
ficulty is represented by the exorbitant number of input
3N -force matrix elements (see Fig. 1 of Ref. [26]), which
we have to limit by specifying a maximum three-nucleon
HO model space size E3max [25]. To minimize the ef-
fects of such truncation we included 3N -force matrix el-
ements up to E3max = 17. The ⟨6LiλJπT |V 3N

346 |ΦJπT
νr ⟩

and ⟨6LiλJπT |V 3N
456 |ΦJπT

νr ⟩ couplings between discrete
and continuous states are comparatively less demanding.
Results. We adopt an Hamiltonian based on the chi-

ral N3LO NN interaction of Ref. [29] and N2LO 3N
force of Ref. [30], constrained to provide an accurate de-
scription of the A=2 and 3 [31] systems. These inter-
actions are additionally softened by means of a unitary
transformation that decouples high- and low-momentum
components of the Hamiltonian, working within the sim-
ilarity renormalization group (SRG) method [26, 32–
35]. To minimize the occurrence of induced four-nucleon
forces, we work with the SRG momentum scale Λ = 2.0
fm−1 [25, 34, 35]. All calculations are carried out using
the ansatz of Eq. (1) with fifteen discrete eigenstates of
the 6Li system and continuous d-4He(g.s.) binary-cluster
states with up to seven deuteron pseudostates in the
3S1−3D1, 3D2 and 3D3−3G3 channels. Similar to our
earlier study of d-4He scattering [14] [performed with a
softer NN interaction but in a model space spanned only
by the continuous basis states of Eq. (2)], we approach
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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d+4He Scattering Phase Shifts

§  S- and D-wave asymptotic normalization constants 
3

Ground-State Properties NCSM (10) NCSM (12) NCSM (∞) [37] NCSMC (10) Experiment

E6Li [MeV] −30.84 −31.52 −32.19(1) −32.01 −31.994 [1, 40]

C0 [fm−1/2] − − − 2.695 2.91(9) [39] 2.93(15) [38]

C2 [fm−1/2] − − − −0.074 −0.077(18) [39]

C2/C0 − − − −0.027 −0.025(6)(10) [39] 0.0003(9) [41]

Eα+Ed [MeV] −30.52 −30.58 −30.61(4) −30.52 −30.520

TABLE I. Absolute 6Li g.s. energy, S- (C0) and D-wave (C2) asymptotic normalization constants and their ratio using the
NN + 3N Hamiltonian compared to experiment. Also shown is the sum of 4He and 2H g.s. energies, Eα+Ed. Indicated in
parenthesis is the Nmax value of the respective calculation.

of the 6Li system and continuous d-4He(g.s.) states with
up to seven deuteron pseudostates in the 3S1−3D1, 3D2

and 3D3−3G3 channels. Similar to our earlier study per-
formed with a softerNN interaction but in a model space
spanned only by the continuous basis states of Eq. (2)
[14], we approach convergence for the HO expansions at
Nmax=10(11) for positive (negative) parity channels. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].
In Fig. 2 we compare our computed d-4He S-, 3P0- and

D-wave phase shifts with those of the R-matrix analyses
of Refs. [27, 28]. The results based on the two-body part
of the SRG-transformed NN force (NN -only) resemble
those of Ref. [14]. Once the SRG unitary equivalence
is restored via the induced 3N force (NN+3N -ind), the
resonance centroids are systematically shifted to higher
energies. By contrast, the agreement with data is much
improved when the initial chiral 3N force is also included
(NN+3N). In particular, the splitting between the 3D3

and 3D2 partial waves is comparable to experiment.
In Fig. 3, the resonance centroids and widths ex-

tracted [36] from the phase shifts of Fig. 2 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths of
the NCSMC resonances, which tend to become narrower
(in closer agreement with experiment) when this force is
present in the initial Hamiltonian. Overall, the closest
agreement with the observed spectrum is obtained with
the NN+3N Hamiltonian working within the NCSMC,
i.e. by including the continuum degrees of freedom. In-
cidentally, we note that the NN -only Hamiltonian (not
shown in Fig. 3) yields g.s. and 3+ energies (with respect
to the computed d+4He threshold) close to the NN+3N
results, e.g. −1.62 and 1.24 MeV, respectively, within
the NCSMC. However, the splitting between 2+ and 3+

is smaller. Compared to the best (Nmax = 12) NCSM
values, all resonances are shifted to lower energies com-
mensurately with their distance from the breakup thresh-
old. For the 3+, which is a narrow resonance, the effect
is not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly
concerning the strength of the spin-orbit interaction.

The inclusion of the d+4He states of Eq. (2) results
also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 3 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
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FIG. 3. (Color online) Ground-state energy and low-lying 6Li
positive-parity T=0 resonance parameters extracted [36] from
the phase shifts of Fig. 2 (NCSMC) compared to the evalu-
ated centroids and widths (indicated by Γ) of Ref. [1] (Expt.).
Also shown on the left-hand-side are the best (Nmax=12) and
extrapolated [37] NCSM energy levels. The zero energy is set
to the respective computed (experimental) d+4He breakup
thresholds. Absolute g.s. energies can be found in Table I.

3

Ground-State Properties NCSM (10) NCSM (12) NCSM (∞) [37] NCSMC (10) Experiment

E6Li [MeV] −30.84 −31.52 −32.19(1) −32.01 −31.994 [1, 40]
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of the 6Li system and continuous d-4He(g.s.) states with
up to seven deuteron pseudostates in the 3S1−3D1, 3D2

and 3D3−3G3 channels. Similar to our earlier study per-
formed with a softerNN interaction but in a model space
spanned only by the continuous basis states of Eq. (2)
[14], we approach convergence for the HO expansions at
Nmax=10(11) for positive (negative) parity channels. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].
In Fig. 2 we compare our computed d-4He S-, 3P0- and

D-wave phase shifts with those of the R-matrix analyses
of Refs. [27, 28]. The results based on the two-body part
of the SRG-transformed NN force (NN -only) resemble
those of Ref. [14]. Once the SRG unitary equivalence
is restored via the induced 3N force (NN+3N -ind), the
resonance centroids are systematically shifted to higher
energies. By contrast, the agreement with data is much
improved when the initial chiral 3N force is also included
(NN+3N). In particular, the splitting between the 3D3

and 3D2 partial waves is comparable to experiment.
In Fig. 3, the resonance centroids and widths ex-

tracted [36] from the phase shifts of Fig. 2 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths of
the NCSMC resonances, which tend to become narrower
(in closer agreement with experiment) when this force is
present in the initial Hamiltonian. Overall, the closest
agreement with the observed spectrum is obtained with
the NN+3N Hamiltonian working within the NCSMC,
i.e. by including the continuum degrees of freedom. In-
cidentally, we note that the NN -only Hamiltonian (not
shown in Fig. 3) yields g.s. and 3+ energies (with respect
to the computed d+4He threshold) close to the NN+3N
results, e.g. −1.62 and 1.24 MeV, respectively, within
the NCSMC. However, the splitting between 2+ and 3+

is smaller. Compared to the best (Nmax = 12) NCSM
values, all resonances are shifted to lower energies com-
mensurately with their distance from the breakup thresh-
old. For the 3+, which is a narrow resonance, the effect
is not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly
concerning the strength of the spin-orbit interaction.

The inclusion of the d+4He states of Eq. (2) results
also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 3 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
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FIG. 3. (Color online) Ground-state energy and low-lying 6Li
positive-parity T=0 resonance parameters extracted [36] from
the phase shifts of Fig. 2 (NCSMC) compared to the evalu-
ated centroids and widths (indicated by Γ) of Ref. [1] (Expt.).
Also shown on the left-hand-side are the best (Nmax=12) and
extrapolated [37] NCSM energy levels. The zero energy is set
to the respective computed (experimental) d+4He breakup
thresholds. Absolute g.s. energies can be found in Table I.
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E6Li [MeV] −30.84 −31.52 −32.19(1) −32.01 −31.994 [1, 40]

C0 [fm−1/2] − − − 2.695 2.91(9) [39] 2.93(15) [38]

C2 [fm−1/2] − − − −0.074 −0.077(18) [39]

C2/C0 − − − −0.027 −0.025(6)(10) [39] 0.0003(9) [41]

Eα+Ed [MeV] −30.52 −30.58 −30.61(4) −30.52 −30.520

TABLE I. Absolute 6Li g.s. energy, S- (C0) and D-wave (C2) asymptotic normalization constants and their ratio using the
NN + 3N Hamiltonian compared to experiment. Also shown is the sum of 4He and 2H g.s. energies, Eα+Ed. Indicated in
parenthesis is the Nmax value of the respective calculation.

of the 6Li system and continuous d-4He(g.s.) states with
up to seven deuteron pseudostates in the 3S1−3D1, 3D2

and 3D3−3G3 channels. Similar to our earlier study per-
formed with a softerNN interaction but in a model space
spanned only by the continuous basis states of Eq. (2)
[14], we approach convergence for the HO expansions at
Nmax=10(11) for positive (negative) parity channels. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].
In Fig. 2 we compare our computed d-4He S-, 3P0- and

D-wave phase shifts with those of the R-matrix analyses
of Refs. [27, 28]. The results based on the two-body part
of the SRG-transformed NN force (NN -only) resemble
those of Ref. [14]. Once the SRG unitary equivalence
is restored via the induced 3N force (NN+3N -ind), the
resonance centroids are systematically shifted to higher
energies. By contrast, the agreement with data is much
improved when the initial chiral 3N force is also included
(NN+3N). In particular, the splitting between the 3D3

and 3D2 partial waves is comparable to experiment.
In Fig. 3, the resonance centroids and widths ex-

tracted [36] from the phase shifts of Fig. 2 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths of
the NCSMC resonances, which tend to become narrower
(in closer agreement with experiment) when this force is
present in the initial Hamiltonian. Overall, the closest
agreement with the observed spectrum is obtained with
the NN+3N Hamiltonian working within the NCSMC,
i.e. by including the continuum degrees of freedom. In-
cidentally, we note that the NN -only Hamiltonian (not
shown in Fig. 3) yields g.s. and 3+ energies (with respect
to the computed d+4He threshold) close to the NN+3N
results, e.g. −1.62 and 1.24 MeV, respectively, within
the NCSMC. However, the splitting between 2+ and 3+

is smaller. Compared to the best (Nmax = 12) NCSM
values, all resonances are shifted to lower energies com-
mensurately with their distance from the breakup thresh-
old. For the 3+, which is a narrow resonance, the effect
is not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly
concerning the strength of the spin-orbit interaction.

The inclusion of the d+4He states of Eq. (2) results
also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 3 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
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ated centroids and widths (indicated by Γ) of Ref. [1] (Expt.).
Also shown on the left-hand-side are the best (Nmax=12) and
extrapolated [37] NCSM energy levels. The zero energy is set
to the respective computed (experimental) d+4He breakup
thresholds. Absolute g.s. energies can be found in Table I.
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formed with a softerNN interaction but in a model space
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[14], we approach convergence for the HO expansions at
Nmax=10(11) for positive (negative) parity channels. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].
In Fig. 2 we compare our computed d-4He S-, 3P0- and
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of Refs. [27, 28]. The results based on the two-body part
of the SRG-transformed NN force (NN -only) resemble
those of Ref. [14]. Once the SRG unitary equivalence
is restored via the induced 3N force (NN+3N -ind), the
resonance centroids are systematically shifted to higher
energies. By contrast, the agreement with data is much
improved when the initial chiral 3N force is also included
(NN+3N). In particular, the splitting between the 3D3

and 3D2 partial waves is comparable to experiment.
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tracted [36] from the phase shifts of Fig. 2 (shown on
the right) are compared with experiment as well as with
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(in closer agreement with experiment) when this force is
present in the initial Hamiltonian. Overall, the closest
agreement with the observed spectrum is obtained with
the NN+3N Hamiltonian working within the NCSMC,
i.e. by including the continuum degrees of freedom. In-
cidentally, we note that the NN -only Hamiltonian (not
shown in Fig. 3) yields g.s. and 3+ energies (with respect
to the computed d+4He threshold) close to the NN+3N
results, e.g. −1.62 and 1.24 MeV, respectively, within
the NCSMC. However, the splitting between 2+ and 3+

is smaller. Compared to the best (Nmax = 12) NCSM
values, all resonances are shifted to lower energies com-
mensurately with their distance from the breakup thresh-
old. For the 3+, which is a narrow resonance, the effect
is not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly
concerning the strength of the spin-orbit interaction.

The inclusion of the d+4He states of Eq. (2) results
also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 3 and in Table I for
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FIG. 3. (Color online) Ground-state energy and low-lying 6Li
positive-parity T=0 resonance parameters extracted [36] from
the phase shifts of Fig. 2 (NCSMC) compared to the evalu-
ated centroids and widths (indicated by Γ) of Ref. [1] (Expt.).
Also shown on the left-hand-side are the best (Nmax=12) and
extrapolated [37] NCSM energy levels. The zero energy is set
to the respective computed (experimental) d+4He breakup
thresholds. Absolute g.s. energies can be found in Table I.
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B. Kozlowska, H. J. Maier, and I. J. Thompson, Phys.
Rev. Lett. 81, 1187 (1998).

[42] F. Besenbacher, I. Stensgaard, and P. Vase, Nucl. Instr.
and Meth. B 15, 459 (1986).

[43] S. Nagata, S. Yamaguchi, Y. Fujino, Y. Hori,
N. Sugiyama, and K. Kamada, Nucl. Instr. and Meth.
B 6, 533 (1985).

[44] A. Galonsky, R. A. Douglas, W. Haeberli, M. T. McEl-
listrem, and H. T. Richards, Phys. Rev. 98, 586 (1955).

[45] G. S. Mani and A. Tarratts, Nucl. Phys. A 107, 624
(1968).

[46] J. H. Jett, J. L. Detch, and N. Jarmie, Phys. Rev. C 3,
1769 (1971).

[47] L. S. Senhouse and T. A. Tombrello, Nucl. Phys. 57, 624
(1964).

Unified Description of 6Li Structure and Deuterium-4He Dynamics
with Chiral Two- and Three-Nucleon Forces
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We provide a unified ab initio description of the 6Li ground state and elastic scattering of deuterium (d)
on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence
of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying
spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic
D- to S-state ratio of the 6Li wave function in the dþ α configuration of −0.027, in agreement with a
determination from 6Li-4He elastic scattering, but overestimates the excitation energy of the 3þ state by
350 keV. The bulk of the computed differential cross section is in good agreement with data. These results
endorse the application of the present approach to the evaluation of the 2Hðα; γÞ6Li radiative capture,
responsible for the big-bang nucleosynthesis of 6Li.
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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FIG. 1. (Color online) Computed d-4He S- and D-wave phase
shifts at Nmax = 9 and !Ω = 20 MeV, obtained fifteen square-
integrable 6Li eigenstates, as a function of the number of 2H
pseudostates (up to seven) in each of the 3S1−

3D1,
3D2 and

3D3−
3G3 channels. The two-body part of the SRG-evolved

N3LO NN potential (NN-only) with Λ = 2.0 fm−1 was used.

quantum numbers {4HeλαJ
πα

α Tα; 2HλdJ
πd

d Td; sℓ} asso-
ciated with the continuous basis states of Eq. (2), and
the operator (with Pi,j exchanging particles i and j)

Aν =
1√
15

(

1−
4

∑

i=1

6
∑

j=5

Pi,j +
4

∑

i<j=1

Pi,5Pj,6

)

,

ensures its full antisymmetrization. Finally, the unknown
discrete coefficients, cλ, and continuous amplitudes of rel-
ative motion, γν(r), are obtained by solving the six-body
Schrödinger equation in the Hilbert space spanned by the
basis states |6LiλJπT ⟩ and Aν |ΦJπT

νr ⟩ [15]. The bound
state and the elements of the scattering matrix are then
obtained from matching the solutions of Eq. (1) with the
known asymptotic behavior of the wave function using
an extension of the microscopic R-matrix theory [22, 23].
The deuteron is only bound by 2.224 MeV. For relative

kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the
virtual scattering to the energetically closed 4He+p+n
channels accounts for the distortion of the projectile.
Here we address this by discretizing the continuum of
2H in the 3S1−3D1, 3D2 and 3D3−3G3 channels identi-
fied in our earlier study of Ref. [14]. At the same time,
fifteen (among which two 1+, two 2+, and one 3+) square-
integrable six-body eigenstates of 6Li also contribute to
the description of the deuteron distortion. More impor-
tantly, they address the swelling of the α particle [16],
of which we only include the g.s. in Eq. (2). The typical
convergence behavior of our computed d-4He phase shifts
with respect to the number of deuteron pseudostates (or
d⋆, with Ed⋆>0) included in Eq. (2) is shown in Fig. 1.

FIG. 2. (Color online) Dia-
grammatic representation of
one of the 3N-force matrix el-
ements between basis states
of Eq. (2).

Stable results are found with as little as three deuteron
pseudostates per channel. This is a strong reduction of
the d⋆ influence with respect to the more limited study
of Ref. [14], lacking the coupling of square-integrable 6Li
eigenstates. Nonetheless, above the 2H breakup thresh-
old, our approach is approximated and a rigorous treat-
ment would require the more complicated task of includ-
ing three-cluster basis states [24] in the ansazt of Eq. (1).

The treatment of 3N forces within the NCSMC for-
malism to compute deuteron-nucleus collisions involves
major technical and computational challenges. The first
is the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven
independent 3N -force terms, five of which involve the
exchange of one or two nucleons belonging to the pro-
jectile with those of the target. A typical example is
the diagram of Fig. 2, which for the present application
corresponds to ⟨ΦJπT

ν′r′ |P3,5P4,6V
3N
123 |ΦJπT

νr ⟩, with V 3N
123 the

3N interaction among particles 1, 2 and 3. To calculate
this contribution, we need the four-nucleon density ma-
trix of the target. For 4He, this can be precomputed and
stored in a factorized form [14, 25]. An additional dif-
ficulty is represented by the exorbitant number of input
3N -force matrix elements (see Fig. 1 of Ref. [26]), which
we have to limit by specifying a maximum three-nucleon
HO model space size E3max [25]. To minimize the ef-
fects of such truncation we included 3N -force matrix el-
ements up to E3max = 17. The ⟨6LiλJπT |V 3N

346 |ΦJπT
νr ⟩

and ⟨6LiλJπT |V 3N
456 |ΦJπT

νr ⟩ couplings between discrete
and continuous states are comparatively less demanding.
Results. We adopt an Hamiltonian based on the chi-

ral N3LO NN interaction of Ref. [29] and N2LO 3N
force of Ref. [30], constrained to provide an accurate de-
scription of the A=2 and 3 [31] systems. These inter-
actions are additionally softened by means of a unitary
transformation that decouples high- and low-momentum
components of the Hamiltonian, working within the sim-
ilarity renormalization group (SRG) method [26, 32–
35]. To minimize the occurrence of induced four-nucleon
forces, we work with the SRG momentum scale Λ = 2.0
fm−1 [25, 34, 35]. All calculations are carried out using
the ansatz of Eq. (1) with fifteen discrete eigenstates of
the 6Li system and continuous d-4He(g.s.) binary-cluster
states with up to seven deuteron pseudostates in the
3S1−3D1, 3D2 and 3D3−3G3 channels. Similar to our
earlier study of d-4He scattering [14] [performed with a
softer NN interaction but in a model space spanned only
by the continuous basis states of Eq. (2)], we approach
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•  Z=4, N=7 
–  In the shell model picture g.s. expected to be Jπ=1/2-  
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–  In reality, 11Be g.s. is Jπ=1/2+ - parity inversion 
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–  The 1/2- state also bound – only by 180 keV 
 

•  Can we describe 11Be  
     in ab initio calculations? 

–  Continuum must be included 
–  Does the 3N interaction play  
    a role in the parity inversion?  

    
 

Neutron-rich halo nucleus 11Be 
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•  New experiment at ISAC TRIUMF with reaccelerated 10C 
–  The first ever 10C beam at TRIUMF 
–  Angular distributions measured at ECM ~ 4.16 MeV and 4.4 MeV 

10C(p,p) @ IRIS with solid H2 target  
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10C(p,p)   @ IRIS  with solid H2 target
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solid H2  target
100 um  

Ion Chamber

10C

10C

10C(p,p)10Cgs

Ep
 (M

eV
)

dθcm~ 5o

PRELIMINARY
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A. Kumar, R. Kanungo, A. Sanetullaev et al.

p

10C

p

PRELIMINARY

Identification of reaction channel (protons)

    IRIS collaboration:        
A. Kumar, R. Kanungo, 

A. Sanetullaev et al. 
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•  NCSMC calculations with chiral NN+3N (N3LO NN+N2LO 3NF400, NNLOsat) 
–   p-10C    +   11N 

•  10C:   0+, 2+, 2+ NCSM eigenstates 
•  11N:   ≥4 π = -1 and ≥3 π = +1 NCSM eigenstates 

A. Calci, P. Navratil, G. Hupin, S. Quaglioni, R. Roth et al with IRIS collaboration, in preparation 
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•  NCSMC calculations including chiral 3N (N3LO NN+N2LO 3NF400) 
–   n-10Be  +  11Be 

•  10Be: 0+, 2+, 2+ NCSM eigenstates 
•  11Be: ≥6 π = -1 and ≥3 π = +1 NCSM eigenstates 

June 19 2015 Angelo Calci

11Be with continuum effects
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Robert Roth - TU Darmstadt - February 2015

9Be: NCSM vs. NCSMC

! NCSMC shows much better Nmax convergence 

! NCSM tries to capture continuum effects via large Nmax 

! drastic difference for the 1/2+ state right at threshold
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Mirror nuclei:11Be and 11N

Ekin [MeV]

Nmax = 9
2S1/2

2P1/2

2P3/2

2D5/2
2F5/2

3/2+

0 1 2 3 4 5 6 7 8
Ekin [MeV]

-60

-30

0

30

60

90

120

150

180

δ 
[d

eg
]

2P1/2

3/2-

6P5/2

2S1/2

5/2+

3/2+

p+10C
Nmax = 7

N2LOsat

4P3/2

Robert Roth - TU Darmstadt - February 2015

9Be: NCSM vs. NCSMC

! NCSMC shows much better Nmax convergence 

! NCSM tries to capture continuum effects via large Nmax 

! drastic difference for the 1/2+ state right at threshold
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in the Hamiltonian kernel. Detailed expressions for these
form factors are given in the Appendix. The calculation of
⟨AλJ πT |Âν$

J π T
νr ⟩ overlap matrix elements between NCSM

wave functions and binary-cluster states was also discussed in
Ref. [36]. We also note that by squaring the absolute value
of these matrix elements and integrating over r , one obtains
spectroscopic factors.

The NCSMC equations can be orthogonalized in a way
analogous to that presented for the NCSM/RGM in Sec. II B1.
To define the square and inverse square root of the NCSMC
norm in the r-space representation, we first rewrite Eq. (24)
as the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P ,

Nλλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − δνν ′Rnℓ(r)δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

N λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

, (27)

where the sum over the repeating indexes λ̃, ν̃, n, λ̃′, ν̃ ′, and
n′ is implied, the notation Rνr ν̃n stands for Rnℓ(r)δνν̃ , and the
model-space NCSMC norm is given by

N λ̃λ̃′

ν̃n ν̃ ′n′ =
(

δλ̃λ̃′ ḡλ̃ν̃ ′n′

ḡλ̃′ν̃n δν̃ν̃ ′δnn′

)

. (28)

Here, the model-space cluster form factor is related to the
r-space one through ḡλν(r) =

∑
n Rnl(r)ḡλνn (as demonstrated

in the Appendix). We note that, in principle, the norm kernels
(15) and (28) can become singular because of Pauli forbidden
states in the NCSM/RGM or because of linear dependencies
owing to the overcompleteness of the NCSMC basis. In
that case, one simply removes explicitly the norm kernel
eigenvectors corresponding to the singular eigenvalues to
facilitate the inversion and the orthogonalization process. The
square and inverse square roots of N can then be defined as

(N± 1
2 )λλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − Rnℓ(r)δνν ′δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

(N± 1
2 )λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

.

(29)

Inserting the identity N− 1
2 N+ 1

2 in both left- and right-hand
sides of Eq. (22) and multiplying by N− 1

2 from the left one
obtains the orthogonalized NCSMC equations

H

(
c̄
χ̄

)
= E

(
c̄
χ̄

)
, (30)

where the orthogonalized Hamiltonian is given by

H = N− 1
2

(
HNCSM h̄

h̄ H

)

N− 1
2 , (31)

and the orthogonal wave functions by
(

c̄
χ̄

)
= N+ 1

2

(
c
χ

)
. (32)

Finally, the ansatz (21) in terms of the orthogonalized NCSMC
wave function takes the form

∣∣(J π T
A

〉
=

∑

λ

|AλJ πT ⟩
[ ∑

λ′

(N− 1
2 )λλ′

c̄λ′

+
∑

ν ′

∫
dr ′ r ′2(N− 1

2 )λν ′r ′
χ̄ν ′(r ′)

r ′

]

+
∑

νν ′

∫
dr r2

∫
dr ′ r ′2Âν

∣∣$J π T
νr

〉
N− 1

2
νν ′ (r, r ′)

×
[ ∑

λ′

(N− 1
2 )λ

′

ν ′r ′ c̄λ′

+
∑

ν ′′

∫
dr ′′ r ′′2(N− 1

2 )ν ′r ′ν ′′r ′′
χ̄ν ′′(r ′′)

r ′′

]
. (33)

2. Solving the NCSMC equations

At large intercluster distances r , the clusters are assumed
to interact through the Coulomb interaction only. Hence, the
NCSMC equations are solved dividing the space into an
internal region, r ! r0, and an external region, r > r0, and
applying the coupled-channel microscopic R-matrix method
on a Lagrange mesh [37]. The separation radius r = r0
must be large enough to ensure that the wave function of
the A-body states |AλJ πT ⟩ vanishes when approaching the
external region, where the asymptotic behavior of the NCSMC
solutions is described entirely by the radial wave functions

uJ π T
ν (r) = CJ π T

ν Wℓ(ην, κνr), (34)

and

uJ π T
ν (r) = i

2
v

− 1
2

ν

[
δνiH

−
ℓ (ην, κνr) − SJ π T

νi H+
ℓ (ην, κνr)

]

(35)

for bound and scattering states, respectively. Here, Wl(ην, κνr)
are Whittaker functions and H±

l (ην, κνr) are the incoming and
outgoing Coulomb functions, with vν the speed, κν the wave
number, and ην the Sommerfeld parameter of the final state
being studied. Asymptotic normalization constant for bound
states and scattering matrix between initial (i) and final (ν)
scattering states are denoted, respectively, with CJ π T

ν and SJ π T
νi .

The functions uJ π T
ν (r) stand for either the nonorthogonalized

wave function χν(r) or for the orthogonalized χ̄ν(r) according
to which set of equations, Eq. (22) or (30), is being considered.

One of the advantages of the microscopic R-matrix method
is that the wave function in the internal region can be ex-
panded on a set of square-integrable functions. A particularly
convenient choice when dealing with nonlocal potentials, as
in our case, is the set of Lagrange functions fn(r) associated
with the shifted Legendre polynomials and defined on the mesh
points rn ∈ (0, r0) [37], labeled by the index 1 ! n ! N . When
the Gauss quadrature approximation is adopted, the Lagrange
functions are orthogonal to each other. In addition, thanks to
the Gauss quadrature approximation and the properties of the
Lagrange functions, matrix elements of nonlocal potentials are
proportional to the values of the nonlocal potentials at the mesh
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in the Hamiltonian kernel. Detailed expressions for these
form factors are given in the Appendix. The calculation of
⟨AλJ πT |Âν$

J π T
νr ⟩ overlap matrix elements between NCSM

wave functions and binary-cluster states was also discussed in
Ref. [36]. We also note that by squaring the absolute value
of these matrix elements and integrating over r , one obtains
spectroscopic factors.

The NCSMC equations can be orthogonalized in a way
analogous to that presented for the NCSM/RGM in Sec. II B1.
To define the square and inverse square root of the NCSMC
norm in the r-space representation, we first rewrite Eq. (24)
as the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P ,

Nλλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − δνν ′Rnℓ(r)δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

N λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

, (27)

where the sum over the repeating indexes λ̃, ν̃, n, λ̃′, ν̃ ′, and
n′ is implied, the notation Rνr ν̃n stands for Rnℓ(r)δνν̃ , and the
model-space NCSMC norm is given by

N λ̃λ̃′

ν̃n ν̃ ′n′ =
(

δλ̃λ̃′ ḡλ̃ν̃ ′n′

ḡλ̃′ν̃n δν̃ν̃ ′δnn′

)

. (28)

Here, the model-space cluster form factor is related to the
r-space one through ḡλν(r) =

∑
n Rnl(r)ḡλνn (as demonstrated

in the Appendix). We note that, in principle, the norm kernels
(15) and (28) can become singular because of Pauli forbidden
states in the NCSM/RGM or because of linear dependencies
owing to the overcompleteness of the NCSMC basis. In
that case, one simply removes explicitly the norm kernel
eigenvectors corresponding to the singular eigenvalues to
facilitate the inversion and the orthogonalization process. The
square and inverse square roots of N can then be defined as

(N± 1
2 )λλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − Rnℓ(r)δνν ′δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

(N± 1
2 )λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

.

(29)

Inserting the identity N− 1
2 N+ 1

2 in both left- and right-hand
sides of Eq. (22) and multiplying by N− 1

2 from the left one
obtains the orthogonalized NCSMC equations

H

(
c̄
χ̄

)
= E

(
c̄
χ̄

)
, (30)

where the orthogonalized Hamiltonian is given by

H = N− 1
2

(
HNCSM h̄

h̄ H

)

N− 1
2 , (31)

and the orthogonal wave functions by
(

c̄
χ̄

)
= N+ 1

2

(
c
χ

)
. (32)

Finally, the ansatz (21) in terms of the orthogonalized NCSMC
wave function takes the form

∣∣(J π T
A

〉
=

∑

λ

|AλJ πT ⟩
[ ∑

λ′

(N− 1
2 )λλ′

c̄λ′

+
∑

ν ′

∫
dr ′ r ′2(N− 1

2 )λν ′r ′
χ̄ν ′(r ′)

r ′

]

+
∑

νν ′

∫
dr r2

∫
dr ′ r ′2Âν

∣∣$J π T
νr

〉
N− 1

2
νν ′ (r, r ′)

×
[ ∑

λ′

(N− 1
2 )λ

′

ν ′r ′ c̄λ′

+
∑

ν ′′

∫
dr ′′ r ′′2(N− 1

2 )ν ′r ′ν ′′r ′′
χ̄ν ′′(r ′′)

r ′′

]
. (33)

2. Solving the NCSMC equations

At large intercluster distances r , the clusters are assumed
to interact through the Coulomb interaction only. Hence, the
NCSMC equations are solved dividing the space into an
internal region, r ! r0, and an external region, r > r0, and
applying the coupled-channel microscopic R-matrix method
on a Lagrange mesh [37]. The separation radius r = r0
must be large enough to ensure that the wave function of
the A-body states |AλJ πT ⟩ vanishes when approaching the
external region, where the asymptotic behavior of the NCSMC
solutions is described entirely by the radial wave functions

uJ π T
ν (r) = CJ π T

ν Wℓ(ην, κνr), (34)

and

uJ π T
ν (r) = i

2
v

− 1
2

ν

[
δνiH

−
ℓ (ην, κνr) − SJ π T

νi H+
ℓ (ην, κνr)

]

(35)

for bound and scattering states, respectively. Here, Wl(ην, κνr)
are Whittaker functions and H±

l (ην, κνr) are the incoming and
outgoing Coulomb functions, with vν the speed, κν the wave
number, and ην the Sommerfeld parameter of the final state
being studied. Asymptotic normalization constant for bound
states and scattering matrix between initial (i) and final (ν)
scattering states are denoted, respectively, with CJ π T

ν and SJ π T
νi .

The functions uJ π T
ν (r) stand for either the nonorthogonalized

wave function χν(r) or for the orthogonalized χ̄ν(r) according
to which set of equations, Eq. (22) or (30), is being considered.

One of the advantages of the microscopic R-matrix method
is that the wave function in the internal region can be ex-
panded on a set of square-integrable functions. A particularly
convenient choice when dealing with nonlocal potentials, as
in our case, is the set of Lagrange functions fn(r) associated
with the shifted Legendre polynomials and defined on the mesh
points rn ∈ (0, r0) [37], labeled by the index 1 ! n ! N . When
the Gauss quadrature approximation is adopted, the Lagrange
functions are orthogonal to each other. In addition, thanks to
the Gauss quadrature approximation and the properties of the
Lagrange functions, matrix elements of nonlocal potentials are
proportional to the values of the nonlocal potentials at the mesh
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in the Hamiltonian kernel. Detailed expressions for these
form factors are given in the Appendix. The calculation of
⟨AλJ πT |Âν$

J π T
νr ⟩ overlap matrix elements between NCSM

wave functions and binary-cluster states was also discussed in
Ref. [36]. We also note that by squaring the absolute value
of these matrix elements and integrating over r , one obtains
spectroscopic factors.

The NCSMC equations can be orthogonalized in a way
analogous to that presented for the NCSM/RGM in Sec. II B1.
To define the square and inverse square root of the NCSMC
norm in the r-space representation, we first rewrite Eq. (24)
as the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P ,

Nλλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − δνν ′Rnℓ(r)δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

N λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

, (27)

where the sum over the repeating indexes λ̃, ν̃, n, λ̃′, ν̃ ′, and
n′ is implied, the notation Rνr ν̃n stands for Rnℓ(r)δνν̃ , and the
model-space NCSMC norm is given by

N λ̃λ̃′

ν̃n ν̃ ′n′ =
(

δλ̃λ̃′ ḡλ̃ν̃ ′n′

ḡλ̃′ν̃n δν̃ν̃ ′δnn′

)

. (28)

Here, the model-space cluster form factor is related to the
r-space one through ḡλν(r) =

∑
n Rnl(r)ḡλνn (as demonstrated

in the Appendix). We note that, in principle, the norm kernels
(15) and (28) can become singular because of Pauli forbidden
states in the NCSM/RGM or because of linear dependencies
owing to the overcompleteness of the NCSMC basis. In
that case, one simply removes explicitly the norm kernel
eigenvectors corresponding to the singular eigenvalues to
facilitate the inversion and the orthogonalization process. The
square and inverse square roots of N can then be defined as

(N± 1
2 )λλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − Rnℓ(r)δνν ′δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

(N± 1
2 )λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

.

(29)

Inserting the identity N− 1
2 N+ 1

2 in both left- and right-hand
sides of Eq. (22) and multiplying by N− 1

2 from the left one
obtains the orthogonalized NCSMC equations

H

(
c̄
χ̄

)
= E

(
c̄
χ̄

)
, (30)

where the orthogonalized Hamiltonian is given by

H = N− 1
2

(
HNCSM h̄

h̄ H

)

N− 1
2 , (31)

and the orthogonal wave functions by
(

c̄
χ̄

)
= N+ 1

2

(
c
χ

)
. (32)

Finally, the ansatz (21) in terms of the orthogonalized NCSMC
wave function takes the form

∣∣(J π T
A

〉
=

∑

λ

|AλJ πT ⟩
[ ∑

λ′

(N− 1
2 )λλ′

c̄λ′

+
∑

ν ′

∫
dr ′ r ′2(N− 1

2 )λν ′r ′
χ̄ν ′(r ′)

r ′

]

+
∑

νν ′

∫
dr r2

∫
dr ′ r ′2Âν

∣∣$J π T
νr

〉
N− 1

2
νν ′ (r, r ′)

×
[ ∑

λ′

(N− 1
2 )λ

′

ν ′r ′ c̄λ′

+
∑

ν ′′

∫
dr ′′ r ′′2(N− 1

2 )ν ′r ′ν ′′r ′′
χ̄ν ′′(r ′′)

r ′′

]
. (33)

2. Solving the NCSMC equations

At large intercluster distances r , the clusters are assumed
to interact through the Coulomb interaction only. Hence, the
NCSMC equations are solved dividing the space into an
internal region, r ! r0, and an external region, r > r0, and
applying the coupled-channel microscopic R-matrix method
on a Lagrange mesh [37]. The separation radius r = r0
must be large enough to ensure that the wave function of
the A-body states |AλJ πT ⟩ vanishes when approaching the
external region, where the asymptotic behavior of the NCSMC
solutions is described entirely by the radial wave functions

uJ π T
ν (r) = CJ π T

ν Wℓ(ην, κνr), (34)

and

uJ π T
ν (r) = i

2
v

− 1
2

ν

[
δνiH

−
ℓ (ην, κνr) − SJ π T

νi H+
ℓ (ην, κνr)

]

(35)

for bound and scattering states, respectively. Here, Wl(ην, κνr)
are Whittaker functions and H±

l (ην, κνr) are the incoming and
outgoing Coulomb functions, with vν the speed, κν the wave
number, and ην the Sommerfeld parameter of the final state
being studied. Asymptotic normalization constant for bound
states and scattering matrix between initial (i) and final (ν)
scattering states are denoted, respectively, with CJ π T

ν and SJ π T
νi .

The functions uJ π T
ν (r) stand for either the nonorthogonalized

wave function χν(r) or for the orthogonalized χ̄ν(r) according
to which set of equations, Eq. (22) or (30), is being considered.

One of the advantages of the microscopic R-matrix method
is that the wave function in the internal region can be ex-
panded on a set of square-integrable functions. A particularly
convenient choice when dealing with nonlocal potentials, as
in our case, is the set of Lagrange functions fn(r) associated
with the shifted Legendre polynomials and defined on the mesh
points rn ∈ (0, r0) [37], labeled by the index 1 ! n ! N . When
the Gauss quadrature approximation is adopted, the Lagrange
functions are orthogonal to each other. In addition, thanks to
the Gauss quadrature approximation and the properties of the
Lagrange functions, matrix elements of nonlocal potentials are
proportional to the values of the nonlocal potentials at the mesh
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in the Hamiltonian kernel. Detailed expressions for these
form factors are given in the Appendix. The calculation of
⟨AλJ πT |Âν$

J π T
νr ⟩ overlap matrix elements between NCSM

wave functions and binary-cluster states was also discussed in
Ref. [36]. We also note that by squaring the absolute value
of these matrix elements and integrating over r , one obtains
spectroscopic factors.

The NCSMC equations can be orthogonalized in a way
analogous to that presented for the NCSM/RGM in Sec. II B1.
To define the square and inverse square root of the NCSMC
norm in the r-space representation, we first rewrite Eq. (24)
as the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P ,

Nλλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − δνν ′Rnℓ(r)δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

N λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

, (27)

where the sum over the repeating indexes λ̃, ν̃, n, λ̃′, ν̃ ′, and
n′ is implied, the notation Rνr ν̃n stands for Rnℓ(r)δνν̃ , and the
model-space NCSMC norm is given by

N λ̃λ̃′

ν̃n ν̃ ′n′ =
(

δλ̃λ̃′ ḡλ̃ν̃ ′n′

ḡλ̃′ν̃n δν̃ν̃ ′δnn′

)

. (28)

Here, the model-space cluster form factor is related to the
r-space one through ḡλν(r) =

∑
n Rnl(r)ḡλνn (as demonstrated

in the Appendix). We note that, in principle, the norm kernels
(15) and (28) can become singular because of Pauli forbidden
states in the NCSM/RGM or because of linear dependencies
owing to the overcompleteness of the NCSMC basis. In
that case, one simply removes explicitly the norm kernel
eigenvectors corresponding to the singular eigenvalues to
facilitate the inversion and the orthogonalization process. The
square and inverse square roots of N can then be defined as

(N± 1
2 )λλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − Rnℓ(r)δνν ′δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

(N± 1
2 )λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

.

(29)

Inserting the identity N− 1
2 N+ 1

2 in both left- and right-hand
sides of Eq. (22) and multiplying by N− 1

2 from the left one
obtains the orthogonalized NCSMC equations

H

(
c̄
χ̄

)
= E

(
c̄
χ̄

)
, (30)

where the orthogonalized Hamiltonian is given by

H = N− 1
2

(
HNCSM h̄

h̄ H

)

N− 1
2 , (31)

and the orthogonal wave functions by
(

c̄
χ̄

)
= N+ 1

2

(
c
χ

)
. (32)

Finally, the ansatz (21) in terms of the orthogonalized NCSMC
wave function takes the form

∣∣(J π T
A

〉
=

∑

λ

|AλJ πT ⟩
[ ∑

λ′

(N− 1
2 )λλ′

c̄λ′

+
∑

ν ′

∫
dr ′ r ′2(N− 1

2 )λν ′r ′
χ̄ν ′(r ′)

r ′

]

+
∑

νν ′

∫
dr r2

∫
dr ′ r ′2Âν

∣∣$J π T
νr

〉
N− 1

2
νν ′ (r, r ′)

×
[ ∑

λ′

(N− 1
2 )λ

′

ν ′r ′ c̄λ′

+
∑

ν ′′

∫
dr ′′ r ′′2(N− 1

2 )ν ′r ′ν ′′r ′′
χ̄ν ′′(r ′′)

r ′′

]
. (33)

2. Solving the NCSMC equations

At large intercluster distances r , the clusters are assumed
to interact through the Coulomb interaction only. Hence, the
NCSMC equations are solved dividing the space into an
internal region, r ! r0, and an external region, r > r0, and
applying the coupled-channel microscopic R-matrix method
on a Lagrange mesh [37]. The separation radius r = r0
must be large enough to ensure that the wave function of
the A-body states |AλJ πT ⟩ vanishes when approaching the
external region, where the asymptotic behavior of the NCSMC
solutions is described entirely by the radial wave functions

uJ π T
ν (r) = CJ π T

ν Wℓ(ην, κνr), (34)

and

uJ π T
ν (r) = i

2
v

− 1
2

ν

[
δνiH

−
ℓ (ην, κνr) − SJ π T

νi H+
ℓ (ην, κνr)

]

(35)

for bound and scattering states, respectively. Here, Wl(ην, κνr)
are Whittaker functions and H±

l (ην, κνr) are the incoming and
outgoing Coulomb functions, with vν the speed, κν the wave
number, and ην the Sommerfeld parameter of the final state
being studied. Asymptotic normalization constant for bound
states and scattering matrix between initial (i) and final (ν)
scattering states are denoted, respectively, with CJ π T

ν and SJ π T
νi .

The functions uJ π T
ν (r) stand for either the nonorthogonalized

wave function χν(r) or for the orthogonalized χ̄ν(r) according
to which set of equations, Eq. (22) or (30), is being considered.

One of the advantages of the microscopic R-matrix method
is that the wave function in the internal region can be ex-
panded on a set of square-integrable functions. A particularly
convenient choice when dealing with nonlocal potentials, as
in our case, is the set of Lagrange functions fn(r) associated
with the shifted Legendre polynomials and defined on the mesh
points rn ∈ (0, r0) [37], labeled by the index 1 ! n ! N . When
the Gauss quadrature approximation is adopted, the Lagrange
functions are orthogonal to each other. In addition, thanks to
the Gauss quadrature approximation and the properties of the
Lagrange functions, matrix elements of nonlocal potentials are
proportional to the values of the nonlocal potentials at the mesh
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in the Hamiltonian kernel. Detailed expressions for these
form factors are given in the Appendix. The calculation of
⟨AλJ πT |Âν$

J π T
νr ⟩ overlap matrix elements between NCSM

wave functions and binary-cluster states was also discussed in
Ref. [36]. We also note that by squaring the absolute value
of these matrix elements and integrating over r , one obtains
spectroscopic factors.

The NCSMC equations can be orthogonalized in a way
analogous to that presented for the NCSM/RGM in Sec. II B1.
To define the square and inverse square root of the NCSMC
norm in the r-space representation, we first rewrite Eq. (24)
as the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P ,

Nλλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − δνν ′Rnℓ(r)δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

N λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

, (27)

where the sum over the repeating indexes λ̃, ν̃, n, λ̃′, ν̃ ′, and
n′ is implied, the notation Rνr ν̃n stands for Rnℓ(r)δνν̃ , and the
model-space NCSMC norm is given by

N λ̃λ̃′

ν̃n ν̃ ′n′ =
(

δλ̃λ̃′ ḡλ̃ν̃ ′n′

ḡλ̃′ν̃n δν̃ν̃ ′δnn′

)

. (28)

Here, the model-space cluster form factor is related to the
r-space one through ḡλν(r) =

∑
n Rnl(r)ḡλνn (as demonstrated

in the Appendix). We note that, in principle, the norm kernels
(15) and (28) can become singular because of Pauli forbidden
states in the NCSM/RGM or because of linear dependencies
owing to the overcompleteness of the NCSMC basis. In
that case, one simply removes explicitly the norm kernel
eigenvectors corresponding to the singular eigenvalues to
facilitate the inversion and the orthogonalization process. The
square and inverse square roots of N can then be defined as

(N± 1
2 )λλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − Rnℓ(r)δνν ′δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

(N± 1
2 )λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

.

(29)

Inserting the identity N− 1
2 N+ 1

2 in both left- and right-hand
sides of Eq. (22) and multiplying by N− 1

2 from the left one
obtains the orthogonalized NCSMC equations

H

(
c̄
χ̄

)
= E

(
c̄
χ̄

)
, (30)

where the orthogonalized Hamiltonian is given by

H = N− 1
2

(
HNCSM h̄

h̄ H

)

N− 1
2 , (31)

and the orthogonal wave functions by
(

c̄
χ̄

)
= N+ 1

2

(
c
χ

)
. (32)

Finally, the ansatz (21) in terms of the orthogonalized NCSMC
wave function takes the form

∣∣(J π T
A

〉
=

∑

λ

|AλJ πT ⟩
[ ∑

λ′

(N− 1
2 )λλ′

c̄λ′

+
∑

ν ′

∫
dr ′ r ′2(N− 1

2 )λν ′r ′
χ̄ν ′(r ′)

r ′

]

+
∑

νν ′

∫
dr r2

∫
dr ′ r ′2Âν

∣∣$J π T
νr

〉
N− 1

2
νν ′ (r, r ′)

×
[ ∑

λ′

(N− 1
2 )λ

′

ν ′r ′ c̄λ′

+
∑

ν ′′

∫
dr ′′ r ′′2(N− 1

2 )ν ′r ′ν ′′r ′′
χ̄ν ′′(r ′′)

r ′′

]
. (33)

2. Solving the NCSMC equations

At large intercluster distances r , the clusters are assumed
to interact through the Coulomb interaction only. Hence, the
NCSMC equations are solved dividing the space into an
internal region, r ! r0, and an external region, r > r0, and
applying the coupled-channel microscopic R-matrix method
on a Lagrange mesh [37]. The separation radius r = r0
must be large enough to ensure that the wave function of
the A-body states |AλJ πT ⟩ vanishes when approaching the
external region, where the asymptotic behavior of the NCSMC
solutions is described entirely by the radial wave functions

uJ π T
ν (r) = CJ π T

ν Wℓ(ην, κνr), (34)

and

uJ π T
ν (r) = i

2
v

− 1
2

ν

[
δνiH

−
ℓ (ην, κνr) − SJ π T

νi H+
ℓ (ην, κνr)

]

(35)

for bound and scattering states, respectively. Here, Wl(ην, κνr)
are Whittaker functions and H±

l (ην, κνr) are the incoming and
outgoing Coulomb functions, with vν the speed, κν the wave
number, and ην the Sommerfeld parameter of the final state
being studied. Asymptotic normalization constant for bound
states and scattering matrix between initial (i) and final (ν)
scattering states are denoted, respectively, with CJ π T

ν and SJ π T
νi .

The functions uJ π T
ν (r) stand for either the nonorthogonalized

wave function χν(r) or for the orthogonalized χ̄ν(r) according
to which set of equations, Eq. (22) or (30), is being considered.

One of the advantages of the microscopic R-matrix method
is that the wave function in the internal region can be ex-
panded on a set of square-integrable functions. A particularly
convenient choice when dealing with nonlocal potentials, as
in our case, is the set of Lagrange functions fn(r) associated
with the shifted Legendre polynomials and defined on the mesh
points rn ∈ (0, r0) [37], labeled by the index 1 ! n ! N . When
the Gauss quadrature approximation is adopted, the Lagrange
functions are orthogonal to each other. In addition, thanks to
the Gauss quadrature approximation and the properties of the
Lagrange functions, matrix elements of nonlocal potentials are
proportional to the values of the nonlocal potentials at the mesh

034326-5

Ψ (A) = cλ
λ

∑ ,λ + dr γ v (
r )∫ Âν

ν

∑ ,ν
A− a( )

a( )

r

χν (r) ~ CνW (kνr) χν (r) ~ vν
−12 δνiIν (kνr)−UνiOν (kνr)[ ]

Bound state Scattering state Scattering matrix 

Asymptotic behavior             : r→∞



E1 transitions in NCSMC 

34 

Unified ab initio approaches to nuclear structure and reactions 35

wave function between target and projectile:
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Here, ~R(A�a)
c.m.

and ~R(a)
c.m.

are the c.m. coordinates the (A � a)- and a-nucleon systems,

respectively, and ~r
A�a,a

= ~R(A�a)
c.m.

� ~R(a)
c.m.

is the relative displacement vector between

the two clusters, while Z(A�a) and Z(a) represent respectively the charge numbers of the

target and of the projectile. It can be easily demonstrated that Eqs. (77) and (79) are

exactly equivalent.

The reduced matrix elements of the ~E1 dipole operator between two bound states

of an A-body nucleus with spin J
i

, parity ⇡
i

, isospin T
i

, energy E
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in the initial state

and J
f

, ⇡
f

, T
f

, E
f

in the final state are given by:
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In the second line of Eq. (80) we have introduced the short notation f(i) for the group

of quantum numbers {J⇡

f(i)

f(i) T
f(i)} that will be used throughout the rest of this section.

In the NCSMC formalism the matrix element of Eq. (80) is given by the sum of four

components, specifically, the reduced matrix element in the NCSM sector of the wave

function, the “coupling” reduced matrix elements between NCSM and NCSM/RGM

(and vice versa) basis states, and the reduced matrix element in the NCSM/RGM sector:
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The algebraic expression for the reduced matrix elements in the NCSM sector

hA�0J
⇡

f

f

T
f

|| ~E1||A�J⇡

i

i

T
i

i can be easily obtained working in the single-particle SD

harmonic oscillator basis. In the following, we consider the reduced matrix elements

Ψ (A) = cλ
λ

∑ ,λ + dr γ v (
r )∫ Âν

ν

∑ ,ν
A− a( )

a( )

r
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operator acting exclusively on the first A � a nucleons (pertaining to the first cluster

or target); ii) an operator acting exclusively on the last a nucleons (belonging to the

second cluster or projectile); and, finally, iii) an operator acting on the relative motion

wave function between target and projectile:
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Here, ~R(A�a)
c.m.

and ~R(a)
c.m.

are the c.m. coordinates the (A � a)- and a-nucleon systems,

respectively, and ~r
A�a,a

= ~R(A�a)
c.m.

� ~R(a)
c.m.

is the relative displacement vector between

the two clusters, while Z(A�a) and Z(a) represent respectively the charge numbers of the

target and of the projectile. It can be easily demonstrated that Eqs. (77) and (79) are

exactly equivalent.

Noting that the dipole operator can be expanded in terms of spherical basis vectors
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it is convenient to introduce the reduced matrix elements between two bound states of

an A-body nucleus with spin J
i

, parity ⇡
i

, isospin T
i

, energy E
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in the initial state and
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In the second line of Eq. (81) we have introduced the short notation f(i) for the group

of quantum numbers {J⇡

f(i)

f(i) T
f(i)} that will be used throughout the rest of this section.

In the NCSMC formalism the matrix element of Eq. (81) is given by the sum of four

components, specifically, the reduced matrix element in the NCSM sector of the wave

function, the “coupling” reduced matrix elements between NCSM and NCSM/RGM
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(and vice versa) basis states, and the reduced matrix element in the NCSM/RGM sector:
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The algebraic expression for the reduced matrix elements in the NCSM sector
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i can be easily obtained working in the single-particle SD

harmonic oscillator basis. In the following, we consider the reduced matrix elements

in the NCSM/RGM sector. First, we notice that the inter-cluster antisymmetrizer

commutes with the A-nucleon ~E1 dipole operator of Eq. (77) and
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Second, using the ~E1 operator in the form of Eq. (79) we can rewrite, e.g., the first

matrix element in the right-hand side of Eq. (83) as:
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Given the long-range nature of the electric dipole operator and the fact that the e↵ect

of the exchange part of the antisymmetrization operator is short-ranged, if there are no

allowed E1 transitions between the target (projectile) eigenstate in the initial state and

that in the final state (e.g., only positive-parity eigenstates of the target/projectile are

included in the model space), the first two terms on the right hand side of Eq. (84) are

expected to be negligible and one obtains:
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Bound to bound NCSM NCSMC-phenom Expt. 

B(E1; 1/2+è1/2-) [e2 fm2] 5x10-6 0.118 0.102(2)  
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… to be simultaneously determined  
by solving the coupled NCSMC equations 
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further confidence in the procedure and the calculated factor
of 5.4 is used in the following analysis of the Coulomb
breakup cross sections. It is interesting to note, however, that
this scaling factor is significantly larger than expected from a
frequently used procedure of scaling the cross sections with
the radius, which is suggested by a geometrical picture for
peripheral reactions. This effect is especially pronounced for
halolike systems, and is less important for well bound nucle-
ons, as can be seen from Table I by comparing the two cross
sections for the lead and carbon targets calculated for the
removal of a p neutron yielding the 1! and 2! excited states
of 10Be.
After subtracting the nuclear contribution from the mea-

sured cross section with the lead target, the dipole strength
distribution is derived from the resulting differential cross
section for electromagnetic excitation by dividing out the
number of equivalent photons. The experimental dipole-
strength function for transitions to the 10Be ground state
!solid symbols" is compared to the strength distribution as
extracted from a measurement at lower beam energy by Na-
kamura et al. #12$ !open symbols" in Fig. 6.
The shapes of the two distributions are in agreement, the

absolute strength, however, differs significantly. This finding
might partly be related to the fact that contributions from
excited states were not subtracted in the older semiexclusive
measurement. Also higher-order effects and nuclear-

electromagnetic interference might play a role at the lower
beam energy of 72 MeV/nucleon #58–61$, while such effects
are found to be negligibly small at higher beam energies
!see, e.g., Ref. #59,60$". The continuum dipole strength inte-
grated from the neutron threshold up to an excitation energy
of 6.1 MeV amounts to 0.90(6)e2 fm2, much larger than the
dipole strength of 0.100(15)e2 fm2 #62$ observed for the
transition to the first and only bound excited state in 11Be,
which represents one of the strongest E1 transitions in nuclei
#62–65$. The value of 0.90(6)e2 fm2 corresponds to 4.4% of
the classical Thomas-Reiche-Kuhn sum rule for dipole tran-
sitions #66$. For an integration limit of 4 MeV in relative
energy, a value of 0.83(6)e2 fm2 is obtained compared to
1.3(0.3)e2 fm2 obtained by Nakamura et al. #12$.
The result of the calculations with the direct-breakup

model #Eq. !6"$ is displayed in Fig. 6 by the dashed and solid
curves, before and after convoluting with the experimental
response, respectively. The distorted continuum waves were
calculated with an optical potential adopting parameters from
Ref. #57$. The normalization of the theoretical curve was
adjusted by multiplying with a spectroscopic factor of
0.61!5" as derived from the ratio of experimental to calcu-
lated cross section for electromagnetic breakup !see Table I".
First, we note a remarkable agreement of theory and experi-
ment concerning the shape. Only minor differences can be
observed in the peak region. The shape is not very sensitive
to the optical potential used, as can be seen by comparison
with the result for plane waves !dotted curve". The absolute
strength, however, changes significantly resulting in a
smaller spectroscopic factor of 0.54 for the plane-wave ap-
proximation. In order to check the sensitivity to the param-
eters of the optical potential, we calculated cross sections
also with other choices taken from the work of Chadwick
and Young #57$ and Bonaccorso and Carstoiu #67$, resulting
in spectroscopic factors of 0.59 and 0.63, respectively. This
small dependence on the parameters used is incorporated in
the error for the deduced spectroscopic factor of 0.61!5" for
the halo neutron in the 2s1/2 orbital coupled to the 0" ground
state of the 10Be core.
The calculated cross section, and consequently the ex-

tracted spectroscopic factor, depends to a certain extent on
the parameters defining the geometry of the Woods-Saxon
potential. Changing the radius parameter r0 and diffuseness a
from r0#1.25 and a#0.7 to r0#1.15 and a#0.5, respec-
tively, will change the asymptotic normalization of the
single-particle wave function !see Fig. 7" and thus its rms
radius.
Since the Coulomb breakup cross section is mainly sensi-

tive to the tail of the wave function, the spectroscopic factor
changes accordingly, e.g., from 0.61!5" to 0.74!6" for the
2s1/2 halo state. The stars in Fig. 7 display the transition
probability !for the 2s1/2 neutron" to the continuum as a
function of the relative neutron-core distance. As is evident
from Fig. 7, the Coulomb breakup probes only the
asymptotic part of the 2s1/2 ground-state wave function
which does not depend on the exact geometry of the nuclear
potential !apart from the normalization". This is further illus-
trated by comparing to a Yukawa wave function
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this work
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FIG. 6. Dipole-strength distribution of 11Be deduced from the
measurement of the differential cross section d%/dE* for electro-
magnetic breakup yielding the 10Be fragment in its ground state
!filled symbols". The open symbols display the result obtained by
Nakamura et al. #12$ from a Coulomb-breakup experiment at lower
beam energies. In the latter case, excited state contributions were
not subtracted. The dashed and solid curves display the result of the
direct-breakup model before and after convoluting with the instru-
mental response, respectively, and after multiplying with a spectro-
scopic factor of 0.61. The dotted curve results from a calculation
using the plane-wave approximation.
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whose limit for energy tending to infinity provides a sum rule which is model indepen- 
dent (integration of  Eq. (9) yields a model-dependent sum rule). For dipole transitions, 
one has [38] 

9e 2 h 2 N Z  
S(E1) = lim B ( E ) -  - - - - ,  (11) 

E--.oo 4¢r 2mN A 

where mN is the nucleon mass, and N and Z are the neutron and proton numbers of  
the nucleus (A = N + Z) .  For halo nuclei, Suzuki [35] suggested to separate in (11) 
the contribution of  the core nucleus, and the contribution of  the halo. This latter term, 
related to the soft dipole mode (SDM),  reads 

S (E1 ,SDM)  = 9e2 h2 nZ2c (12) 
4¢r 2mN AAc ' 

where n is the number of  external neutrons (n = 1 here), and index c refers to the core 
nucleus. For llBe, we have S(E1, SDM) = 2.2 e 2 fm 2 MeV. Notice that, contrarily to 
Eq. ( 11 ), expression (12) is model dependent since it assumes that the core nucleus is 
in its ground state, and that the wave functions can be exactly factorized into a core wave 
function and individual wave functions of  the valence neutrons. These requirements are 
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Electromagnetic and nuclear inelastic scattering of the halo nucleus 11Be have been investigated by a
measurement of the one-neutron removal channel, utilizing a secondary 11Be beam with an energy of 520
MeV/nucleon impinging on lead and carbon targets. All decay products, i.e., 10Be fragments, neutrons, and #
rays have been detected in coincidence. Partial cross sections for the population of ground and excited states in
10Be were determined for nuclear diffractive breakup as well as for electromagnetically induced breakup. The
partial cross sections for ground-state transitions have been differentiated further with respect to excitation
energy, and the dipole-strength function associated solely with transitions of the halo 2s1/2 neutron to the
continuum has been derived. The extracted dipole strength integrated from the neutron threshold up to 6.1 MeV
excitation energy amounts to 0.90(6)e2 fm2. A spectroscopic factor for the $2s1/2!

10Be(0!) single-particle
configuration of 0.61!5" and a root-mean-square radius of the 2s1/2 neutron wave function of 5.7!4" fm have
been deduced.

DOI: 10.1103/PhysRevC.68.034318 PACS number!s": 21.10.Jx, 21.10.Gv, 24.50.!g, 25.60.Gc

I. INTRODUCTION

The investigation of nuclei near the drip lines via breakup
reactions at intermediate and high energies has attracted sig-
nificant interest in the past decade due to the availability of
fast radioactive beams produced by in-flight fragmentation
%1&. Such relatively high beam energies !ranging from about
50 MeV/nucleon to 1 GeV/nucleon" are advantageous both
from an experimental point of view as well as from theoret-
ical considerations. The high beam energies result in short
interaction times and small scattering angles, which allow
the use of certain approximations and thus a quantitative
description of the underlying reaction mechanisms. Experi-
mental merits are the possibility of using relatively thick
targets !in the order of g/cm2) and kinematical forward fo-
cusing, which makes full-acceptance measurements feasible
with moderately sized detectors. Thus nuclear-structure in-
vestigations of very exotic nuclei at the drip lines are pos-
sible even if such beams are produced with very low rates in
the order of one ion per second.
Depending on their intrinsic structure, some of these

weakly bound atomic nuclei show the interesting property of
a very large spatial extension compared to its near neighbors
%2–5&. Such a halolike low-density tail of the neutron wave
function has a definite impact on the observables in breakup

reactions. These are, for example, the large cross sections
and narrow momentum distributions observed in the nuclear
one-neutron removal channel. Recently, semiexclusive ex-
periments of this kind were performed and quantitative in-
formation on the single-particle structure such as spin assign-
ments and spectroscopic factors was obtained. We refer to
Ref. %6& for a recent review and to Ref. %7& for the case of the
one-neutron halo nucleus 11Be, which is the object of inter-
est here. Two processes are considered to be important for
the nuclear one-neutron removal channel: !i" Knockout of
one nucleon by a !quasifree" nucleon-target reaction, and !ii"
inelastic excitation into the continuum or diffractive disso-
ciation. So far, experiments have not differentiated the two
contributions and have deduced nuclear-structure informa-
tion by comparing the experimental cross section with the
sum of the calculated cross sections for the two mechanisms
by using an eikonal model. The fact that the two reaction
mechanisms result in very different neutron-fragment rela-
tive momentum domains has been exploited in the present
experiment to separate the two contributions.
Another important subject of the paper deals with a

complementary process, the one-neutron removal induced by
the electromagnetic interaction. Here, the projectile is ex-
cited into the continuum by absorbing a virtual photon gen-
erated by the rapidly changing electromagnetic field of a tar-
get with high nuclear charge. The large radial extension of
the neutron density distribution of halo nuclei results in large
nonresonant dipole-transition probabilities close to the neu-
tron threshold. This ‘‘threshold strength’’ was observed ex-
perimentally for several halo nuclei, e.g., for the two-neutron
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Motivation:pp-chains

• In the stars, the pp-chains are the first reactions which synthesize nuclear
elements since they do not require any catalyst.

p + p ! 2H + e+ + ⌫e

2H + p ! 3He + �

3He + 3He ! ↵+ p + p 3He + ↵ ! 7Be + �

7Be + e� ! 7Li + ⌫e
7Be + p ! 8B + �

7Li + p ! ↵+ ↵ 8B ! ↵+ ↵+ e+ + ⌫e

Branch I Branch II Branch III
⇡ 69% ⇡ 30.9% ⇡ 0.1%

• The relative rates of the 3He(↵, �)7Be and 3He(3He, 2p)4He reactions determines
which percentage of the pp-chain terminations produces neutrinos.

Solar p-p chain 
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d⇥r��(⇥r)Â�J⇡T (A�a,a)

�⇥r

The idea behind the NCSMC

�̄ = N+ 1
2�

|⇥J⇡T
A � =

X

�

c�|A�J⇤T �+
X

⇥

Z
d⇤r

 
X

⇥0

Z
d⇤r 0N� 1

2
⇥⇥0 (⇤r,⇤r 0)⇥̄⇥0(⇤r 0)

!
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rch [fm]  2.62 2.647(17) 2.42 2.390(30) 
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Â�J⇡T (A�a,a)

⇥⌅r

NCSMC calculations with chiral SRG-N3LO NN potential (λ=2.15 fm-1) 
 

3He, 3H, 4He ground state, 8(π-) + 6(π+) eigenstates of 7Be and 7Li  
  

Preliminary: Nmax=12, hΩ=20 MeV  

J. Dohet-Eraly, P.N., S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, arXiv:1510.07717 [nucl-th]  



3He-4He and 3H-4He capture 

41 

-4

-2

0

2

4

6

8

10

E
�
E

4
H
e
�
E

3
H
e

[
M

e
V

]

NCSM NCSMC Exp.

7Be
↵ + 3He

3/2�
3/2� 3/2�

3/2� 3/2�
3/2�

1/2�
1/2� 1/2�

1/2� 1/2�

5/2�

5/2� 5/2�

5/2� 5/2�

5/2�

7/2�

7/2�
7/2�

7/2� 7/2�

7/2� ?

-4

-2

0

2

4

6

8

10

E
�
E

4
H
e
�
E

3
H

[
M

e
V

]

NCSM NCSMC Exp.

7Li
↵ + 3H

3/2�
3/2� 3/2�

3/2� 3/2�

3/2�

1/2�
1/2� 1/2�

1/2� 1/2�

1/2�

5/2�

5/2� 5/2�

5/2� 5/2�

5/2�

7/2�
7/2�

7/2�

7/2� 7/2�

7/2�

Figure 1: (Color online) The 7Be and 7Li spectra obtained from the NCSM
and NCSMC approaches and from experiments [40]. Only states with isospin
T = 1/2 are considered. Energies are given with respect to the ↵+3He/3H
threshold. Rectangles symbolize the widths of resonances. The question mark
indicates that the width is not experimentally determined.

relative collision energies up to ⇠10 MeV and shown in Fig. 2.
For the sake of clarity, the jump of +180� in the phase shifts at
the second 5/2� and 7/2� resonance energies are not displayed.
In both systems, the 1/2+ theoretical phase shifts overestimate
the corresponding experimental ones. However, the accuracy of
the experimental phase shifts is unclear since for most data, the
experimental error bars have not been evaluated. For negative-
parity partial waves, the discrepancy between theoretical and
experimental resonances seen in Fig. 1 is also visible in the
phase shifts. To evaluate the impact of these discrepancies on
the 3He(↵, �)7Be and 3H(↵, �)7Li astrophysical S factors, we
adopt a phenomenological model based on the NCSMC results
in the largest model space. The basic idea is to consider the en-
ergies of the square-integrable NCSM basis states E�, appear-
ing in Eq. (5), as adjustable parameters. These new degrees of
freedom are then used to reproduce the experimental 7Be and
7Li bound-state and resonance energies and reducing the gap
between theoretical and experimental 1/2+ phase shifts.

The 3He(↵, �)7Be and 3H(↵, �)7Li astrophysical S factors
obtained with the NCSMC approach and with its phenomeno-
logical version are displayed in Fig. 3 and compared with ex-
periment [6–14, 47–53]. The astrophysical S factors extrapo-
lated at zero colliding energy are given in Table 3. The electric
E1 and E2 transitions as well as the magnetic M1 transitions
have been considered. For the energy ranges which are consid-
ered, the contribution of the E1 transitions is dominant while
M1 contribution is essentially negligible and the E2 transitions
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Figure 2: (Color online) The ↵ + 3He and ↵ + 3H elastic phase shifts obtained
from the NCSMC approach and from experiments [45, 46]. Energies are given
with respect to the ↵+3He/3H threshold.

Figure 3: (Color online) Astrophysical S factor for the 3He(↵, �)7Be and
3H(↵, �)7Li radiative-capture processes obtained from the NCSMC approach
and from its phenomenological version and compared with other theoretical
approaches [3, 19] and with experiments [6–14, 47–53]. Recent data are in
color (online) and old data are in light grey.
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For the sake of clarity, the jump of +180� in the phase shifts at
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ing in Eq. (5), as adjustable parameters. These new degrees of
freedom are then used to reproduce the experimental 7Be and
7Li bound-state and resonance energies and reducing the gap
between theoretical and experimental 1/2+ phase shifts.
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Figure 2: (Color online) The ↵ + 3He and ↵ + 3H elastic phase shifts obtained
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computational reasons, the experimental phase shifts will not be
reproduced for ⇤ = 2.2 fm�1. Neither will they be reproduced
by considering the two other values of⇤ since the di↵erence be-
tween the 1/2+ phase shifts for the three adopted values of ⇤ is
small. Based on these results, we can reasonably argue that the
non-reproduction of the experimental 1/2+ phase shifts by our
approach is a feature of the two-nucleon forces used here and
not a consequence of a non-fully converged calculation. Taking
the three-nucleon forces into account could impact significantly
the phase shifts. The same conclusions can be drawn from the
analysis of the 1/2+ scattering lengths given in Table 5 for dif-
ferent values of the SRG parameter ⇤ and di↵erent values of
Nmax.

⇤ [fm�1] Nmax a1/2+ [fm]
2.2 8 -2.5
2.2 10 6.5
2.2 12 9.1
2.15 12 7.7
2.1 12 6.2

Table 5: 1/2+ scattering length for the ↵ + 3He collision for di↵erent values
of the SRG parameter ⇤ and di↵erent values of Nmax; the Nmax value used for
computing the colliding-nuclei wave functions is given.

For negative-parity partial waves, the discrepancy between
theoretical and experimental resonances seen in Fig. 1 is also
visible in the phase shifts. Moreover, the splitting between the
1/2� and 3/2� is underestimated, as it can be seen from the
comparison of the phase shifts and of the scattering lengths.
Instead of analysing the phase shifts and the scattering lengths,
we can compare directly theoretical and experimental cross sec-
tions. In Fig. 4, the di↵erential ↵ + 3He elastic cross sections
are displayed for di↵erent angles at two particular colliding en-
ergies and compared with experimental data from Ref. [55], for
which no phase-shift analysis exists. Our approach reproduces
the general trends of the experimental data.

To evaluate the impact of the discrepancies in the elastic scat-

5



Conclusions and Outlook 

•  We developed a new unified approach to nuclear bound and unbound states 
–  Merging of the NCSM and the NCSM/RGM = NCSMC  
–  Inclusion of three-nucleon interactions in reaction calculations for A>5 systems 
–  Extension to three-body clusters (6He ~ 4He+n+n): NCSMC in progress 

 
 

•  Ongoing projects: 
–  Transfer reactions 
–  Sensitivity analysis of nuclear interactions for halo 11Be and exotic 11N 
–  Applications to capture reactions important for astrophysics 
–  Bremsstrahlung 

•  Outlook 
–  Alpha-clustering (4He projectile)  

•  12C and Hoyle state: 8Be+4He 
•  16O: 12C+4He 

•  Ab initio calculations of nuclear structure and reactions is a dynamic field 
with significant advances  


