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Quantum Monte Carlo (QMC)
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QMC

QMC in two lines: 

QMC in more than two lines: 

J. Carlson et al, RMP 87, 1067 (2015).
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QMC - Variational Monte Carlo (VMC)

1. Guess a trial wave function     and generate a 
random position:  

2. Use the Metropolis algorithm to generate new 
positions     based on the probability                     
(Yields a set of “walkers” distributed according to 
they). 

3. Invoke the variational principle: 

= , , . . . , .

′ = � (
′)�

� ( )� .

� �

= � � � �
� � � > .



QMC - Diffusion Monte Carlo

• The wave function is imperfect:  

• Propagate in imaginary time to project out the 
ground state ∣ ⟩ .
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QMC - An Example
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QMC - An Example

( � )

 4.93

 4.94

 4.95

 4.96

 4.97

 4.98

 4.99

 5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

E
(τ

)

τ [1/Esep.]

 E1

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0  0.2  0.4  0.6  0.8  1

c n
 ψ

n
(x

)

x

n=3
n=5
n=7

( ) = � �
−( − ) � �

� � −( − ) � �
, ( ) =

∞
�
=

( )

= .



QMC - An Example
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QMC - An Example
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Of course, the Hamiltonian is much more 
complicated in nuclear physics.

The Hamiltonian

=�
=

+�
<
+ �
< <

+�



Chiral Effective Field Theory (EFT)
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Chiral EFT

Chiral EFT in two lines: 

More Details: 

E. Epelbaum et al, RMP 81, 1773 (2009); 

R. Machleidt et al, Phys. Rep. 503, (2011). 
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• Chiral EFT: Expand in 
powers of             
This and this allow 
force. 

• Long-range physics: 
π exchanges. 

• Short-range physics: 
Contacts x LECs. 

• Many-body forces & 
currents enter 
systematically.

/ .∼ ∼
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×
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Chiral EFT - Open Questions

• Power counting - Weinberg scheme ill defined but 
appears to give converging results, KSW scheme 
well defined but doesn’t appear to give converging 
results. What’s the right counting? 

• Regulator choices - Since we take cutoff finite, 
these now matter. How much? 

• Cutoff effects - Can we reduce cutoff effects? 

• Delta degrees of freedom - Are these important for 
convergence of the expansion? 

• Is there a better way forward?



Local construction possible1 up to NLO.  

Definitions. 

Regulator: 

Contacts: 

Chiral EFT

.

1A. Gezerlis et al, PRL 111 032501 (2013); JEL et al, PRL 113 192501 (2014); A. Gezerlis et al, PRC 90 054323 (2014)
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Local construction possible1 up to NLO.  
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Regulator: 
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O ( )

O ( )

O ( )
+ · · ·



Chiral EFT

O ( )

O ( )

O ( )
+ · · ·

→
( ) = + ( ⋅ )

( ) = + ( ⋅ ) + ( ⋅ )
+ ( ⋅ )( ⋅ )



Chiral EFT
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Chiral EFT

O ( )

O ( )

O ( )
+ · · ·

( ) = + ( ⋅ )
+ ( ⋅ ) + ( ⋅ )( ⋅ )
+ + ( ⋅ ) + ( ⋅ )
+ ( ⋅ )( ⋅ )
+ ( + )( × )( + ( ⋅ ))
+ ( ⋅ )( ⋅ )( + ( ⋅ ))
+ ( ⋅ )( ⋅ )( + ( ⋅ ))



Three-Nucleon Interaction
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Three-Nucleon Interaction



Three-Nucleon Interaction
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Three-Nucleon Interaction
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Three-Nucleon Interaction
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Three-Nucleon Interaction

F{ }→
∝ ∑< < ∑

= � , ⋅ , ⋅ , ⋅ ⋅ ,

⋅ ⋅ , [( × ) ⋅ ][( × ) ⋅ ]�

∝ −( / )



Three-Nucleon Interaction

F{ }→
∝ ∑< < ∑ ⋅
∝ ∑< < ∑
P ∝ ∑< < ∑P
P = ( −∑< ⋅ )( −∑<ℓ ⋅ ℓ)



Fits
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Choosing Observables

What to fit cD and cE to?

• Uncorrelated observables. 

• Probe properties of light nuclei: 

• Probe            physics:        scattering phase shifts.  

.

= /



Fits
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Results

A simultaneous description of properties of light 
nuclei,       scattering and neutron matter is possible. 

Uncertainty analysis as in                                           
E. Epelbaum et al, EPJ A51, 53 (2015).
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Finite Volume Calculations
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• Lattice QCD is the only ab initio method available 
to solve QCD directly at low energies. 

• Computational costs mean in our lifetimes, Lattice 
QCD will not likely simulate, e.g.,  

• Need some connection between Lattice QCD and 
ab initio low-energy nuclear theory;                     
e.g. obtaining LECs in chiral EFT from Lattice 
simulations.

Motivation - Nuclei In Finite Volume

.



• Lattice QCD is the only ab initio method available 
to solve QCD directly at low energies. 

• Computational costs mean in our lifetimes, Lattice 
QCD will not likely simulate, e.g.,  

• Need some connection between Lattice QCD and 
ab initio low-energy nuclear theory;                                                                                     
e.g. obtaining LECs in chiral EFT from Lattice 
simulations. Now add filler text! Yeah. I like this. 
Use Lattice ideas to extract resonant properties 
from finite volume calculations.

Motivation - Nuclei In Finite Volume

.
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Motivation - Lüscher Formula

• Take a simple scattering problem                          
Near threshold radiative capture in the      channel. 

• Might expect                          with, e.g.                                                                                
these words. 

• Not so!
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More On The Lüscher Formula

For low-energy S-wave scattering, can use the 
effective-range expansion:

Consider first two neutrons only and a contact 
interaction (smeared out)

( ) = �−� � � .

Introduce                .= /
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Results - Contact

First AFDMC calculations of excited states.

P. Klos et al, arXiv:1604.01387 [nucl-th]

http://arxiv.org/abs/1604.01387


2n In Finite Volume With Chiral Interactions

Now consider chiral EFT interactions. 

Standard Lüscher formula assumes    EFT.  /
� � � �

∼ −



Results - Chiral EFT

P. Klos et al, arXiv:1604.01387 [nucl-th]

http://arxiv.org/abs/1604.01387


Summary

• QMC + Chiral EFT is possible and yields new insights. 

• More studies of power counting, regulator choices 
and effects, and cutoff dependencies are necessary. 

• Chiral two- and three-nucleon interactions at          
have sufficient freedom to give a good description 
of light nuclei,        scattering, and neutron matter. 

• Calculations of nuclei in finite volume could 
eventually allow for comparison to Lattice QCD 
calculations.  



Thank You!


