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Finite Volume (FV) 
As a tool for

3
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FIG. 9. The mass density in the xz-plane from the T1 FV deuteron wavefunction at rest for L = 10, 15, 20,
and 30 fm.
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with r  L/2. By evaluating the FV wavefunction in different irreps with |d|  p
3, this ratio

can be determined in the FV, as is shown in Fig. 10. Not only does it exhibit strong dependence
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“Two-Nucleon Systems 
in a Finite Volume …”,  
R. Briceno, Z. Davoudi, 
T. Luu, M. Savage  
[arXiv:1309.3556] 
Phys. Rev. D88

Mass density of 
deuteron wave 
function at rest in 
different volumes

Can this be
 overcome?

Systematic “errors”… 
… since observables depend on 
the volume (L) 
Broken symmetries… 
… since rotation symmetry is 
reduced to ‘just’ cubic rotation 
symmetry 

Multiple calculations… 
… at multiple volumes must be 
performed to extrapolate to infinite 
volume

But…

Non-perturbative physics 
Evaluation of path integral 

Many-body physics 
Scalability of HMC algorithms 

Physical finite systems 
E.g. carbon nanotubes
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Twisted Boundaries 
A ‘knob’  for reducing FV effects

4

Reduce FV effects by increasing volume
Bound states scale exponentially in 
volume…

… but the computational cost increases as well

Change the boundary conditions
Usually LQCD and NLEFT calculations utilize 
periodic boundary conditions (PBs)

Anti-periodic boundary conditions

Twisted boundary conditions

O �
N3

L ⇥Nt

�

• Typically LQCD and all 
NLEFT calculations to 
date utilise periodic 
boundary conditions 

• There are other types of 
boundary conditions, e.g.

Alternative viewpoint:  The boundaries 
provide another `knob’ to improve 

calculations

 (~r + êiL) =  (~r)

 (~r + êiL) = � (~r) Anti-periodic boundary conditions
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FIG. 2: The mass of the nucleon (upper left panel), the ⇤ (upper right panel), the ⌃ (lower left
panel) and the ⌅ (lower right panel) as a function of e�m⇡L

/(m⇡L). The points and associated
uncertainties (blue) are the results of the Lattice QCD calculations. The dark (light) shaded region
corresponds to the 1� statistical uncertainty (statistical and systematic uncertainties combined in
quadrature) associated with a fit of the form given in eq. (14).

B. The Octet Baryons with NLO HB�PT

In this section we explore both SU(2)L ⌦ SU(2)R and SU(3)L ⌦ SU(3)R HB�PT predictions
and fits to the results of the Lattice QCD calculations. The analyses are performed at NLO
in the chiral expansion; unfortunately they do not provide significant constraints on the
counterterms that appear beyond NLO in HB�PT. Our strategy in these analyses is to use
the octet-octet axial couplings and the octet-decuplet mass splittings from experimental data
and Lattice QCD results, and fit the octet-decuplet axial couplings and the baryon masses
in the infinite-volume limit to the results of the Lattice QCD calculations, given in table I,
using two-flavor HB�PT. Inserting these fit values into the full three-flavor finite-volume
corrections gives a measure of the relevance of kaon and ⌘ loops. The goal is to determine
the extent to which two- and three-flavor HB�PT describe the volume dependence of the
results of the Lattice QCD calculations. And, of course, it is of interest to determine whether
any significant constraints can be placed on the –with few exceptions, rather poorly known–
axial coupling constants of the baryons by studying finite-volume e↵ects.

10

Nucleon mass volume (L) dependence.

“…Volume Dependence of Light Hadron Masses”,  
NPLQCD  [arXiv:1104.4101], Phys.Rev. D84 

 (~r + ~eiL) = � (~r)

 (~r + ~eiL) =  (~r)

 (~r + ~eiL) = ei
~�·~ei (~r)

O(e��L)

ei⇡/2 = i

‘i-Periodic’:

 Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016
isaacs.sourceforge

spires-open-journal://
http://isaacs.sourceforge.net/phys/pbc.html
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P
~n02Z3 a†(~n0 +~l )a(~n0) |~ni =

(
|~n+~li e�i~�·~l/NL , ~n+~l 2 L3

|(~n+~l)L3i e�i~�·~l/NL , ~n+~l /2 L3

P
~n02Z3 a†(~n0 +~l )a(~n0) |~ni =

(
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Hermitian operators stay hermitian h~m~�1
1 , · · · ; ~m~�N

N |O|~n~�1
1 , · · · ;~n~�N

N i

= h~m~0
1, · · · ; ~m

~0
N |O|~n~01, · · · ;~n

~0
N i exp

 
i

NX

i=1

~�i/NL · (~ni � ~mi)

!
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TBCs — Summary

6

Twists are implemented at each step 
Well defined momenta (translation invariance) 

Twist are connected to particle “hops” 
For each d.o.f. you could use a different twist 

Twists can change CMS motion 
Constrained on twist conserve CMS motion

~p 7! 2⇡

L
~np +

~�

L
~np 2 Z3

X

i

~�i = ~0

~�1, ~�2, · · · , ~�N

 Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016
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Why should you use twisted boundaries?

Analytic Deuteron Results

7 Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016
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9

as a function of L corresponding to A2 irrep (blue curve) and E irrep (red curve), obtained from
the QCs in Eqs. (B5) and (B6). Even at L ⇠ 9 fm, the deuteron binding energies extracted from
both irreps are close to the infinite-volume value. In particular, calculations in the E irrep of the
C3v

group provide a few percent-level accurate determination of the deuteron binding energy in
this volume. The black-solid curve in Fig. 2 represents the S-wave limit of the interactions, when
the S-D mixing parameter and all phase shifts except that in the S-wave are set equal to zero. The
M 0

J

-averaged binding energy, �1
3(2B

(E)
d

+ B
(A2)
d

), converges to this S-wave limit, as shown in Fig.
2 (the A2 irrep contains the M 0

J

= 0 state while E contains the M 0

J

= ±1 states, where M 0

J

is
the projection of total angular momentum along the twist direction). In order to appreciate the
significance of calculations performed with the � = (

⇡

2 , ⇡

2 , ⇡

2 ) twist angles, it is helpful to recall
the deuteron binding energy obtained in calculations with PBCs. For PBCs, the only irrep of the
cubic group that has overlap with the 3S1-3D1 coupled channels is the three-dimensional irrep T1,
Eq. (B4), and the corresponding binding energy is shown in Fig. 3(a) (green curve). As is well
known, the binding energy deviates significantly from its infinite-volume value, such that the FV
deuteron is approximately twice as bound as the infinite-volume deuteron at L = 9 fm. For APBCs,
two irreps of the D3h

group overlap with the deuteron channel, A2 and E (Eqs. (B7,B8)), and yield
degenerate binding energies as shown in Fig. 3(a) (purple curves). As seen in Fig. 3(a), the
deuteron becomes unbound over a range of volumes and asymptotes slowly to the infinite-volume
limit. However, in analogy with the nucleon masses, the volume dependence of the deuteron binding
energy is significantly reduced by averaging the results obtained with PBCs and APBCs, as shown
in Fig. 3(a) (black-solid curve). Fig. 3(b) provides a magnified view of this averaged quantity
(black-solid curve), where the two energy levels associated with i-PBCs are shown for comparison.
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The remaining coefficients are dictated by the symmetry of the systems,
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14p
70

F4±4 . (C8)

The coefficients presented in Table I and Eq. (C8) show that the leading volume dependences of the c0,�,��
lm

functions are c00 = � 
4⇡ + O(e�2L/L), c10 = O(e�L/L), c22 = O(e�

p
2L/L), c30 = O(e�L/L), c32 =

O(e�
p

3L/L), c40 = O(e�2L/L) and c42 = O(e�
p

2L/L).
i-PBCs: A2
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FIG. 3: a) The deuteron binding energy as a function of L from PBCs (green curve) and from APBCs
(purple curve). The black-solid curve represents the average of these energies. b) A closer look at the average
in part (a) compared with energies obtained with i-PBCs, A2 (blue curve) and E (red curve).

In order to understand the observed volume improvements, consider the volume scaling of the
full QC assuming that the phase shifts beyond the ↵-wave are small. In this limit, for a general set

“Lüscher’s Formula with a twist”,  
R. Briceno, Z. Davoudi, T. Luu, M. Savage  
[arXiv:1311.7686], Phys.Rev. D89

Analytic Deuteron Results
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36 Chapter 3. Finite-volume calculations

x

 even

 odd

D̂B

Figure 3.1: Wave functions with even (bottom) and odd parity (top) for a one-
dimensional square well potential in a box with periodic boundary conditions. The dashed
lines give the infinite volume solutions for comparison.

are homogeneous polynomials in x, y and z. For ` = 0, . . . , 4 the basis polynomials are
given explicitly in [102].

For a given polynomial P (x, y, z), we define its leading parity as

lpP = (�1)dmax , (3.59)

where

dmax = max{degx P, degy P, degz P} (3.60)

is the maximum degree of P with respect to any one of the three variables. It is this
leading parity that determines the asymptotic behavior of the mass shift as L ! 1.
More precisely, we have

↵
�

1
L

� ⇠ (�1)dmax+1
�

1
L

�`�dmax as L ! 1 (3.61)

for the ↵
�

1
L

�

in Eq. (3.58).

It can easily be checked that this relation holds for all results presented in Table 3.1. For
` = 2, for example, we have the basis polynomials

P2,T+
2
⇠ xy , yz , zx , (3.62a)

P2,E+ ⇠ x2 � y2 , y2 � z2 , (3.62b)

and hence dmax = 1 for the T+
2 representation and dmax = 2 for the E+ representation.

“Non-relativistic bound states in a finite volume”,  
H. W. Hammer, S. König, D. Lee 
[arXiv:1109.4577]  Annals Phys. 327

Finite volume wave as copies of infinite volume wave (PB)

h~r| Li =
X

~n2Z3

h~r + ~nL| 1i+O(e�L)

TBCs — How does this work?

8

For two-body systems

�EL(L,�) := h L|ĤL � E1| Li

Schrödinger formalism “Volume Dependence of the Energy  
Spectrum in Massive Quantum  
Field Theories. 1. Stable Particle States”,  
M. Lüscher  
Commun.Math.Phys. 104 (1986) 177

 Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016
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36 Chapter 3. Finite-volume calculations
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Figure 3.1: Wave functions with even (bottom) and odd parity (top) for a one-
dimensional square well potential in a box with periodic boundary conditions. The dashed
lines give the infinite volume solutions for comparison.
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and hence dmax = 1 for the T+
2 representation and dmax = 2 for the E+ representation.

“Non-relativistic bound states in a finite volume”,  
H. W. Hammer, S. König, D. Lee 
[arXiv:1109.4577]  Annals Phys. 327

Finite volume wave as copies of infinite volume wave (PB)

h~r| Li =
X

~n2Z3

h~r + ~nL| 1i+O(e�L)

TBCs — How does this work?

8

For two-body systems

�EL(L,�) := h L|ĤL � E1| Li

Schrödinger formalism “Volume Dependence of the Energy  
Spectrum in Massive Quantum  
Field Theories. 1. Stable Particle States”,  
M. Lüscher  
Commun.Math.Phys. 104 (1986) 177

“Effective quantum 
theories with short-  
and long-range forces”,  
S. König  
Dissertation -  
University of Bonn (2013)

Energy shift corresponds  
to different box overlap

�E(LO)
L (L) :=

X

|~n|=1

Z
d3~r  ⇤

1(~r)V (r) 1(~r + ~nL)
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�E(LO)
L (L) :=

X

|~n|=1

Z
d3~r  ⇤

1(~r)V (r) 1(~r + ~nL) = �3|A|2 e
�L

µL

9

Periodic boundary result: S-Wave

V (~r) = 0 )  1(~r) = A
r

1

4⇡

e�r

r
8R < r < L , 2 = �2µE1
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�E(LO)
L (L) :=

X

|~n|=1

Z
d3~r  ⇤

1(~r)V (r) 1(~r + ~nL) = �3|A|2 e
�L

µL

�E(LO)
L (L, ~�) :=

X

|~n|=1

Z
d

3~r  ⇤
1(~r)V (r) 1(~r + ~nL)e�i~n·~�

= �|A|2 e
�L

µL

3X

i=1

cos(�i)

Twisted boundaries result

h~r ~�| Li =
X

~n2Z3

h~r + ~nL| 1i e�i~n·~� +O(e�L)

9

Periodic boundary result: S-Wave

Twisted boundaries

“Topological phases for bound states moving in a finite volume”,  
S. Bour, H. Hammer, S. König, D. Lee, U. Meißner 
[arXiv:1107.1272]  Phys.Rev. D84

 Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016
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Formalism & Error Analysis

Sources of errors 
(Numerical deviation  
 from theoretical prediction)

Contact interaction estimate 
(Fitting on Lattice)

Solving procedure 
(Lanczos like iteration)

Resolution not sufficient 
(Discretization errors)

Uncertainty of solvingprocedure

Same spacing for all 
computations (?)

ĤL | i = EL | i , VL(~n) =
c

a3
�~n,~0

=: �ES ' 10�4[MeV ]

 Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016
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~r 2 R3 7! ~r 2 L3 ) ~p 2 R3 7! 2⇡

L
~np , ~np 2 Z3

@2
x,a

f(~r) :=
1

a2
(f(~r + a~e

x

)� 2f(~r) + f(~r � a~e
x

))

p̂2
x

|~p i 7! 2 (1� cos(p
x

a))

a2
|~p i

Momenta in FV:

Lattice effects without twists

12

Discretization (one step derivative):

Dispersion relation (one step derivative):

Momenta in discrete space:
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@2
x,a

f(~r) :=
1

a2

⇣
ei�x

a/Lf(~r + a~e
x

)� 2f(~r) + e�i�

x

a/Lf(~r � a~e
x

)
⌘

~r 2 R3 7! ~r 2 L3 ) ~p 2 R3 7! ~p
~� =

2⇡

L
~np +

~�

L
, ~np 2 Z3

Lattice effects with twists

p̂2
x

|~p ~

� i 7!
2

⇣
1� cos(p

~

�

x

a)
⌘

a2
|~p ~

� i

Momenta in FV:

12

Discretization (one step derivative):

Dispersion relation (one step derivative):

Momenta in discrete space:

 Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Dispersion relations

13

How does discretization 
affect momenta? 

Contact interactions 
LECs are cutoff dependent 
(fitting)
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Dispersion relations

13
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How does discretization 
affect momenta? 

Contact interactions 
LECs are cutoff dependent 
(fitting)

Dispersion relations
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How does discretization 
affect momenta? 

Contact interactions 
LECs are cutoff dependent 
(fitting)

Dispersion relations
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13

�300 �200 �100 0 100 200 300
px [ MeV ]

0

20

40

60

80

100

120

E
k
in

,x
[M

eV
]

1/a = 100 [ MeV ]

Ekin

Ea
kin + O(a2)

�Ekin
How does discretization 
affect momenta? 

Contact interactions 
LECs are cutoff dependent 
(fitting)

Dispersion relations

@(N)2

x,a

f(~r) =
1

a2

NX

n=0

(�1)n+1 !
n

(f(~r + an~e
x

) + f(~r � an~e
x

))

 Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Dispersion relations

13

�300 �200 �100 0 100 200 300
px [ MeV ]

0

20

40

60

80

100

120

E
k
in

,x
[M

eV
]

1/a = 100 [ MeV ]

Ekin

Ea
kin + O(a2)

Ea
kin + O(a4)

�Ekin

How does discretization 
affect momenta? 

Contact interactions 
LECs are cutoff dependent 
(fitting)

Dispersion relations

@(N)2
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NX
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) + f(~r � an~e
x

))

 Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Dispersion relations

13

�300 �200 �100 0 100 200 300
px [ MeV ]

0

20

40

60

80

100

120

E
k
in

,x
[M

eV
]

1/a = 100 [ MeV ]

Ekin

Ea
kin + O(a2)

Ea
kin + O(a4)

Ea
kin + O(a6)

�Ekin

How does discretization 
affect momenta? 

Contact interactions 
LECs are cutoff dependent 
(fitting)

Dispersion relations
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�E := mean

 
Ekin � EL,~�,a

kin

Ekin

!

Infinite volume 
continuum dispersion

Legend

Finite volume  
discrete dispersion

Twisted discrete dispersion: NL = 3

14
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Formalism & Error Analysis

Sources of errors 
(Numerical deviation from theoretical prediction)

Size of NLO errors?

ĤL | i = EL | i , VL(~n) =
c

a3
�~n,~0

Contact interaction estimate 
(Fitting on Lattice)

Solving procedure 
(Lanczos like iteration)

Resolution not sufficient 
(Discretization errors)

Box too small 
(Finite Volume)

Uncertainty of solvingprocedure

Same spacing for all 
computations (?)

=: �ES ' 10�4[MeV ]
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Error Analysis
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Goal: 
Reliable results for small 
boxes

Data uncertainties  
Errors: 
Numerical errors
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Goal: 
Reliable results for small 
boxes

Data uncertainties  
Errors: 
Numerical errors

EL(E,A)
!
= A0

e�(E)L

µL
A+ E
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Error Analysis
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Goal: 
Reliable results for small 
boxes

Data uncertainties  
Errors: 
Numerical errors

Problem: 
Convergence?

EL(E,A)
!
= A0

e�(E)L

µL
A+ E



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

17

Error Analysis

 Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016

Goal: 
Reliable results for small 
boxes

Data uncertainties  
Errors: 
Numerical errors

Problem: 
Results for small boxes 
affect fitting

EL(E,A)
!
= A0

e�(E)L

µL
A+ E
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Goal: 
Reliable results for small 
boxes

Data uncertainties  
Errors: 
Numerical errors

Problem: 
Results for small boxes 
affect fitting

Solution: 
‘Re-weight’ data points

EL(E,A)
!
= A0

e�(E)L

µL
A+ E
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Error Analysis
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Estimate uncertainty: 
compute new correlated distributions 
within error bars for propagation

Num + NLO FV + N2LO FV
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Two-Body Results
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Numerical Results: 
Two-body level
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a = 1.97 fm
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Numerical Analysis
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Order Scaling in L Twist dependence
LO exp(�L)/L 6 cos(�)

NLO exp(�
p
2L)/(

p
2L) 8 cos2(�)

N2LO exp(�
p
3L)/(

p
3L) 8 cos3(�)

EL(E,A)
!
= A0

e�(E)L

µL
A+ E

Not including 
uncertainties of A0
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The Three-Body Case
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3-Body — What are the twists?

24

�E(LO)
L (L, {~�i = ~0}) =

3X

i=1

X

(~ni,~nj ,~nk)2Mi

v(~ni,~nj ,~nk)

v(~ni,~nj ,~nk) :=

Z
d3~xi d

3
~yi  

⇤
1(~xi, ~yi)Vi(xi) 1(~xi � (~nj + ~nk)L, ~yi +

1p
3
(~nj + ~nk � 2~ni)L)

Jacobi coordinate shift expressed  
in one particle coordinates

Set which minimizes relative hyper radius 

“Spectrum of three-body  
bound states in a finite 
volume”,  
U. G. Meißner, G. Ríos,  
A. Rusetsky  
[arXiv:1412.4969], 
Phys.Rev.Lett. 114

For twisted boundaries

Result at unitary limit

�E(LO)
L (L, {~�i}) =

N (LO)
PB

9

exp

⇣
� 2p

3
L

⌘

(L)3/2

3X

i,j=1

cos(~ej · ~�i)
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�E(LO)
L (L, {~�i}) =

3X

i=1

X

(~ni,~nj ,~nk)2Mi

v(~ni,~nj ,~nk) e
�i

3P
l=1

~�l·~nl
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3-Body — What are the twists?
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Numerical Findings
Probed twists 
‘iPB’ consistent 
twists
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A(�1,�2) = cos(�1) + cos(�2) + cos(�1 + �2)

Relative LO Error Amplitude CMS constraint
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3-Body results

26

�E(LO)
L (L,�i) = A(�i)

e�
2p
3
L

(L)3/2
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A(�i) := 3

A(�i)

A
max

=

3X

i=1

cos(�i)
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Numerical Results: 
Three-body level
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a = 1.97 fm
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Summary

28

Twists are easy to implement 
Multiply off diagonal terms by phase 
Claim: Twist do not increase sign oscillations (Future) 

Twisted boundaries for reduced FV effects 
Twist averaging vs iPBs 
One can extract infinite volume results without 
knowing the functional dependence 

Effects of twists on non-bound states? 
Mapping out the phase shifts? 

iPBs for larger systems (more Nuclei)? (Future) 
Can one find the twist dependence for larger systems? 
(Seems like yes) 

iPBs for other partial waves? (Future) 
Two-body results already known 

Can one relate this to relativistic systems? 
Are there time like twists? 

Reduce the lattice in time direction and simultaneously increase precision

 Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016
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Thank you for your attention

[arXiv:1511.06598] 

4-Body ‘iPBs’?


