

Applying Twisted Boundary Conditions for Few-Body Nuclear Systems

C. Körber & T. Luu

12th, April 2016 | Christopher Körber | PhD Student | Forschungszentrum Jülich & University of Bonn INT — Nuclear Physics from lattice QCD

Motivation

- Implementation
- Explanation
- Methodology
- Numerical Results
 2-Body
 3-Body

Finite Volume (FV) As a tool for

Non-perturbative physics Evaluation of path integral

- Many-body physics Scalability of HMC algorithms
- Physical finite systems E.g. carbon nanotubes

But...

Systematic "errors"...

... since observables depend on the volume (L)

Broken symmetries...

... since rotation symmetry is reduced to 'just' cubic rotation symmetry

Multiple calculations...

... at multiple volumes must be performed to extrapolate to infinite volume

Twisted Boundaries

A 'knob' for reducing FV effects

Reduce FV effects by increasing volume

Bound states scale exponentially in volume... $\mathcal{O}(e^{-\lambda L})$

... but the computational cost increases as well

 $\mathcal{O}\left(N_{I}^{3} \times N_{t}\right)$

Change the boundary conditions

Usually LQCD and NLEFT calculations utilize periodic boundary conditions (PBs)

$$\psi(\vec{r} + \vec{e}_i L) = \psi(\vec{r})$$

Anti-periodic boundary conditions

$$\psi(\vec{r} + \vec{e}_i L) = -\psi(\vec{r})$$

Twisted boundary conditions

 $\psi(\vec{r} \not \downarrow \vec{r} \vec{e}_i L) \hat{e}_i \underline{L} \hat{e}_i \underline{L} \hat{e}_i \vec{e}_i \psi(\vec{r})$

Nucleon mass volume (L) dependence.

'i-Periodic':

 $e^{i\pi/2} = i$

isaacs.sourceforge

TBCs — Implementation

$$\sum_{\vec{n}' \in \mathbb{Z}^3} a^{\dagger}(\vec{n}' + \vec{l}) a(\vec{n}') |\vec{n}\rangle = \begin{cases} |\vec{n} + \vec{l}\rangle &, \quad \vec{n} + \vec{l} \in L^3 \\ |(\vec{n} + \vec{l})_{L^3}\rangle e^{-i\vec{\phi} \cdot \hat{l}} &, \quad \vec{n} + \vec{l} \notin L^3 \end{cases}$$

TBCs — Implementation

$$\sum_{\vec{n}' \in \mathbb{Z}^3} a^{\dagger}(\vec{n}' + \vec{l}) a(\vec{n}') |\vec{n}\rangle = \begin{cases} |\vec{n} + \vec{l}\rangle e^{-i\vec{\phi} \cdot \vec{l}/N_L} &, \vec{n} + \vec{l} \in L^3 \\ |(\vec{n} + \vec{l})_{L^3}\rangle e^{-i\vec{\phi} \cdot \vec{l}/N_L} &, \vec{n} + \vec{l} \notin L^3 \end{cases}$$

Mitglied der Helmholtz-Gemeinschaft

TBCs — Implementation

 $\langle \vec{m}_1^{\vec{\phi}_1}, \cdots; \vec{m}_N^{\vec{\phi}_N} | O | \vec{n}_1^{\vec{\phi}_1}, \cdots; \vec{n}_N^{\vec{\phi}_N} \rangle$

Hermitian operators stay hermitian

$$= \langle \vec{m}_{1}^{\vec{0}}, \cdots; \vec{m}_{N}^{\vec{0}} | O | \vec{n}_{1}^{\vec{0}}, \cdots; \vec{n}_{N}^{\vec{0}} \rangle \exp\left(i \sum_{i=1}^{N} \vec{\phi}_{i} / N_{L} \cdot (\vec{n}_{i} - \vec{m}_{i})\right)$$

TBCs — Summary

Twists are implemented at each step Well defined momenta (translation invariance)

$$\vec{p} \mapsto \frac{2\pi}{L} \vec{n}_p + \frac{\vec{\phi}}{L} \qquad \vec{n}_p \in \mathbb{Z}^3$$

 $\vec{\phi}_1, \vec{\phi}_2, \cdots, \vec{\phi}_N$

Twist are connected to particle "hops" For each d.o.f. you could use a different twist

Constrained on twist conserve CMS motion

$$\sum_{i} \vec{\phi}_{i} = \vec{0}$$

Analytic Deuteron Results

Why should you use twisted boundaries?

Analytic Deuteron Results

Mitgl

TBCs — How does this work?

For two-body systems

Schrödinger formalism

Mitgli

$$\Delta E_L(L,\phi) := \langle \psi_L | \hat{H}_L - E_\infty | \psi_L \rangle$$

"Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 1. Stable Particle States", M. Lüscher Commun.Math.Phys. **104** (1986) 177

Finite volume wave as copies of infinite volume wave (PB)

TBCs — How does this work?

For two-body systems

Schrödinger formalism

$$\Delta E_L(L,\phi) := \langle \psi_L | \hat{H}_L - E_\infty | \psi_L \rangle$$

"Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 1. Stable Particle States", M. Lüscher Commun.Math.Phys. **104** (1986) 177

Finite volume wave as copies of infinite volume wave (PB)

Periodic boundary result: S-Wave

$$\Delta E_L^{(LO)}(L) := \sum_{|\vec{n}|=1} \int d^3 \vec{r} \ \psi_\infty^*(\vec{r}) V(r) \psi_\infty(\vec{r} + \vec{n}L) = -3|\mathcal{A}|^2 \frac{e^{-\kappa L}}{\mu L}$$
$$V(\vec{r}) = 0 \ \Rightarrow \ \psi_\infty(\vec{r}) = \mathcal{A}\sqrt{\frac{1}{4\pi}} \frac{e^{-\kappa r}}{r} \quad \forall R < r < L \,, \quad \kappa^2 = -2\mu E_\infty$$

Periodic boundary result: S-Wave

$$\Delta E_L^{(LO)}(L) := \sum_{|\vec{n}|=1} \int d^3 \vec{r} \, \psi_\infty^*(\vec{r}) V(r) \psi_\infty(\vec{r} + \vec{n}L) = -3|\mathcal{A}|^2 \frac{e^{-\kappa L}}{\mu L}$$

Twisted boundaries

$$\langle \vec{r}^{\vec{\phi}} | \psi_L \rangle = \sum_{\vec{n} \in \mathbb{Z}^3} \langle \vec{r} + \vec{n}L | \psi_\infty \rangle \, e^{-i\vec{n} \cdot \vec{\phi}} + \mathcal{O}(e^{-\kappa L})$$

Twisted boundaries result

"Topological phases for bound states moving in a finite volume", S. Bour, H. Hammer, S. König, D. Lee, U. Meißner [arXiv:1107.1272] Phys.Rev. **D84**

$$\begin{split} \Delta E_L^{(LO)}(L,\vec{\phi}) &:= \sum_{|\vec{n}|=1} \int \mathrm{d}^3 \vec{r} \; \psi_\infty^*(\vec{r}) V(r) \psi_\infty(\vec{r}+\vec{n}L) e^{-i\vec{n}\cdot\vec{\phi}} \\ &= -|\mathcal{A}|^2 \frac{e^{-\kappa L}}{\mu L} \sum_{i=1}^3 \cos(\phi_i) \end{split}$$

Formalism and Methodology

Formalism & Error Analysis

For 2-Body Level

Sources of errors

(Numerical deviation from theoretical prediction)

$$\hat{H}_L |\psi\rangle = E_L |\psi\rangle , \quad V_L(\vec{n}) = \frac{c}{a^3} \delta_{\vec{n},\vec{0}}$$

- Contact interaction estimate (Fitting on Lattice)
- Solving procedure (Lanczos like iteration)
- Resolution not sufficient (Discretization errors)

Uncertainty of solving procedure

$$=: \delta E_S \simeq 10^{-4} [MeV]$$

Same spacing for all computations (?)

Lattice effects without twists

Momenta in FV:

$$\vec{r} \in \mathbb{R}^3 \mapsto \vec{r} \in L^3 \qquad \Rightarrow \qquad \vec{p} \in \mathbb{R}^3 \mapsto \frac{2\pi}{L} \vec{n}_p , \quad \vec{n}_p \in \mathbb{Z}^3$$

Momenta in discrete space:

Discretization (one step derivative):

$$\partial_{x,a}^2 f(\vec{r}) := \frac{1}{a^2} \left(f(\vec{r} + a\vec{e}_x) - 2f(\vec{r}) + f(\vec{r} - a\vec{e}_x) \right)$$

Dispersion relation (one step derivative):

$$\hat{p}_x^2 \left| \vec{p} \right\rangle \mapsto \frac{2\left(1 - \cos(p_x a)\right)}{a^2} \left| \vec{p} \right\rangle$$

Lattice effects with twists

Momenta in FV:

$$\vec{r} \in \mathbb{R}^3 \mapsto \vec{r} \in L^3 \qquad \Rightarrow \qquad \vec{p} \in \mathbb{R}^3 \mapsto \vec{p^{\phi}} = \frac{2\pi}{L}\vec{n}_p + \frac{\vec{\phi}}{L} , \quad \vec{n}_p \in \mathbb{Z}^3$$

Momenta in discrete space:

Discretization (one step derivative):

$$\partial_{x,a}^2 f(\vec{r}) := \frac{1}{a^2} \left(e^{i\phi_x a/L} f(\vec{r} + a\vec{e}_x) - 2f(\vec{r}) + e^{-i\phi_x a/L} f(\vec{r} - a\vec{e}_x) \right)$$

Dispersion relation (one step derivative):

$$\hat{p}_x^2 \,|\vec{p}^{\vec{\phi}}\rangle \mapsto \frac{2\left(1 - \cos(p_x^{\vec{\phi}}a)\right)}{a^2} \,|\vec{p}^{\vec{\phi}}\rangle$$

How does discretization affect momenta?

Contact interactions

LECs are cutoff dependent (fitting)

How does discretization affect momenta?

Contact interactions

LECs are cutoff dependent (fitting)

How does discretization affect momenta?

Contact interactions

LECs are cutoff dependent (fitting)

How does discretization affect momenta?

Contact interactions

LECs are cutoff dependent (fitting)

How does discretization affect momenta?

Contact interactions

LECs are cutoff dependent (fitting)

$$\partial_{x,a}^{(N)^2} f(\vec{r}) = \frac{1}{a^2} \sum_{n=0}^{N} (-1)^{n+1} \omega_n \left(f(\vec{r} + an\vec{e}_x) + f(\vec{r} - an\vec{e}_x) \right)$$

Contact interactions

LECs are cutoff dependent (fitting)

$$\partial_{x,a}^{(N)^2} f(\vec{r}) = \frac{1}{a^2} \sum_{n=0}^{N} (-1)^{n+1} \omega_n \left(f(\vec{r} + an\vec{e}_x) + f(\vec{r} - an\vec{e}_x) \right)$$

Contact interactions

LECs are cutoff dependent (fitting)

$$\partial_{x,a}^{(N)^2} f(\vec{r}) = \frac{1}{a^2} \sum_{n=0}^{N} (-1)^{n+1} \omega_n \left(f(\vec{r} + an\vec{e}_x) + f(\vec{r} - an\vec{e}_x) \right)$$

 $a = 1.97 \ fm$

 $a = 1.97 \ fm$

 $a = 1.97 \ fm$

Formalism & Error Analysis

$$\hat{H}_L |\psi\rangle = E_L |\psi\rangle , \quad V_L(\vec{n}) = \frac{c}{a^3} \delta_{\vec{n},\vec{0}}$$

Sources of errors

(Numerical deviation from theoretical prediction)

- Contact interaction estimate (Fitting on Lattice)
- Solving procedure (Lanczos like iteration)

- $=: \delta E_S \simeq 10^{-4} [MeV]$
- Resolution not sufficient (Discretization errors)
- Box too small (Finite Volume)

Same spacing for all computations (?)

Size of NLO errors?

- Goal: Reliable results for small boxes
- Data uncertainties Errors: Numerical errors

- Goal: Reliable results for small boxes
- Data uncertainties Errors: Numerical errors

- Goal: Reliable results for small boxes
- Data uncertainties Errors: Numerical errors

- Goal: Reliable results for small boxes
- Data uncertainties Errors: Numerical errors

- Goal: Reliable results for small boxes
- Data uncertainties Errors: Numerical errors

- Goal: Reliable results for small boxes
- Data uncertainties Errors: Numerical errors

- Goal: Reliable results for small boxes
- Data uncertainties Errors: Numerical errors

- Goal: Reliable results for small boxes
- Data uncertainties Errors: Numerical errors

- Goal: Reliable results for small boxes
- Data uncertainties Errors: Numerical errors
- Problem: Convergence?

- Goal: Reliable results for small boxes
- Data uncertainties Errors:

Numerical errors

- Goal: Reliable results for small boxes
- Data uncertainties Errors:

Numerical errors

- Goal: Reliable results for small boxes
- Data uncertainties Errors:

Numerical errors

- Goal: Reliable results for small boxes
- Data uncertainties Errors:

Numerical errors

- Goal: Reliable results for small boxes
- Data uncertainties Errors:

Numerical errors

- Goal: Reliable results for small boxes
- Data uncertainties Errors:

Numerical errors

$$E = -2.225 [MeV]$$

 $A = -3.99$

- Goal: Reliable results for small boxes
- Data uncertainties Errors: Numerical errors
- Problem: Results for small boxes affect fitting
- Solution: 'Re-weight' data points

$$\Delta E_L^{(NLO)} \simeq A_0 \frac{e^{-\sqrt{2}\kappa L}}{\mu L}$$

$$E = -2.225 \ [MeV]$$

 $\mathcal{A} = -3.99$

 $=: \Delta E_L^{(LO)}(L,\phi) + \delta(\Delta E_L^{(LO)}(L,\phi))$

$$\Delta E_L^{(NLO)} \simeq A_0 \frac{e^{-\sqrt{2}\kappa L}}{\mu L}$$

$$E = -2.225 [MeV]$$

 $A = -3.99$

 $=: \Delta E_L^{(LO)}(L,\phi) + \delta(\Delta E_L^{(LO)}(L,\phi))$

$$\Delta E_L^{(NLO)} \simeq A_0 \frac{e^{-\sqrt{2}\kappa L}}{\mu L}$$

$$E = -2.225 [MeV]$$

 $A = -3.99$

 $=: \Delta E_L^{(LO)}(L,\phi) + \delta(\Delta E_L^{(LO)}(L,\phi))$

Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016

$$\Delta E_L^{(NLO)} \simeq A_0 \frac{e^{-\sqrt{2}\kappa L}}{\mu L}$$

$$E = -2.225 [MeV]$$

 $A = -3.99$

 $=: \Delta E_L^{(LO)}(L,\phi) + \delta(\Delta E_L^{(LO)}(L,\phi))$

Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016

$$\Delta E_L^{(NLO)} \simeq A_0 \frac{e^{-\sqrt{2}\kappa L}}{\mu L}$$

$$E = -2.225 [MeV]$$

 $A = -3.99$

 $=: \Delta E_L^{(LO)}(L,\phi) + \delta(\Delta E_L^{(LO)}(L,\phi))$

Estimate uncertainty:

compute new correlated distributions within error bars for propagation

$$E = -2.225 [MeV]$$
$$\mathcal{A} = -3.99$$

Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016

Mitglied der Helmholtz-Gemeinschaft

Estimate uncertainty:

compute new correlated distributions within error bars for propagation

A = -3.99

ICH

Estimate uncertainty:

compute new correlated distributions within error bars for propagation

E = -2.225 [MeV]

A = -3.99

Estimate uncertainty:

compute new correlated distributions within error bars for propagation

Estimate uncertainty:

compute new correlated distributions within error bars for propagation

Two-Body Results

Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016

Mitglied der Helmholtz-Gemeinschaft

Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016

Mitglied der Helmholtz-Gemeinschaft

The Three-Body Case

3-Body — What are the twists?

"Spectrum of three-body bound states in a finite volume", U. G. Meißner, G. Ríos, A. Rusetsky [arXiv:1412.4969], Phys.Rev.Lett. **114**

$$v(\vec{n}_i, \vec{n}_j, \vec{n}_k) := \int d^3 \vec{x}_i d^3 \vec{y}_i \ \psi_{\infty}^*(\vec{x}_i, \vec{y}_i) V_i(x_i) \psi_{\infty}(\vec{x}_i - (\vec{n}_j + \vec{n}_k)L, \vec{y}_i + \frac{1}{\sqrt{3}} (\vec{n}_j + \vec{n}_k - 2\vec{n}_i)L$$

Set which minimizes relative hyper radius

For twisted boundaries

Mitglied der Helmholtz-Gemeinschaft

Ch

Jacobi coordinate shift expressed in one particle coordinates

$$\Delta E_L^{(LO)}(L,\{\vec{\phi_i}\}) = \sum_{i=1}^3 \sum_{(\vec{n}_i,\vec{n}_j,\vec{n}_k)\in M_i} v(\vec{n}_i,\vec{n}_j,\vec{n}_k) \ e^{-i\sum_{l=1}^3 \vec{\phi_l}\cdot\vec{n}_l}$$

Result at unitary limit

$$\Delta E_L^{(LO)}(L, \{\vec{\phi}_i\}) = \frac{\mathcal{N}_{PB}^{(LO)}}{9} \frac{\exp\left(-\frac{2}{\sqrt{3}}\kappa L\right)}{(\kappa L)^{3/2}} \sum_{i,j=1}^3 \cos(\vec{e}_j \cdot \vec{\phi}_i)$$
ristopher Körber – INT– Nuclear Physics from lattice QCD – 12th April, 2016

3-Body — What are the twists?

Relative LO Error Amplitude

CMS constraint

Mitglied der Helmholtz-Gemeinschaft

$$\mathcal{A}(\phi_i) := 3 \frac{A(\phi_i)}{A_{\max}} = \sum_{i=1}^3 \cos(\phi_i)$$

Christopher Körber — INT— Nuclear Physics from lattice QCD — 12th April, 2016

Mitglied der Helmholtz-Gemeinschaft

Summary

Twists are easy to implement • Multiply off diagonal terms by phase • Claim: Twist do not increase sign oscillations (Future) Twisted boundaries for reduced FV effects • Twist averaging vs iPBs • One can extract infinite volume results without knowing the functional dependence Effects of twists on non-bound states? • Mapping out the phase shifts? iPBs for larger systems (more Nuclei)? (Future) • Can one find the twist dependence for larger systems? (Seems like yes)

- iPBs for other partial waves? (Future) • Two-body results already known
- Can one relate this to relativistic systems?
- Are there time like twists?

• Reduce the lattice in time direction and simultaneously increase precision

Thank you for your attention

Mitglied der Helmholtz-Gemeinschaft