Effective theory of ³H and ³He

Sebastian König

in collaboration with H.W. Grießhammer, H.-W. Hammer, and U. van Kolck

INT Program 16-1, University of Washington

Seattle, WA

April 15, 2016

SK et al., J. Phys. G 43 055106 (2016), 1508.05085 [nucl-th]

Effective theory of $^3{\rm H}$ and $^3{\rm He}~-$ p. 1

Removing pions

Removing pions

Removing pions

pions are not resolved at sufficiently low energies!

Motivation

• scaling of Coulomb contributions

$$H(\Lambda) = \overbrace{H_{0,0}(\Lambda) + H_{0,1}(\Lambda)}^{nd + pd} + \overbrace{H_{0,1}^{(\alpha)}(\Lambda)}^{pd \text{ only}}$$

Vanasse, Egolf, Kerin, SK, Springer, PRC 89 064003 (2014)

Effective theory of $^3{\rm H}$ and $^3{\rm He}~-$ p. 3

Motivation

Why pionless EFT?

- conceptually clean and (reasonably) simple
- allows for a fully perturbative treatment of higher orders
- cutoff can be made arbitrarily large
- still clearly connected to QCD!

Why talk about it here?

• applied to analyze and extrapolate lattice results

Barnea *et al.* PRL **114** 052501 (2015) Kirscher *et al.* PRC **92** 054002 (2015)

 \bullet lattice QCD used to extract extract pionless LECs: $np \rightarrow d\gamma$

Beane et al. (NPLQCD) PRL 115 132001 (2015)

• study general EFT questions (renormalization with Coulomb)

Introduction

Coulomb effects in ${}^{3}\mathrm{He}$

Divergences

A new expansion

Summary

Two-body sector

Introduce dibaryon fields...

Two-body sector

Introduce dibaryon fields...

... and resum bubble-insertions to all orders!

Two-body sector

Introduce dibaryon fields...

... and resum bubble-insertions to all orders!

$$\Delta_d(k) \sim \underbrace{\frac{\mathrm{i}}{\underbrace{k\cot \delta_d} - \mathrm{i}k}}_{= -\gamma_d + \frac{\rho_d}{2}(k^2 + \gamma_d^2) + \cdots}$$

$$\gamma_d \rho_d \sim Q / \Lambda_{\not \! T} = \mathcal{O}(1/3)$$

Propagator renormalization

$$\mathrm{i}\Delta_d^{(0)}(p_0,\mathbf{p}) = rac{-\mathrm{i}}{\sigma_d^{(0)} + y_d^2 I_0(p_0,\mathbf{p})}$$

$$I_{0}(p_{0},\mathbf{p}) = M_{N} \int^{\Lambda} \mathrm{d}^{3}q \frac{1}{M_{N}p_{0} - \mathbf{p}^{2}/4 - \mathbf{q}^{2} + \mathrm{i}\varepsilon}$$
$$= -\frac{M_{N}}{4\pi} \left(\frac{2\Lambda}{\pi} + \underbrace{\sqrt{\frac{\mathbf{p}^{2}}{4} - M_{N}p_{0} - \mathrm{i}\varepsilon}}_{\rightarrow -\mathrm{i}k}\right) + \mathcal{O}(1/\Lambda)$$

• absorb linear divergence: $\sigma_d^{(0)} = \frac{2\Lambda}{\pi} - \gamma_d$

- $1/\Lambda$ effects are neglected (equivalent: PDS, $2\Lambda/\pi \rightarrow \mu_R$)
- without dibaryons: resummation of $\swarrow \sim C_0 = -4\pi/(M_N\sigma)$

Effective theory of $^3{\rm H}$ and $^3{\rm He}~-$ p. 7

 $\hookrightarrow \text{ two S-wave channels:} \\ 1\otimes \frac{1}{2} = \frac{3}{2}\left(\sim \varphi \varphi \varphi \right) \oplus \underbrace{\frac{1}{2}\left(\sim \varphi \varphi \varphi \varphi + \cdots\right)}^{\text{spin doublet} \to {}^{3}\text{H},{}^{3}\text{He}}$

Effective theory of
3
H and 3 He $-$ p. 8

—quartet channel—

 $\stackrel{\hookrightarrow}{\to} \text{two S-wave channels:} \\ 1\otimes \frac{1}{2} = \frac{3}{2}\left(\sim \diamondsuit \diamondsuit \diamondsuit \diamondsuit \Biggr) \oplus \underbrace{\frac{1}{2}\left(\sim \diamondsuit \diamondsuit \Biggr)}^{\text{spin doublet} \to {}^{3}\text{H},{}^{3}\text{He}} \underbrace{\frac{1}{2}\left(\sim \diamondsuit \diamondsuit \Biggr)}^{\text{spin doublet} \to {}^{3}\text{H},{}^{3}\text{He}} \underbrace{\frac{1}{2}\left(\sim \diamondsuit \Biggr)}^{\text{spin doublet} \to {}^{3}\text{H},{}^{3}\text{He}} \underbrace{\frac{1}{2}\left(\sim \diamondsuit \Biggr)}^{\text{spin doublet} \to {}^{3}\text{H},{}^{3}\text{He}} \underbrace{\frac{1}{2}\left(\sim \diamondsuit \Biggr)}^{\text{spin doublet} \to {}^{3}\text{H},{}^{3}\text{He}}} \underbrace{\frac{1}{2}\left(\sim \diamondsuit \Biggr)}^{\text{spin doublet} \to {}^{3}\text{H},{}^{3}\text{He}} \underbrace{\frac{1}{2}\left(\sim \bigtriangleup \Biggr)}^{\text{spin doublet} \to {}^{3}\text{H},{}^{3}\text{H$

-quartet channel

 \hookrightarrow solve integral equations to get phase shifts and binding energies

 \hookrightarrow solve integral equations to get phase shifts and binding energies

already at LO: $\underline{} \rightarrow \underline{} + \mathbf{X}$, $\mathbf{X} \sim \mathbf{X}$

- independent of spin and isospin $\rightarrow SU(4)$ -symmetry
- coupling runs in RG limit cycle
- makes amplitude cutoff-independent

already at LO:
$$\underline{} \rightarrow \underline{} + \mathbf{X}$$
 , $\mathbf{X} \sim \mathbf{X}$

- independent of spin and isospin $\rightarrow SU(4)$ -symmetry
- coupling runs in RG limit cycle
- makes amplitude cutoff-independent

Braaten, Hammer Phys. Rept. **428** 259 (2006)

Effective theory of
3
H and 3 He $-$ p. 10

Zhang et al., 1507.07239 [nucl-th]

... Zhang *et al.*, 1507.07239 [nucl-th]

Coulomb contributions

Effective theory of
3
H and 3 He $-$ p. 11

Coulomb contributions

only generated by dibaryon kinetic term! \hookrightarrow higher-order correction $\sim \rho_d$

Effective theory of
3
H and 3 He $-$ p. 11

Coulomb subtraction

Coulomb photons:
$$\sum \sim$$
 (ie) $\frac{i}{q^2}$ (ie) \rightarrow (ie) $\frac{i}{q^2 + \lambda^2}$ (ie)

 \bullet long (infinite) range \rightarrow very strong at small momentum transfer

Coulomb nonperturbative for $\eta \sim 1$ important for *p*-*d* scattering length! \hookrightarrow SK, Hammer, PRC 90 034005 (2014)

$$\sum_{\eta}^{2} k \cot \delta_{\text{diff}}(k) + \alpha \mu h(\eta) = -\frac{1}{a_{p-d}} + \cdots$$
(modified ERE)

Effective theory of
3
H and 3 He $-$ p. 12

Coulomb subtraction

 \bullet long (infinite) range \rightarrow very strong at small momentum transfer

The helion and the counterterm

He-3 binding energy

 $\textbf{bound-state} \leftrightarrow \textbf{pole!}$

 \hookrightarrow calculate ³He binding energy!

Coulomb effects in the proton-proton channel

Effective theory of
3
H and 3 He $-$ p. 15

Coulomb effects in the proton-proton channel

Coulomb-dressed propagator

$$\underbrace{ \left(\begin{array}{c} & \\ & \\ \end{array} \right) = \underbrace{ \left(\begin{array}{c} & \\ \end{array} \right) + \underbrace{ \left(\begin{array}{c}$$

Note: two divergences absorbed into a single parameter!

Effective theory of $^3{\rm H}$ and $^3{\rm He}~-$ p. 15
He-3 binding energy

 $\textbf{bound-state} \leftrightarrow \textbf{pole!}$

 \hookrightarrow calculate ³He binding energy!

He-3 beyond leading order

Effective theory of
3
H and 3 He $-$ p. 17

He-3 beyond leading order

Effective theory of $^3{\rm H}$ and $^3{\rm He}~-$ p. 17

He-3 beyond leading order

- NLO result is not cutoff stable
 → incomplete renormalization!
- refitting the three-body force to $E_B(^{3}\text{He})$ gives stable p-d phase shifts!

```
SK, Ph.D. thesis (2013)
SK et al., JPG 42 045101 (2015)
```

• form of new *p*-*d* specific counterterm can be derived analytically! \rightsquigarrow three body-force $H(\Lambda) = H_{0,0}(\Lambda) + H_{0,1}(\Lambda) + H_{0,1}^{(\alpha)}(\Lambda)$

Vanasse, Egolf, Kerin, SK, Springer, PRC 89 064003 (2014)

Counterterm controversy

A recent paper does not find a new counterterm at NLO!

7.75 7.75 7.65

Kirscher+Gazit, PLB 755 (2016) 253, 1510.00118 [nucl-th]

Counterterm controversy

A recent paper does not find a new counterterm at NLO!

Kirscher+Gazit, PLB 755 (2016) 253, 1510.00118 [nucl-th]

Vanasse *et al.*

- momentum-space formalism
- sharp cutoff (non-local)
- $\bullet\,$ can take Λ arbitrarily large

Kirscher and Gazit

- configuration-space (R)RGM
- Gaussian regulators (local)
- limited cutoff range

Counterterm controversy

A recent paper does not find a new counterterm at NLO!

7.75 7.75 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.65 800 A_{crit}. ~1230 1600 1800 2000 2100 2400 A |MeV|

Kirscher+Gazit, PLB 755 (2016) 253, 1510.00118 [nucl-th]

Vanasse *et al.*

- momentum-space formalism
- sharp cutoff (non-local)
- $\bullet\,$ can take Λ arbitrarily large

Kirscher and Gazit

- configuration-space (R)RGM
- Gaussian regulators (local)
- Iimited cutoff range

power counting \leftrightarrow regulators?

Effective theory of $^3{\rm H}$ and $^3{\rm He}~-$ p. 18

Coulomb corrections for nuclei

How much Coulomb should we really iterate?

Coulomb regimes

trinucleon binding momentum $\sim 80~{\rm MeV}\ldots$

 \hookrightarrow should Coulomb not be a small perturbative correction?

Effective theory of
3
H and 3 He $-$ p. 19

Nonperturbative vs. perturbative and helium

Effective theory of
3
H and 3 He $-$ p. 20

Nonperturbative vs. perturbative and helium

Nonperturbative vs. perturbative and helium

- use trinucleon wavefunctions
- fully perturbative in $\alpha!$

- an additional diagram is logarithmically divergent. . .
- ... but this divergence comes from the photon-bubble subdiagram!

- an additional diagram is logarithmically divergent. . .
- ... but this divergence comes from the photon-bubble subdiagram!

- an additional diagram is logarithmically divergent. . .
- ... but this divergence comes from the photon-bubble subdiagram!

\hookrightarrow as before: determine counterterm from p-p scattering!

$$\Delta_{t,pp}(p_0, \mathbf{p}) = \frac{-\mathrm{i}}{\underbrace{\sigma_{t,pp} - \frac{2\Lambda}{\pi} + \alpha M_N \left(\log \frac{2\Lambda}{\alpha M_N} - C_E\right)}_{=\mathrm{i}/a_C} - \alpha M_N H(\eta)}$$

cf. Kong, Ravndal (1999)

Effective theory of
3
H and 3 He $-$ p. 21

- an additional diagram is logarithmically divergent. . .
- ... but this divergence comes from the photon-bubble subdiagram!

 \hookrightarrow as before: determine counterterm from p-p scattering!

$$\Delta_{t,pp}(p_0, \mathbf{p}) = \frac{-\mathbf{i}}{\underbrace{\sigma_{t,pp} - \frac{2\Lambda}{\pi} + \alpha M_N \left(\log \frac{2\Lambda}{\alpha M_N} - C_E\right)}_{=1/a_C} - \alpha M_N H(\eta)}$$

cf. Kong, Ravndal (1999)

Important to isolate divergence for consistent renormalization!

- an additional diagram is logarithmically divergent. . .
- ... but this divergence comes from the photon-bubble subdiagram!

 \hookrightarrow as before: determine counterterm from p-p scattering!

$$\Delta_{t,pp}(p_0, \mathbf{p}) = \frac{-\mathrm{i}}{\underbrace{\sigma_{t,pp} - \frac{2\Lambda}{\pi} + \alpha M_N \left(\log \frac{2\Lambda}{\alpha M_N} - C_E\right)}_{=\mathrm{I}/a_C} - \alpha M_N H(\eta)}$$

cf. Kong, Ravndal (1999)

Important to isolate divergence for consistent renormalization!

Dressed bubble integral

$$J_0(k)$$

 $= G_C(k^2/M_N; \mathbf{0}, \mathbf{0})$
 $\hat{G}_C = \hat{G}_0^{(+)} + \hat{G}_0^{(+)} \hat{V}_C \hat{G}_C = \hat{G}_0^{(+)} + \hat{G}_0^{(+)} \hat{T}_C \hat{G}_0^{(+)}$
 $\hat{T}_C = \hat{V}_C + \hat{V}_C \hat{G}_0^{(+)} \hat{T}_C$
Effective theory of ³H and ³He - p. 21

- an additional diagram is logarithmically divergent. . .
- ... but this divergence comes from the photon-bubble subdiagram!

 \hookrightarrow as before: determine counterterm from p-p scattering!

$$\Delta_{t,pp}(p_0, \mathbf{p}) = \frac{-\mathbf{i}}{\underbrace{\sigma_{t,pp} - \frac{2\Lambda}{\pi} + \alpha M_N \left(\log \frac{2\Lambda}{\alpha M_N} - C_E\right)}_{=1/a_C} - \alpha M_N H(\eta)}$$

cf. Kong, Ravndal (1999)

Important to isolate divergence for consistent renormalization!

A new expansion

Take the leading-order singlet channel in the unitarity limit!

Effective theory of
$${}^{3}H$$
 and ${}^{3}He$ – p. 22

A new expansion

Take the leading-order singlet channel in the unitarity limit!

 $\sigma_t^{(0)} - 2\Lambda/\pi = 0$

NLO corrections

• scattering length: $\sigma_t^{(1)} \sim -1/a_t$

• effective range:
$$c_t^{(1)} = \frac{M_N r_0}{2}$$

A new expansion

Take the leading-order singlet channel in the unitarity limit!

 $\sigma_t^{(0)} - 2\Lambda/\pi = 0$

NLO corrections

• scattering length: $\sigma_t^{(1)} \sim -1/a_t$

• effective range:
$$c_t^{(1)} = \frac{M_N r_{0i}}{2}$$

- new ${}^{1}S_{0}$ LO is isospin-symmetric and parameter-free
- allows matching between perturbative and non-perturbative Coulomb regimes

Effective theory of $^3{\rm H}$ and $^3{\rm He}~-$ p. 22

Phillips line

Phillips line

Phillips line

Doublet-channel phase shift

New perturbative scheme

Leading order

- standard NN spin-triplet (pionless) amplitude (parameter γ_d)
- unitary NN spin-singlet amplitude (parameter-free)

• contact three-body force (parameter $\Lambda_* o E_B(^3{
m H})$ or $^2a_{
m n-d})$

Effective theory of
3
H and 3 He $-$ p. 25

New perturbative scheme

Leading order

- standard NN spin-triplet (pionless) amplitude (parameter γ_d)
- unitary NN spin-singlet amplitude (parameter-free)
- contact three-body force (parameter $\Lambda_* \to E_B(^{3}\mathrm{H})$ or $^{2}a_\mathrm{n-d})$

Next-to-leading order

- effective range in the NN spin-triplet channel (parameter ρ_d)
- isospin-symmetric range in the NN spin-singlet channel (parameter r_t)
- scattering-length correction to unitarity in the NN spin-singlet np and nn channels (parameter a_t),
- scattering-length correction to unitarity in the NN pp channel (parameter a_{p-p})
- one-photon exchange (parameter $\alpha = 1/137$)

Two-body sector

Consider two regimes in the p-p sector:

- determine counterterm in non-pert. regime (match to modified ERE)
- important to use consistent regularization scheme!

Two-body sector

Consider two regimes in the p-p sector:

- 2 $\alpha M_N \lesssim 1/a_{p-p} \ll Q \ll \Lambda_{\not{\pi}} \hookrightarrow$ Coulomb perturbative! (
- determine counterterm in non-pert. regime (match to modified ERE)
- important to use consistent regularization scheme!

- an additional diagram is logarithmically divergent. . .
- ... but this divergence comes from the photon-bubble subdiagram!

\hookrightarrow as before: determine counterterm from p-p scattering!

$$\Delta_{t,pp}(p_0, \mathbf{p}) = \frac{-\mathrm{i}}{\underbrace{\sigma_{t,pp} - \frac{2\Lambda}{\pi} + \alpha M_N \left(\log \frac{2\Lambda}{\alpha M_N} - C_E\right)}_{=\mathrm{i}/a_C} - \alpha M_N H(\eta)}$$

cf. Kong, Ravndal (1999)

Important to isolate divergence for consistent renormalization!

Two-body sector

Consider two regimes in the p-p sector:

- 2 $\alpha M_N \lesssim 1/a_{p-p} \ll Q \ll \Lambda_{\not{\pi}} \hookrightarrow$ Coulomb perturbative! (
- determine counterterm in non-pert. regime (match to modified ERE)
- important to use consistent regularization scheme!

Two-body sector

Consider two regimes in the p-p sector:

- determine counterterm in non-pert. regime (match to modified ERE)
- important to use consistent regularization scheme!

 \leadsto perturbative prediction for $p\!\!-\!\!p$ phase shift:

$$k \cot \delta_{t,pp}(k) = -\frac{1}{a_{p-p}} + \alpha M_N C_\Delta + \frac{r_t}{2} k^2 + \alpha M_N \log\left(\frac{\alpha M_N}{2k}\right) + \cdots$$

Effective theory of $^3{\rm H}$ and $^3{\rm He}~-$ p. 28

Three-body sector: perturbative ³He

New expansion ensures renormalized NLO result for ³He!

Three-body sector: perturbative ³He

Three-body sector: perturbative ³He

- \bullet Coulomb indeed perturbative in $^{3}\mathrm{He}$ \checkmark
- consistent renormalization crucial to achieve this!

Divergence dissection

Vanasse, Egolf, Kerin, SK, Springer, PRC 89 064003 (2014)

Look at structure of *p*-*d* three-body force:

$$H_{0,1}^{(\alpha)}(\Lambda) = h_I^{(\alpha)}(\Lambda) + h_\kappa^{(\alpha)}(\Lambda)$$

$$h_{I}^{(\alpha)}(\Lambda) = -\frac{3\pi(1+s_{0}^{2})}{16} \left\{ \frac{1}{12}(r_{p-p}-r_{t})\Lambda\left[1-\cdots\right] \right\}$$

+ various terms ~ $\log \Lambda$, all $\propto (r_{p-p} - r_t)$ or $\propto (\gamma_{p-p} - \gamma_t) \left\{ / \sin^2 (\cdots) \right\}$

$$h_{\kappa}^{(lpha)}=-rac{\sqrt{3}\kappa\pi(1+s_0^2)}{48}ig\{ ext{various terms}\sim\log\Lambda^{-1}ig\}$$

- pieces associated with $r_{p-p} \neq r_t$ and $\alpha \rho_d$, αr_t
- these have been relagated to a higher order in the new scheme!
- but an otherwise remaining log-divergence is absent!

Lessons learned and open questions

- **Output** Coulomb perturbative in ${}^{3}\mathrm{He}$ \checkmark
- Onsistent renormalization crucial to achieve this!
- \circ $^{1}S_{0}$ NN channel can be expanded around unitarity limit
- unnecessary iteration can cause spurious divergences
- **o** one-photon exchange generates logarithmic divergences:

$$\sim \log \Lambda$$
, just like $\sim !$
Lessons learned and open questions

- **Q** Coulomb perturbative in ${}^{3}\mathrm{He}$ \checkmark
- Onsistent renormalization crucial to achieve this!
- \circ 1S_0 NN channel can be expanded around unitarity limit
- unnecessary iteration can cause spurious divergences
- **o** one-photon exchange generates logarithmic divergences:

$$\log \Lambda$$
, just like $($!

Questions

- reason for discrepancy with Kirscher and Gazit? (more generally: regulator dependence?)
- how much Coulomb has to be iterated in low-energy p-d scattering? (yet another counting above d-breakup threshold?)