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Importance of three-particle scattering

N⇤ N⇡ ! N⇤ ! N⇡⇡

Many QCD resonances decay 
significantly to three particles

Ideally we would like to describe resonances by…
(1). Determining QCD scattering amplitudes in a 
rigorous and model-independent way 
!
(2). Analytically continuing these to the resonance poles



Amplitudes from the path-integral
If we were strong enough, we would proceed as follows
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(2). Fourier transform and apply LSZ reduction

(1). Evaluate the path-integral to obtain the relevant correlator
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This approach requires…
Infinite volume to define asymptotic states

Minkowski momenta to approach the poles (“go on shell”)
k2 ! M2

⇡

1

k2 �M2
⇡



In Lattice QCD we are evaluating the  
path integral numerically…

To do so we have to make four compromises

ImE

Euclidean 
momenta

4

ReE

finite volume,3 L

nonzero lattice spacing1

Must ensure this is smaller 
than all relevant length scales

Unphysical pion masses
M⇡,lattice > M⇡,our universe

But calculations at the physical  
pion mass do now exist…

2

and exploring pion mass 
dependence is interesting

LQCD cannot directly access 
scattering amplitudes… but it can 

give finite-volume energies



Two-particle scattering

E0(L)

E1(L)

E2(L)

It is possible to derive relations between!
finite- and infinite-volume physics

Photo- and electroproduction

E0(L)

E1(L)

E2(L)h2|J |1i
h2|J |2i

Three-particle scattering

E1(L)

E2(L)



L

From energy levels to amplitudes

Infinite volumeFinite volume
Decompose scattering amplitude 

in partial waves

�`(E
⇤)

One real observable…

in each  
partial wave

at each  
CM energy

Discrete tower of energy levels

En(L, ~P )

depends on  
finite-volume size  
total momentum



Finite volume 

L

L

L

E0(L)

E1(L)

E2(L)

Work in continuum field theory throughout
Assume lattice effects are small and accommodated elsewhere

e�mL    large enough to ignoreL

time direction infinite

periodic boundary conditions

~p 2 (2⇡/L)Z3

cubic, spatial volume (extent    )L

quantum field theory

1. Include all interactions 
generic relativistic QFT

2. no power-counting scheme

Not possible to directly calculate 
scattering observables to all orders

But it is possible to derive 
general, all-orders relations 
to finite-volume quantities



Two-to-two scattering

E0(L)

E1(L)

E2(L)
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two-particle interpolatorEuclidean convention

but allow      to be real or imaginaryP4

P = (P4, ~P ) = (P4, 2⇡~n/L)

CM frame energy is then E⇤2 = �P 2
4 � ~P 2

Require…………… to isolate two-to-two scatteringE⇤ < 4m

Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)
Lüscher, M. Nucl. Phys B354, 531-578 (1991)

identical scalars, mass m
For now assume…

symmetryZ2



Two-to-two scattering

At fixed          poles in       give finite-volume spectrumL, ~P , CL

CL analytic structure analytic structureC1
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P4 P4

identical scalars, mass m
For now assume…

symmetryZ2



Two-to-two scattering

At fixed          poles in       give finite-volume spectrumL, ~P , CL

CL analytic structure

E0(L)

E1(L)

E2(L)
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d

4
x e

�iPxh0|TO(x)O†(0)|0i

Calculate             to all 
orders in perturbation 
theory and determine 

locations of poles.

CL(P )

P4

identical scalars, mass m
For now assume…

symmetryZ2



spatial loop momenta  
are summed
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X
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Bethe Salpeter kernelfully dressed  
propagator

� ⌘

If E⇤ < 4m then
KL = K1 +O(e�mL)

�L = �1 +O(e�mL)
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Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)
Lüscher, M. Nucl. Phys B354, 531-578 (1991)



Now we introduce an important identity.
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contains all power-law	

corrections
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X

~k

Z
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F
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Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)
Lüscher, M. Nucl. Phys B354, 531-578 (1991)

In                   all four-momenta are projected on shell.
Physical, propagating states give 
dominate finite-volume effects.



+�† � �† �

iK iKiK iK�† � �† � �† � �† �+ + +

F

F F F F

O† O O† O

O† O O† O O† O O† O

+

+ · · ·+

�† � �† �iK

iK iK�† �

CL(E, ~P ) = O† O†

O†

O O

O

CL(P )



Now regroup by number of Fs

+CL(E, ~P ) = C1(E, ~P )

As Promised!	


+�† � �† �

iK iKiK iK�† � �† � �† � �† �+ + +

F

F F F F

O† O O† O

O† O O† O O† O O† O

+

+ · · ·+

�† � �† �iK

iK iK�† �

CL(E, ~P ) = O† O†

O†

O O

O

CL(P )

+ + · · ·�† iK�†O† O†

= h⇡⇡, out|O†|0i
+ + · · ·iK iK iK

zero Fs

A0A
F

+

one F
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When we factorize diagrams and group infinite-volume parts…

physical observables emerge!



+�† � �† �2 O† O O† O

+

+ · · ·+

�† � �† �iK

iK iK�† �

CL(E, ~P ) = + + · · ·+

1

O† O O† O

O† O

CL(P )

We deduce…
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h⇡⇡, out|O†|0i
h0|O|⇡⇡, ini

Review…

poles are in here P4



Two-particle result
At fixed          , finite-volume 	


energies are solutions to
(L, ~P )

det[M�1
2!2 + F ] = 0

At low energies, lowest partial waves dominate M2!2

cot �(E⇤
n) + cot�(En, ~P ,L) = 0

e.g. s-wave only  
with some 
rearranging scattering phase known function

Matrices defined using angular-momentum states

non-diagonal matrix of known geometric functionsF ⌘

M2!2 ⌘ diagonal matrix, parametrized by �`(E
⇤)

depends on
L,E, ~P

F ⌘ � difference of two-particle loops  
in finite and infinite volume

 Rummukainen and Gottlieb, Nucl. Phys. B450, 397 (1995) 
Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005) 



⇡⇡ ! ⇡⇡

L

L

L

Using the result (p-wave)

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

cot �`=1(E
⇤
n) + cot�(En, ~P ,L) = 0



Two-particle scattering

E0(L)

E1(L)

E2(L)

Photo- and electroproduction

E0(L)

E1(L)

E2(L)h2|J |1i
h2|J |2i

Three-particle scattering

E1(L)

E2(L)



Two-particle scattering

E0(L)

E1(L)

E2(L)

Photo- and electroproduction

E0(L)

E1(L)

E2(L)h2|J |1i
h2|J |2i

Three-particle scattering

E1(L)

E2(L)

See Raul’s talk



Begin by considering the 
infinite-volume observables

Because of “finite-volume rescattering” it is not possible to 
access two-to-three without also accessing three-to-three

For now we turn off two-to-three scattering using a symmetry

iM3!3 ⌘ fully connected correlator with  
six external legs amputated and projected on shell

Three-to-three amplitude has kinematic singularities

Certain external momenta 
 put this on-shell!

= + · · ·

Three-to-three amplitude has more degrees of freedom
8 degrees of freedom including total energy

Compared with 2 for the two-to-two amplitude



How can we possibly hope to extract a singular, !
eight-coordinate function using finite-volume energies?

Short answer…
(1). We found that the spectrum depends on a modified 
quantity with singularities removed 
!
!
!
!
!

Kdf,3 6�
(a) Same degrees of freedom as             .  

(b) Relation to             is known (depends only on on-shell            ) 
(c) Smooth function (allows harmonic decomposition)

M3!3 M2!2

M3!3

(2). Degrees of freedom encoded in an extended matrix space 

~k, `,m

â⇤ �! `,m
(E � !k, ~P � ~k)

(!k,~k)
BOOST

~k(    is restricted to finite-volume momenta)



Current status:

Three-to-three  
scattering

E0(L)

E1(L)

E2(L)

Formalism is complete for the simplest three-scalar system
General, model-independent relation between 	


finite-volume energies and three-to-three scattering amplitude
Derived using a generic relativistic field theory

MTH and Sharpe, Phys. Rev. D90, 116003 (2014)
MTH and Sharpe, Phys. Rev. D92, 114509 (2015)

Important caveats:
Identical particles with no two-to-three transitions 

Requires that two-particle scattering phase is bounded
|�`(E)| < ⇡/2

⇡⇡⇡ ! ⇡⇡⇡



Three-particle result
At fixed          , finite-volume 	


energies are solutions to
(L, ~P )

MTH and Sharpe, Phys. Rev. D90, 116003 (2014)

detk,`,m
h
K�1

df,3 + F3

i
= 0

matrix that depends on known geometric 
functions as well as             .F3 ⌘ M2!2

(2). Use harmonic decomposition + various parametrizations 
to express                   in terms of       unknown parameters  Kdf,3(E

⇤) N
(3). Use quantization condition with lattice (or otherwise) 
determined energies to determine all parameters
(4). Use known relation to recoverM3!3

MTH and Sharpe, Phys. Rev. D92, 114509 (2015)

(1). Use two-particle quantization condition to constrain             
and thus determine 

M2!2

F3(E, ~P ,L)



Three-particle result
At fixed          , finite-volume 	


energies are solutions to
(L, ~P )

MTH and Sharpe, Phys. Rev. D90, 116003 (2014)

detk,`,m
h
K�1

df,3 + F3

i
= 0

Some nice features…
Matrices automatically truncated in the    index~k

truncate angular 	

momentum space solvable system

Expanding about weak interactions gives an important check

MTH and Sharpe, arXiv:1602.00324 

E = 3m+
a3
L3

+
a4
L4

+
a5
L5

+
a6
L6

+O(1/L7)

K. Huang and C. Yang, Phys. Rev. 105 (1957) 767-775
Beane, Detmold, Savage, Phys. Rev. D76 (2007) 074507                

Our result agrees with existing results for             and gives a prediction for a3!5 a6



Recall for two particles we started with a “skeleton expansion”

+ · · ·+ iK iK�† �O† O+�† � �† �iKCL(E, ~P ) = O† O†O OCL(P )

Three-particle result detk,`,m
h
K�1

df,3 + F3

i
= 0

Sketch of the derivation…



CL(E, ~P ) = + + + · · ·

+

+

+

+ · · ·

+ +

+ · · ·

+ +

+

?

Recall for two particles we started with a “skeleton expansion”

+ · · ·+ iK iK�† �O† O+�† � �† �iKCL(E, ~P ) = O† O†O OCL(P )

So now we need the same for three…

No! We also need diagrams like

Disconnected diagrams in          lead to 
singularities that invalidate the derivation

Three-particle result detk,`,m
h
K�1

df,3 + F3

i
= 0

Sketch of the derivation…



CL(E, ~P ) = + + + · · ·
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New skeleton expansion

+

+ +

+ + · · ·

+ · · ·⌘

⌘

Kernel definitions:
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Kernel definitions:



CL(E, ~P ) = + + + · · ·
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Kernel definitions:



Three-to-three  
scattering

E0(L)

E1(L)

E2(L)

1. Work out the three particle skeleton expansion

CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

2. Break diagrams into finite- and infinite-volume parts

3. Sum subsets of terms to identify infinite-volume quantities
4. Relate these to poles in the finite-volume correlator

detk,`,m
h
K�1

df,3 + F3

i
= 0



Current status:

Three-to-three  
scattering

E0(L)

E1(L)

E2(L)

Formalism is complete for the simplest three-scalar system
General, model-independent relation between 	


finite-volume energies and three-to-three scattering amplitude
Derived using a generic relativistic field theory

MTH and Sharpe, Phys. Rev. D90, 116003 (2014)
MTH and Sharpe, Phys. Rev. D92, 114509 (2015)

Important caveats:
Identical particles with no two-to-three transitions 

Requires that two-particle scattering phase is bounded
|�`(E)| < ⇡/2

⇡⇡⇡ ! ⇡⇡⇡



Currently underway:
Relax all simplifying assumptions:

Allow all particle types, allow two-to-three couplings, 	

remove bound on phase shift

N⇡ ! N⇡⇡K⇡ ! K⇡⇡
Briceño, MTH, Sharpe, in development 

Derive formalism for three-particle transition amplitudes

⇢

p� ! N⇢ ! N⇡⇡

NNN ! NNN

Also want to make connections to other work…
Polejaeva and Rusetsky, Eur. Phys. J. A48, 67 (2012)
Briceño and Davoudi, Phys. Rev. D87, 094507 (2013)

Meißner, Rios and Rusektsky. Phys. Rev. Lett. 114, 091602 (2015)


