Three-particle scattering from the lattice

Maxwell T. Hansen Institut für Kernphysik and HIM Johannes Gutenberg Universität Mainz, Germany

INT, Seattle March 30, 2016 JGU

Importance of three-particle scattering

Many QCD resonances decay significantly to three particles

$$N\pi \to N^* \to N\pi\pi$$

Ideally we would like to describe resonances by... (1). Determining QCD scattering amplitudes in a rigorous and model-independent way

(2). Analytically continuing these to the resonance poles

Amplitudes from the path-integral If we were strong enough, we would proceed as follows (1). Evaluate the path-integral to obtain the relevant correlator $\langle N(x')\pi(y')\pi(z') N(x)\pi(y) \rangle$

 $= \int \mathcal{D}A\mathcal{D}q\mathcal{D}\bar{q} \, \exp[iS_{QCD}] \, N(x')\pi(y')\pi(z') \, N(x)\pi(y)$

(2). Fourier transform and apply LSZ reduction $\langle \tilde{N}(p')\tilde{\pi}(k')\tilde{\pi}(q') \ \tilde{N}(p)\tilde{\pi}(k) \rangle \longrightarrow \frac{iZ_N^{1/2}}{p'^2 - m_N^2} \cdots \frac{iZ_\pi^{1/2}}{k^2 - M_\pi^2} \langle N\pi\pi, \text{out} | N\pi, \text{in} \rangle$

This approach requires... Infinite volume to define asymptotic states $\frac{1}{k^2 - M_\pi^2}$ Minkowski momenta to approach the poles ("go on shell") $k^2 \to M_\pi^2$

In Lattice QCD we are evaluating the path integral numerically... To do so we have to make four compromises

- 1 nonzero lattice spacing									
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	ullet	ullet	ullet	igodol
				\bullet	\bullet	\bullet	\bullet	\bullet	\bullet

Must ensure this is smaller than all relevant length scales

$$\Im$$
 finite volume, L

2 Unphysical pion masses $M_{\pi,\text{lattice}} > M_{\pi,\text{our universe}}$

But calculations at the physical pion mass do now exist...

and exploring pion mass dependence is interesting

 $\operatorname{Im} E$

Euclidean

momenta

 $\operatorname{Re} E$

LQCD cannot directly access scattering amplitudes... but it can give finite-volume energies

It is possible to derive relations between finite- and infinite-volume physics

From energy levels to amplitudes

 $E_n(L, \vec{P})$

depends on finite-volume size total momentum One real observable...

in each partial wave at each
CM energy

Finite volume

cubic, spatial volume (extent L)

periodic boundary conditions $\vec{p} \in (2\pi/L)\mathbb{Z}^3$

time direction infinite

L large enough to ignore e^{-mL}

quantum field theory

generic relativistic QFT

1. Include all interactions

2. no power-counting scheme

Not possible to directly calculate scattering observables to all orders

But it is possible to derive general, all-orders relations to finite-volume quantities

Assume lattice effects are small and accommodated elsewhere Work in continuum field theory throughout

Require $E^* < 4m$ to isolate two-to-two scattering

Lüscher, M. *Nucl. Phys* B354, 531-578 (1991) Derivation from Kim, Sachrajda and Sharpe. *Nucl. Phys.* B727, 218-243 (2005)

For now assume...

identical scalars, mass m

For now assume...

identical scalars, mass m

$$C_L(P) \equiv \int_L d^4x \ e^{-iPx} \langle 0|T\mathcal{O}(x)\mathcal{O}^{\dagger}(0)|0\rangle$$

At fixed L, P, poles in C_L give finite-volume spectrum

Calculate $C_L(P)$ to all orders in perturbation theory and determine locations of poles.

Lüscher, M. *Nucl. Phys* B354, 531-578 (1991) Derivation from Kim, Sachrajda and Sharpe. *Nucl. Phys.* B727, 218-243 (2005)

Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

When we factorize diagrams and group infinite-volume parts... physical observables emerge!

$\begin{array}{l} \text{Two-particle result} \\ \text{At fixed } (L,\vec{P}) \text{, finite-volume} \\ \text{ energies are solutions to } \det[\mathcal{M}_{2\to2}^{-1}+F]=0 \end{array}$

Rummukainen and Gottlieb, *Nucl. Phys.* B450, 397 (1995) Kim, Sachrajda and Sharpe. *Nucl. Phys.* B727, 218-243 (2005)

Matrices defined using angular-momentum states

diagonal matrix, parametrized by $\delta_\ell(E^*)$

$F \equiv$ non-diagonal matrix of known geometric functions

 $\begin{array}{c} \overbrace{} & \text{ difference of two-particle loops } & \text{ depends on} \\ & \text{ in finite and infinite volume } & L, E, \vec{P} \end{array}$

At low energies, lowest partial waves dominate $\mathcal{M}_{2\to 2}$ e.g. s-wave only with some $\longrightarrow \cot \delta(E_n^*) + \cot \phi(E_n, \vec{P}, L) = 0$ rearranging scattering phase known function Using the result (p-wave) $\cot \delta_{\ell=1}(E_n^*) + \cot \phi(E_n, \vec{P}, L) = 0$

from Dudek, Edwards, Thomas in Phys. Rev. D87 (2013) 034505

Photo- and electroproduction

Photo- and electroproduction

Begin by considering the infinite-volume observables

Because of "finite-volume rescattering" it is not possible to access two-to-three without also accessing three-to-three

For now we turn off two-to-three scattering using a symmetry

Three-to-three amplitude has kinematic singularities

<u>Three-to-three amplitude has more degrees of freedom</u> 8 degrees of freedom including total energy Compared with 2 for the two-to-two amplitude

How can we possibly hope to extract a singular, eight-coordinate function using finite-volume energies? Short answer...

(1). We found that the spectrum depends on a modified quantity with singularities removed

$$\mathcal{K}_{df,3} \not\supset$$

(a) Same degrees of freedom as $\mathcal{M}_{3\to 3}$. (b) Relation to $\mathcal{M}_{3\to 3}$ is known (depends only on on-shell $\mathcal{M}_{2\to 2}$) (c) Smooth function (allows harmonic decomposition)

(2). Degrees of freedom encoded in an extended matrix space

Three-to-three scattering

Current status:

Formalism is complete for the simplest three-scalar system

General, model-independent relation between

finite-volume energies and three-to-three scattering amplitude

Derived using a generic relativistic field theory

MTH and Sharpe, *Phys. Rev.* D90, 116003 (2014) MTH and Sharpe, *Phys. Rev.* D92, 114509 (2015)

Important caveats:

Identical particles with no two-to-three transitions $\pi\pi\pi\pi \to \pi\pi\pi$

Requires that two-particle scattering phase is bounded

 $|\delta_{\ell}(E)| < \pi/2$

 $\begin{array}{l} \mbox{Three-particle result} \\ \mbox{At fixed } (L,\vec{P}) \mbox{, finite-volume} \\ \mbox{ energies are solutions to } \end{array} \ \ \frac{\det_{k,\ell,m} \left[\mathcal{K}_{\mathrm{df},3}^{-1} + F_3 \right] = 0 }{\det_{k,\ell,m} \left[\mathcal{K}_{\mathrm{df},3}^{-1} + F_3 \right] = 0 } \end{array}$

MTH and Sharpe, Phys. Rev. D90, 116003 (2014)

 $F_3\equiv \mathop{\rm matrix}\limits_{\rm functions}$ as well as $\mathcal{M}_{2\rightarrow2}$.

(1). Use two-particle quantization condition to constrain $\mathcal{M}_{2\to 2}$ and thus determine $F_3(E, \vec{P}, L)$

(2). Use harmonic decomposition + various parametrizations to express $\mathcal{K}_{df,3}(E^*)$ in terms of N unknown parameters (3). Use quantization condition with lattice (or otherwise) determined energies to determine all parameters (4). Use known relation to recover $\mathcal{M}_{3\to 3}$

MTH and Sharpe, *Phys. Rev.* D92, 114509 (2015)

$\begin{array}{l} \mbox{Three-particle result} \\ \mbox{At fixed } (L,\vec{P}) \mbox{, finite-volume} \\ \mbox{ energies are solutions to } \end{array} \ \ \frac{\det_{k,\ell,m} \left[\mathcal{K}_{\mathrm{df},3}^{-1} + F_3 \right] = 0 }{\det_{k,\ell,m} \left[\mathcal{K}_{\mathrm{df},3}^{-1} + F_3 \right] = 0 } \end{array}$

MTH and Sharpe, Phys. Rev. D90, 116003 (2014)

Some nice features...

Matrices automatically truncated in the \vec{k} index

truncate angular momentum space

solvable system

Expanding about weak interactions gives an important check

$$E = 3m + \frac{a_3}{L^3} + \frac{a_4}{L^4} + \frac{a_5}{L^5} + \frac{a_6}{L^6} + \mathcal{O}(1/L^7)$$

Our result agrees with existing results for $a_{3 \rightarrow 5}$ and gives a prediction for a_6

K. Huang and C. Yang, *Phys. Rev.* 105 (1957) 767-775
Beane, Detmold, Savage, *Phys. Rev.* D76 (2007) 074507
MTH and Sharpe, arXiv:1602.00324

Three-particle result $\det_{k,\ell,m} \left[\mathcal{K}_{df,3}^{-1} + F_3 \right] = 0$ Sketch of the derivation...

Recall for two particles we started with a "skeleton expansion"

 $C_L(P) = (\mathcal{O}^{\dagger}) \bullet (\mathcal{O}) + (\mathcal{O}^{\dagger}) \bullet (iK) \bullet (\mathcal{O}) + (\mathcal{O}^{\dagger}) \bullet (iK) \bullet (iK)$

Three-particle result $\det_{k,\ell,m} \left[\mathcal{K}_{df,3}^{-1} + F_3 \right] = 0$ Sketch of the derivation...

Recall for two particles we started with a "skeleton expansion"

No! We also need diagrams like

Disconnected diagrams in 🔶 lead to

singularities that invalidate the derivation

Kernel definitions:

1. Work out the three particle skeleton expansion

2. Break diagrams into finite- and infinite-volume parts

3. Sum subsets of terms to identify infinite-volume quantities

4. Relate these to poles in the finite-volume correlator

$$\det_{k,\ell,m} \left[\mathcal{K}_{\mathrm{df},3}^{-1} + F_3 \right] = 0$$

Three-to-three scattering

Current status:

Formalism is complete for the simplest three-scalar system

General, model-independent relation between

finite-volume energies and three-to-three scattering amplitude

Derived using a generic relativistic field theory

MTH and Sharpe, *Phys. Rev.* D90, 116003 (2014) MTH and Sharpe, *Phys. Rev.* D92, 114509 (2015)

Important caveats:

Identical particles with no two-to-three transitions $\pi\pi\pi\pi \to \pi\pi\pi$

Requires that two-particle scattering phase is bounded

 $|\delta_{\ell}(E)| < \pi/2$

Currently underway: Relax all simplifying assumptions:

Allow all particle types, allow two-to-three couplings, remove bound on phase shift

 $K\pi \rightarrow K\pi\pi$ $N\pi \rightarrow N\pi\pi$ $NNN \rightarrow NNN$ Briceño, MTH, Sharpe, *in development*

Derive formalism for three-particle transition amplitudes

Also want to make connections to other work...

Polejaeva and Rusetsky, *Eur. Phys. J.* A48, 67 (2012) Briceño and Davoudi, *Phys. Rev.* D87, 094507 (2013) Meißner, Rios and Rusektsky. *Phys. Rev. Lett.* 114, 091602 (2015)