Current status and challenges of ab-initio computations of nuclei

Gaute Hagen Oak Ridge National Laboratory

INT workshop on "Nuclear Physics from Lattice QCD"

INT, May 5th, 2016

UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Computing "real nuclei" from "pseudo EFT" interactions

Gaute Hagen Oak Ridge National Laboratory

INT workshop on "Nuclear Physics from Lattice QCD"

INT, May 5th, 2016

UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Collaborators

@ ORNL / UTK: **S. Binder**, T. Papenbrock, G. R. Jansen, **M. Schuster**

@ MSU: W. Nazarewicz

@ Chalmers: **B. Carlsson**, A. Ekström, C. Forssén

@ Hebrew U: N. Barnea, D. Gazit

@ MSU/ U Oslo: M. Hjorth-Jensen

@ U. Idaho: R. Machleidt

@ Trento: G. Orlandini

@ TRIUMF: S. Bacca, M. Miorelli, P. Navratil

@ TU Darmstadt: C. Drischler, H.-W. Hammer, K. Hebeler, A. Schwenk, J. Simonis, K. Wendt

Outline

- Challenges and status of ab initio computations of nuclei
- Accurate binding energies and radii from a chiral interaction
- The neutron radius and dipole polarizability of 48 Ca
- Unexpected large charge radii of 52 Ca questions its magicity
- Structure of ⁷⁸Ni from first principles computations
- Role of continuum on shell structure of neutron-rich calcium isotopes

Trend in realistic ab-initio calculations

Explosion of many-body methods (Coupled clusters, Green's function Monte Carlo, In-Medium SRG, Lattice EFT, MCSM, No-Core Shell Model, Self-Consistent Green's Function, UMOA, ...)

Application of ideas from EFT and renormalization group (V_{low-k}, Similarity

Reach of ab-initio computations of nuclei

H. Hergert *et al*, Physics Reports 621, 165-222 (2016)

Nuclear forces from chiral effective field theory

[Weinberg; van Kolck; Epelbaum *et al*.; Entem & Machleidt; …]

• developing higher orders and higher rank (3NF, 4NF) [Epelbaum 2006; Bernard et al 2007; Krebs et al 2012; Hebeler et al $2015; ...$]

•local / non-local formulations [Gezerlis et al 2013/2014]

- propagation of uncertainties on horizon [Navarro Perez 2014, Carlsson et al 2015]
- different optimization protocols [Ekström et al 2013]
- Improved understanding and handling via renormalization group transformations [Bogner et al 2003; Bogner et al 2007]
- Problem: Not RG invariant. Different power counting schemes underway

Oxgyen chain with interactions from chiral EFT

Nuclear saturation is finely tuned

0.25

 0.3

0.2

 $-\frac{15}{0.05}$

 0.1

0.15

 ρ [fm⁻³]

- A 4% change in the binding energy of ⁴He yields a 15% change in 16 O [B. Carlsson, A. Ekström, C. Forssén *et al*., PRX **6**, 011019 (2016)].
- Regulator dependence in saturation properties of nuclear matter
- Not possible to simultaneously describe nuclear matter light nuclei by only adjusting c_F and c_D of 3NF

Accurate nuclear binding energies and radii from a chiral interaction

- Chiral interactions have failed at describing both binding energies and radii of nuclei
- Predictive power does not go together with large extrapolations
- Nuclear saturation may be viewed as an emergent property

Accurate nuclear binding energies and radii from a chiral interaction

Solution: Simultaneous optimization of NN and 3NFs Include charge radii and binding energies of $3H$, $3,4He$, $14C$, $16O$ in the optimization (NNLO_{sat})

A. Ekström *et al*, Phys. Rev. C **91**, 051301(R) (2015). G. Hagen et al, arXiv:1601.08203 (2016).

Navratil et al (2007); Jurgenson et al (2011)

a

- Binder et al (2014) $\mathbf b$
- Epelbaum et al (2014)
- Epelbaum et al (2012) _d
- Maris et al (2014) e
- f Wloch et al (2005)
- Hagen et al (2014) α
- Bacca et al (2014) $\mathbf h$
	- Maris et al (2011)
	- Hergert et al (2014)
- Soma et al (2014) $\bf k$

Not new: GFMC with AV18 and Illinois-7 are fit to 23 levels in nuclei with $A < 10$

Charge densities of ^{40,48}Ca from NNLO_{sat}

G. Hagen *et al*, Nature Physics **12**, 186–190 (2016)

Nuclear matter from NNLO sat

A. Ekström, G. Jansen, K. Wendt et al, PRC 91, 051301 (2015)

- Interactions from Hebeler *et al* not constrained by heavier nuclei.
- They reproduce binding energy and radii of few-body systems
- Non-local regulators in the 3NF important for saturation

What is the neutron skin of ⁴⁸Ca

Neutron skin = Difference between radii of neutron and proton distributions

Relates atomic nuclei to neutron stars via neutron EOS

Correlated quantity: dipole polarizability

Model-independent measurement possible via parity-violating electron scattering (P-REX/C-REX at JLab)

Neutron radius and skin of 48Ca

G. Hagen *et al*, Nature Physics **12**, 186–190 (2016)

Uncertainty estimates from family of chiral interactions.

DFT:

SkM^{*}, SkP, Sly4, SV-min, UNEDF0, and UNEDF1 $\overline{\mathbf{V}}$

- Neutron skin significantly smaller than in DFT
- **Neutron** skin almost independent of the employed Hamiltonian
- Our prediction is consistent with existing data

 0.05 0.1 0.15 0.2 0.25 neutron skin |fm|

 \bar{p} atoms - Trzcinska π - Friedman π - Gibbs & Dedonder α -scattering - Gils Theory - Hagen

Neutron radii and dipole polarizabilities

Lattimer & Lim 2013; Lattimer & Steiner 2014

Brown, PRL 2000, Piekarewicz & Horowitz, PRL 2001; Furnstahl, NPA 2002; Reinhard & Nazarewicz, PRC 2010; Piekarewicz et al., PRC 2012; Horowitz et al, PRC 2012; ...

 $\alpha_{\rm D}$: ²⁰⁸Pb by Tamii et al, PRL 2011; ⁶⁸Ni by Rossi et al, PRL 2013; 120 Sn by Hashimoto et al. (2015) ; ⁴⁸Ca coming soon ...

R_n: ²⁰⁸Pb by Abrahamyan et al, PRL 2012; Tarbert et al, PRL 2013; 48 Ca planned ...

Dipole polarizability of ⁴⁸Ca

G. Hagen *et al*, Nature Physics **12**, 186–190 (2016)

DFT results are consistent and within band of ab-initio results

Data being analyzed by Osaka-Darmstadt collaboration

A*b-initio* prediction:
2.10 < a = < 2.60 fm³ $R_{\rm B} \stackrel{\scriptstyle <}{\scriptstyle \sim} 2.60$ fm $2.19 \stackrel{\scriptstyle <}{_{\sim}} \alpha_{\sf D}^{} \stackrel{\scriptstyle <}{_{\sim}} 2.60~\text{fm}^3$

Large charge radii questions magicity of ⁵²Ca

R. F. Garcia Ruiz et al, Nature Physics (2016) doi:10.1038/nphys3645

Image: COLLAPS Collaboration/Ronald Fernando Garcia Ruiz.

- Charge radii of $49,51,52$ Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN
- Unexpected large charge radius questions the magicity of 52 Ca
- Theoretical models all underestimate the charge radius
- Ab-initio calculations reproduce the trend of charge radii

Structure of 78Ni from first principles

A high 2^+ energy in 78 Ni indicates that this nucleus is doubly magic

A measurement of this state has been made at RIBF, RIKEN R. Taniuchi *et al.*, in preparation

- From an observed correlation we predict the 2^+ excited state in 78 Ni using the experimental data for the $2⁺$ state in 48 Ca
- Similar correlations have been observed in other nuclei, e.g. Tjon line in light nuclei

G. Hagen, G. R. Jansen, and T. Papenbrock arXiv (2016)

Excited states in 78Ni and its neighbors

Role of continuum on unbound states in calcium isotopes

G. Hagen *et al*, arXiv:1601.08203 (2016).

- Exciting times in nuclear theory:
	- \triangleright explosion of many-body solvers
	- \triangleright many new developments regarding interactions and currents
- NNLO_{sat} a pragmatic approach to the problem of nuclear saturation
- Neutron skin, dipole polarizability in ⁴⁸Ca, and charge radii of neutron-rich calciums
- Structure of neutron-rich 78 Ni suggest it is doubly magic
	- \triangleright predictions for soon-to-be measured quantities
	- \triangleright charge radii in neutron-rich calcium isotopes not well understood
- How to address the problem of finetuned interactions, regulator dependencies and saturation in nuclei?
- Explore new power counting schemes?
- Computation of heavy nuclei from Hamiltonian based methods
- Propagation of uncertainties from the interaction to the nuclear many-body problem on the horizon

• Quantifying systematic uncertainties associated with truncations in ab-initio methods is still a challeng