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EFT approach to few-nucleon systems was suggested in

S. Weinberg, Phys. Lett. B 251, 288 (1990).

Implementation started with
C. Ordonez, L. Ray and U. van Kolck, Phys. Rev. Lett. 72, 1982
(1994)
long ago ... in last millennium ...

...

"Since then there has been a large amount of work on chiral
effective nuclear forces, but I am not satisfied with the theoretical
foundations under this work, and believe that new ideas are
needed."
David B. Kaplan: INT, Research page



My talk is a kind of introduction to Evgeny Epelbaum’s talk on
Thurthday ...

It is NOT my aim to convince anybody in anything! ...

I just express my point of view ...

Instead of stating the problem and suggesting a possible solution I
will try to build up my considerations ...



Renormalization

Something very simple and very familiar ...

Consider a theory
Theory(gi)
depending on parameters gi , with i = 1, ...,N.

We fix these parameters from N experiments and try to predict the
results of other experiments.



In the language of theory: calculate "reference" physical quantities

σ1(µ1) = f1(gi , µ1) ,

σ2(µ2) = f2(gi , µ2) ,

· · ·
σN(µN) = fN(gi , µN) ,

Express gi as functions of σi(µi)

gi = φi(σj , µk )

and substitute in all other quantities

σN+1(E) = FN+1(σi , µj ,E) ,

σN+2(E) = FN+2(σi , µj ,E) ,

· · ·

Renormalization is expressing all physical quantities in terms of
other physical quantities (instead of the original "bare" parameters).



Renormalization itself is not directly related to divergences!

In QFT coefficients of expansions in gi are divergent.
In some theories divergences disappear after renormalization.

Such theories are called renormalizable!

A self-consistent EFT has to be renormalizable in terms of an infinite
number of parameters, perturbatively, as well as non-perturbatively!

We are NOT dealing with perturbatively un-renormalizable, however
non-perturbatively finite theories! — We do not seem to have them!

Renormalization is perturbative if we are using perturbation theory
and non-perturbative if solving theory non-perturbatively!

In EFT perturbative expansions of renormalized non-perturbative
expressions reproduce renormalized perturbative series, wherever
this expansion exists!



Renormalization versus "peratization" - toy model
E. Epelbaum and J. Gegelia, “Regularization, renormalization and
’peratization’ in effective field theory for two nucleons,” Eur. Phys. J.
A 41, 341 (2009).

A toy model below demonstrates problems which may appear when
taking the cutoff very large without subtracting all divergences -
getting rid off them by using renormalization .

Consider the following equation in five space-time dimensions

T
(
~p, ~q

)
= V

(
~p, ~q

)
+ m

∫
d4~k

(2π)4 V (~p, ~k)
1

mE − k2 + i 0+
T (~k , ~q) ,

with

V (~p, ~q) = VC +
α[(

~p − ~q
)2

+ M2
]2 = C + Vπ(~p, ~q) + VNLO + · · · ,

where VC is contact interaction with LO term - C; m, α and M are
constant parameters and E is the energy.



The solution for LO equation can be written in a closed form

T (~p, ~q) = Tπ(~p, ~q)− Ψπ(~p)Ψπ(~q)

1/C −Gp
,

where finite quantities Tπ, Ψπ(~p) and Ψπ(~q) are given by

Tπ
(
~p, ~q

)
= Vπ

(
~p, ~q

)
+ m

∫
d4~k

(2π)4
Vπ(~p, ~k) Tπ(~k , ~q)

mE − k2 + i 0+
,

Ψπ(~q) = 1 + m
∫

d4~k
(2π)4

1
mE − k2 + i 0+

Tπ(~k , ~q) ,



On the other hand, Gp contains divergences and is given by

Gp = m
∫

d4~k
(2π)4

1
p2 − k2 + i 0+

+m2
∫

d4~k1

(2π)4
d4~k2

(2π)4
Tπ(~k1, ~k2)(

mE − k2
1 + i 0+

) (
mE − k2

2 + i 0+
) .

Using cutoff regularization Gp can be written as

Gp = a Λ2 + (b M2 + c mE) ln
Λ

µ
+ Gf

p(µ) +O
(

mE
Λ2

)
,

where a, b, c are some constants factors and Gf
p is finite,

Λ-independent part.



We can absorb a Λ2 + b M2 ln(Λ/µ) in the renormalization of 1/C.
However the divergent part c mE ln(Λ/µ) remains.
We still can take the Λ→∞ limit and get a finite result

T (~p, ~q) = Tπ(~p, ~q) .

On the other hand, using the BPHZ renormalization, we subtract all
divergences and then take Λ→∞ and obtain

T (~p, ~q) = Tπ(~p, ~q)− Ψπ(~p)Ψπ(~q)

1/CR(µ)−Gf
p(µ)

,

where CR is the renormalized coupling.

Mismatch between two results is apparent.



This kind of "non-perturbative renormalization" is more in the spirit
of "peratization", see, e.g.,

W. Güttinger, R. Penzl, E. Pfaffelhuber, Peratization of
Unrenormalizable Field Theories, Annals of physics: 33, 246-271
(1965)

and references therein.



Renormalization group and NN scattering

The NN scattering amplitude is obtained by solving the equation

T = V +

∫
VGT .

We apply cutoff regularization and assume cutoff dependence of the
potential such, that T is cutoff independent

T = V Λ +

∫ Λ

V ΛGT .

V Λ depends on N parameters ci which we fix from N "reference"
physical quantities – cR

i (µ), where µ = {µ1, µ2, . . . , µN}.



The solution to the integral equation depends on Λ explicitly due to
the cutoff of the integral and implicitly through ci :

T (E) = F (Λ, ci ,E). (1)

However when we substitute

ci = fi(Λ, cR
j (µ), µ) (2)

in Eq. (1), we obtain Λ-independent result

T (E) = F̃ (cR
i (µ),E , µ), (3)

which does not depend on µ due to the cancelation of the explicit
and implicit dependence.
By substituting Eq. (2) in V Λ we obtain

V Λ = Φ(Λ, cR
i (µ), µ) = V R(cR

i (µ), µ) + δV Λ(Λ, cR
i (µ), µ), (4)

where V R is the renormalized potential and δV Λ - counter term(s).



V Λ does not depend on µ therefore by differentiating with µi we
obtain Gell-Mann-Low RG equations

∂

∂µi
V R = − ∂

∂µi
δV Λ(Λ, cR

i (µ), µ) ≡ βi(cR
j , µ). (5)

On the other hand, as V R does not depend on Λ, by differentiating
with Λ we obtain Wilsonian RG equation

∂

∂Λ
V Λ =

∂

∂Λ
δV Λ(Λ, cR

i (µ), µ). (6)

If there are only logarithmit divergences then, for large values of Λ
and µi = µ0, δV R depends only on ln(µ0/Λ). In such cases there is
a clear connection between the two RGs - up to notations they are
identical.



While the whole amplitude does not depend on µ, the relative
importance of cR

i depends on the choice of the ren. scheme.

In any perturbative expansion of the amplitude the relative size of
different contributions (i.e., power counting) essentially depends on
the choice of the renormalization scheme.

By taking say µi ≡ 0, as is done by using dimensional regularization
for power-law divergences, one only hides this dependence!

The behaviour of cR
i as functions of µi can be obtained by solving

Gel-Mann-Low RG equations.

Can we obtain equivalent information by analysing Wilsonian RG
equations?

Birse, McGovern, Richardson, ...

The space of the Gel-Mann-Low RG scale parameters is
multidimensional, Wilsonian RG, applied so far for NN EFT, stays
one-dimensional!



2 H

2 SWeinberg

KSW

Space of RG parameters, H-hard scale, S-soft scale.

KSW counting corresponds to the expansion of the potential around
the non-trivial fixed point.

Weinberg’s power counting DOES NOT correspond to the
expansion around the trivial fixed point!



Low energy chiral EFT
I Chiral EFT aims at reproducing the S-matrix of QCD in

low-energy region by providing with a systematic expansion of
physical quantities in powers of (small scale(s)/ large scale).

I Most general Lagrangian of the EFT of Hadrons with
symmetries of QCD gives the most general S-matrix with these
symmetries.

I To obtain S-matrix of QCD one needs to fix properly the
renormalized parameters of EFT · · ·

I · · · a finite number of them to achieve a finite accuracy!

I · · · EFT 6= QCD.
QCD has only one Large scale - EFT has many of them!
QCD calculates physical quantities in terms of fundamental
parameters, EFT only relates physical quantities to each other
at low-energies, like

σ1(E) = F (E , σ2(µi), σ3(µi), · · · , µ).



What to do?

I Write down the most general effective Lagrangian.

I Consider all Feynman diagrams contributing to the process in
question.

I Renormalize/subtract loop diagrams.

I Apply power counting to renormalized diagrams.

I Sum up all renormalized diagrams contributions up to the given
order.



I An infinite number of diagrams contribute in the amplitude for
N > 1 nucleons at any fixed order.

I Weinberg suggested power counting for the effective potential.

S. Weinberg, Phys. Lett. B 251, 288 (1990).

I N-nucleon effective potential is defined as the sum of
N-nucleon irreducible TOPT diagrams.



I Only a finite number of diagrams contribute at any given order.

LO: +

NLO:

. . .

+ + + + . . .



I Amplitudes are obtained by solving integral equations

T = V + V G T .

or Schrödinger equation

Implemented in
C. Ordonez, L. Ray and U. van Kolck, Phys. Rev. Lett. 72, 1982
(1994).
. . .



A comment on the power counting for the potential

According to the Weinberg’s power counting, the potential is given
as

V = V0 + Q2V2 + . . . ,

and the resolvent operator (Green’s function) of

T = V + VGT

has the order G ∼ Q0.

For systems close to the unitary limit T is of the order Q−1 (instead
of the T ∼ Q0 in the natural case)

Contradiction with Weinberg’s counting?



Let us take a closer look:

V = VLO + Ṽ ,

where Ṽ is of higher order (by Q2) and decompose

T = TLO + T̃ ,

where TLO is the solution to the equation

TLO = VLO + VLO G TLO,

that is we have
TLO = (1− VLO G)−1VLO.

The case TLO ∼ Q−1 has two different realisations:

VLO ∼ Q−1, G ∼ Q1, 1− VLO G ∼ Q0 −−− KSW

D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B 424, 390
(1998).

VLO ∼ Q0, G ∼ Q0, 1− V0 G ∼ Q1 −−−Weinberg



For T̃ we have

T̃ = Ṽ + V0GT̃ + ṼG T0 + ṼGT̃ ,

that is
(1− V0 G)T̃ = Ṽ + ṼG T0 + ṼGT̃ .

Clearly, T̃ ∼ Q0.

The above expansion of the amplitude in orders of small parameter
exactly matches the series induced by the ERE

T =
4π

mN (1/a + i p)
+

2π p2 rE

mN(1/a + i p)2

+
π p4

mN(1/a + i p)2

[
4 v2 +

r2
E

1/a + i p

]
+ · · ·

for the case of the large scattering length.



In pionless EFT (1S0 PW)

VLO = C.

The renormalized amplitude

TLO(p) =
1

1/CR(µ) + mN
4π (µ+ i p)

.

For µ ∼ Q0, CR ∼ Q0 – Weinberg’s counting.

For µ ∼ Q, CR ∼ Q−1 – KSW counting.

Analogously for higher orders and PWs...



Weinberg’s power counting equally well reproduces the expansion
of the amplitude for both, ”natural” and unnaturally large scattering
lengths...

and most importantly – for the intermediate case, in which it is
difficult to assign the scattering length to be ”natural” or unnaturally
large!



Problem: Weinberg’s power counting inconsistent with
renormalization – (even) LO potential is not renormalizable

Solutions:
Kaplan, Savage+Wise ’98, ..., Nogga, Timmermans+van Kolck ’05,

...

Epelbaum, Glöckle, Meißner 98, ...

· · ·



Lorentz invariance and low energy EFT

Is Lorentz invariance important at low energies?

INT Program 13-1a

Computational and Theoretical Advances ...

March 25 - April 19, 2013

available on INT homepage

van Kolck:

Root of the problem:
pion exchanges (long-ranged, contribute to waves higher than S)

are singular (sensitive to short-range physics, require counterterms)
This ¯s NOthing to ˘ with relativity...

(For the opposite opinion, see Epelbaum + Gegelia ’12)



Non-relativistic theory should be adequate at low energies, however
...

Per definition, non-relativistic expansion means:
1. Lorentz invariant effective Lagrangian – Lorentz invariance is a

fundamental symmetry!
2. Quantum corrections.
3. Regularization (Λ) and renormalization.
4. Non-relativistic expansion (expansion in 1/m) of renormalized

quantities.



On the other hand, non-relativistic EFT:
1. Lorentz-invariant EFT Lagrangian – expanded in 1/m⇒

non-relativistic EFT Lagrangian.
2. Quantum corrections.
3. Regularization (Λ), Renormalization.
4. Λ→∞ after renormalization.
5. Renormalized quantities are given as non-relativistic series.



I Proper non-relativistic expansion:
first – calculation of quantum corrections,
after – 1/m expansion.

I Non-relativistic EFT:
first – expansion in 1/m,
after – calculation of quantum corrections.

I Expansions in 1/m and calculation of quantum corrections are
not commutative!

I Difference (”error”) can be compensated by adding terms in
non-relativistic EFT Lagrangian. A finite number of terms
needed at any fixed order in one nucleon sector.

J. Gegelia and G. Japaridze, Phys. Rev. D 60, 114038 (1999).
I Due to solving an integral equation, an infinite number of

compensating terms needed in NN sector already at LO.



Solutions:

I Keep Λ . m – successfully implemented by various groups:

E. Epelbaum, W. Gloeckle and U. -G. Meissner, ... D. R. Entem
and R. Machleidt ...

I Take into account an infinite number of compensating terms of
non-relativistic EFT Lagrangian:

- Realized in KSW approach (perturbative pions)
D. B. Kaplan, M. J. Savage and M. B. Wise, Phys. Lett. B 424,
390 (1998) ...

- Problematic if pions are included non-perturbatively!
I Prove that an infinite number of compensating terms can be

safely dropped – has (can)not been done!
I Use the original Lorentz invariant Lagrangian without 1/m

expansion ... (even better:) and keep Λ . m



Effective Lagrangian of pions and nucleons

Standard effective Lagrangian

Leff = Lπ + LπN + LNN + · · ·

is organized as an expansion in powers of pion masses and
derivatives acting on fields.

Lowest-order mesonic Lagrangian

L2 =
F 2

4
Tr
[
∂µU (∂µU)†

]
+

F 2M2

4
Tr
(

U† + U
)
,

U - (2× 2) matrix containing Goldstone bosons.
F - pion-decay constant in the chiral limit.
M - the pion mass at LO.



The lowest-order Lorentz-invariant Lagrangian in one nucleon sector

L(1)
πN = ψ̄

(
i D/ −m +

gA

2
γµγ5uµ

)
ψ,

Dµ = ∂µ +
1
2

[
u†∂µu + u∂µu†

]
, u2 = U, uµ = i u†∂µUu†.

LO effective NN Lagrangian:

LNN = Ca
S Ψ̄τaΨ Ψ̄τaΨ + Ca

T Ψ̄τaσµνΨ Ψ̄τaσµνΨ

+ Ca
AV Ψ̄τaγ5γµΨ Ψ̄τaγ5γ

µΨ + Ca
V Ψ̄τaγµΨ Ψ̄τaγµΨ,

where the summation from 0 to 3 over a is implied with τ i

(i = 1,2,3) - the Pauli (isospin) matrices and τ0 - the unit matrix.
C1

I = C2
I = C3

I for all I.



Renormalizable version of Weinberg’s approach:

E. Epelbaum and J. Gegelia, Phys. Lett. B 716, 338 (2012).

Lorentz invariant effective Lagrangian:

Leff = Lπ + LπN + LNN + · · · .

Use the time-ordered PT.

NN potential V := sum of 2 N-irreducible diagrams.

Off-shell amplitude T satisfies:

T = V + V G T .

G - two-nucleon propagator.



Expand

T = T0 + T1 + T2 + · · · ,
G = G0 + G1 + G2 + · · · ,
V = V0 + V1 + V2 + · · · ,

and solve T order by order.

At leading order:
T0 = V0 + V0 G0 T0 .

Using T0 calculate the NLO amplitude:

T1 = V1 + T0 G0 V1 + V1 G0 T0 + T0 G0 V1 G0 T0 + T0 G1 T0 .

Using T0 and T1 calculate the NNLO amplitude T2 etc.



LO equation in COM frame

T0
(
~p ′, ~p

)
= V0

(
~p ′, ~p

)
− m2

2

∫
d3~k

(2π)3 V0

(
~p ′, ~k

)
× 1(

~k2 + m2
) (

p0 −
√
~k2 + m2 + i ε

) T0

(
~k , ~p

)
,

V0 = VC + Vπ.

LO potential (~q = ~p′ − ~p)

V0(~p′, ~p) = CS + CTσ1 · σ2

−
(

gA

2 Fπ

)2 (~τ1 · ~τ2)(~σ1 · ~q)(~σ2 · ~q)√
~q2 + M2

π (
√
~p′2 + m2 +

√
~p2 + m2 +

√
~q2 + M2

π − 2p0 − i ε)

p0 =
√

m2 + p2 with p - three-momentum of incoming nucleons.

V. G. Kadyshevsky, Nucl. Phys. B 6, 125 (1968).



I Milder UV behavior than in LS equation.

I Iterations of LO equation generate only overall logarithmic
divergences.

I All divergences absorbed in parameters of the LO potential⇒
LO equation is perturbatively renormalizable.



Non-perturbative regime: for k →∞ approximate

p0 +
√

k2 + m2(
k2 + m2

) (
p2 − k2 + i ε

) → 1
k
(
p2 − k2 + i ε

) ,
and obtain in PW basis

T sj
l ′l

(
p′,p

)
= V sj

l ′l

(
p′,p

)
+

m2

2

∑
l ′′

∫ ∞
0

dk k
(2π)3

V sj
l ′l ′′ (p′, k) T sj

l ′′l (k ,p)

p2 − k2 + i ε
.

It has the form of PW LS equation in 2 + 1 dimensions.

Corresponding OPE potential behaves as ∼ 1
r2 for r → 0.

More singular ∼ 1
r3 UV behavior in non-relativistic EFT (HBChPT) is

an artefact of that formulation.



LO PW equations have unique solutions, except 3P0 PW.
3P0 PW equation has the same behavior as S-TM equation:

G. V. Skornyakov and Ter-Martirosyan, Sov. Phys. JETP 4, 648
(1957).

Analogously to

P. F. Bedaque, H. W. Hammer and U. van Kolck, Phys. Rev. Lett. 82,
463 (1999)

we included a counter-term c(Λ) p p′

Λ2 at LO.



By adding symmetry-preserving terms to the standard BChPT
Lagrangian, we can obtain a modified nucleon propagator

SΛ
N(p) =

1
(p/ −m + iε)

NΨ∏
j=1

Λ2
Ψj

Λ2
Ψj + m2 − p2 − iε

.

For the additional terms of the Lagrangian we choose

Lreg
πN =

NΨ∑
n=1

Yn

2

[
Ψ̄ (iγµDµ −m)

(
D2 + m2

)n
Ψ + h.c.

]
.

D. Djukanovic, M. R. Schindler, J. Gegelia and S. Scherer, Phys.
Rev. D 72, 045002 (2005)



By using field transformations our effective Lagrangian with
additional terms can be brought in the canonical form. That is, any
Λ-dependence of physical quantities can be absorbed in the
redefinition of the parameters of the standard effective Lagrangian.

Using the effective Lagrangian we obtain the rules of the TOPT.
It is convenient to take the additional terms of the following form

Lreg
πN =

1
2Λ2

[
Ψ̄ (iγµDµ −m)

(
D2 + m2

)
Ψ + h.c.

]
≡ − 1

2Λ2

[
Ψ̄ (iγµDµ −m) ~D2Ψ + h.c.

]
+

1
2Λ2

[
Ψ̄ (iγµDµ −m)

(
D2

0 + m2
)

Ψ + h.c.
]
. (7)

Contribution of the first term of Eq. (7) in the nucleon two-point
function we include non-perturbatively in the nucleon propagator
while the second term is treated perturbatively.



The corresponding propagator has the form

SΛ
N(p) =

Λ2

(p/ −m + iε)
(
Λ2 + ~p 2

) .
To generate the rules of the TOPT we first draw all relevant Feynman
diagrams, assign the momenta to propagator lines and perform the
integration over the zeroth components of the loop momenta.

As a result we are lead to the diagrams of the TOPT.

Taking Λ ∼ hard scale corresponds to the choice of an appropriate
renormalization scheme.
Lepage, Gegelia, Epelbaum, Glöckle, Meißner, van Kolck (of last
millenium)... Beane, Kaplan, Vourinen ...



Summary

I "The reports of my death have been greatly exaggerated."
Weinberg’s power counting
...
Mark Twain

A renormalizable EFT for NN:
I NN scattering using Lorentz invariant Lagrangian and TOPT.
I LO amplitude obtained by solving an integral equation.

I Corrections calculated perturbatively.
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BS

To demonstrate the modified UV behavior in HB formalism consider

I =
4 i

(2π)4

∫
d4k θ(Λ− |~k |)[

k2 −m2 + i 0+
] [

(P − k)2 −m2 + i 0+
]

with P = (2
√

m2 + ~p 2, ~0 ).

The results for Λ > |~p|:

I =
|~p| ln Λ

√
m2+~p 2+|~p|

√
Λ2+m2

m
√

Λ2−~p 2

π2
√

m2 + ~p 2
−

ln Λ+
√

Λ2+m2

m
π2 − i |~p|

2π
√

m2 + ~p 2
.



Expand first in 1/Λ and subsequently in 1/m:

I = − i |~p|
2πm

−
ln Λ

m
π2 −

ln 2
π2 +O

(
1

Λ2 ,
1

m2

)
.

Next expand first in 1/m and after in 1/Λ:

I = − i |~p|
2πm

− Λ

π2m
+

~p 2

π2Λm
+O

(
1

m2 ,
1

Λ2

)
.

HB approach corresponds to the second expansion.

In PT (e.g. πN scattering) one compensates the mismatch by
adding terms in the effective non-relativistic Lagrangian.

When re-summing iterations to all orders (e.g. for NN), one needs to
include contributions of an infinite number of terms.

Otherwise, in HB approach one is not allowed to take Λ > m.


