INT Program INT-16-1 Nuclear Physics from Lattice QCD Week 7

Electroweak structure of A=2, 3 nuclei

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Doron Gazit Racah Institute of Physics Hebrew University of Jerusalem

In collaboration with: Hilla Deleon (HUJI).

\checkmark Low energy electroweak observables A \leq 3 nuclei

Low energy electroweak observables of light nuclei

Leutwyler, Gasser, Weinberg, Kaplan, Savage, Wise, van-Kolck, Birse, Meissner, Epelbaum, Machleidt, Chen, Park, Rho,...

The interaction of a nucleus with an external probe

"QCD"

Non-physical m_p , sign problem, statistics, configurations, finite volume...

Lattice formulation in a background field

Nuclear Matrix Element

Application in the EM sector (1)

Magnetic moments of light nuclei from lattice quantum chromodynamics

S.R. Beane,¹ E. Chang,^{1,2} S. Cohen,^{1,2} W. Detmold,³ H.W. Lin,¹ K. Orginos,^{4,5} A. Parreño,⁶ M.J. Savage,^{1,2} and B.C. Tiburzi^{7,8,9} (NPLQCD Collaboration)

$$\delta E^{(B)} = -2\mu |\mathbf{B}| + \gamma |\mathbf{B}|^3$$

for $m_{\pi} = 806 \, \text{MeV/c}^2$

Lattice Nuclei@ECT* - Doron Gazit

May 3, 2016

Application in the EM sector (2)

PRL 115, 132001 (2015)

PHYSICAL REVIEW LETTERS

week ending 25 SEPTEMBER 2015

Ab initio Calculation of the $np \rightarrow d\gamma$ Radiative Capture Process

Silas R. Beane,¹ Emmanuel Chang,² William Detmold,³ Kostas Orginos,^{4,5} Assumpta Parreño,⁶ Martin J. Savage,² and Brian C. Tiburzi^{7,8,9}

(NPLQCD Collaboration)

$$\Delta E_{{}^{3}S_{1},{}^{1}S_{0}}(\mathbf{B}) = 2(\kappa_{1} + \gamma_{0}Z_{d}^{2}\tilde{l}_{1})\frac{e}{M}|\mathbf{B}| + \mathcal{O}(|\mathbf{B}|^{2}),$$

$$l_{1}^{lqcd} = -4.41(+15)_{-16}) \text{ fm.}$$

Lattice Nuclei@ECT* - Doron Gazit

May 3, 2016

• EM:

Outline

- Calculate A=2, 3 magnetic moments, as well as n+p capture, using consistent pionless EFT up to next-to-leading order (NLO).
 - Use A=3 magnetic moments to fix the EFT, and postdict A=2 observables.
 - Use A=2 observables to fix the EFT, and postdict A=3 observables.
- Show stability of the calculation, naturalness, power counting.
- <u>Confront with nature and lattice data</u>.
- Give *reliable* uncertainty estimate, especially for an n+p→d+γ postdiction, and check its validity!
- Weak interaction:
 - Calculate ³H decay and p+p fusion, using consistent pionless EFT up to next-to-leading order (NLO).
 - Use measured 3H decay rate to predict p+p fusion.
 - Give *reliable* uncertainty estimate!

Lattice Nuclei@ECT* - Doron Gazit

Initial Scattering Final amplitude operator amplitude

Amplitudes (in a dibaryon formalism):

$$\mathcal{L} = N^{\dagger} \left(iD_0 + \frac{D^2}{2M_N} \right) N - t^{i\dagger} \left[\sigma_t + \left(iD_0 + \frac{D^2}{4M_N} \right) \right] t^i - s^{A\dagger} \left[\sigma_s + \left(iD_0 + \frac{D^2}{4M_N} \right) \right] s^A + y_t \left[t^{i\dagger} \left(N^T P_t^i N \right) + h.c \right] + y_s \left[s^{A\dagger} \left(N^T P_s^A N \right) + h.c \right],$$

$$y_{t,s}^2 = \frac{8\pi}{M_N^2 \rho_{t,s}}$$

$$\sigma_{t,s} = \frac{2}{M_N \rho_{t,s}} \left(\frac{1}{a_{t,s}} - \mu \right)$$

Kaplan (1996), Beane, Savage (1999)

Deutron normalization (ANC):
$$Z_d^{-1} = i \frac{\partial}{\partial_{p_0}} \frac{1}{i \mathcal{D}_t(p_0, p)} \Big|_{p_0 = \frac{\gamma_t^2}{M_N}, p=0}$$

Range expansion:
$$Z_d = \frac{1}{1 - \gamma_t \rho_t} = \underbrace{1}_{\text{LO}} + \underbrace{\gamma_t \rho_t}_{NLO} + \underbrace{(\gamma_t \rho_t)^2}_{N^2 LO} + \underbrace{(\gamma_t \rho_t)^3}_{N^3 LO} + \dots = 1.69$$

Z-parameterization:
$$Z_d = \underbrace{1}_{\text{LO}} + \underbrace{Z_d - 1}_{NLO} + \underbrace{0}_{N^2LO} + \underbrace{0}_{N^3LO} + \dots = 1.69$$

These are two alternatives to arrange the EFT expansion. The difference between their predictions is (one) measure of the theoretical uncertainty due to higher order corrections.

> Phillips, Rupak, Savage, Phys. Lett. **B473**, 209 (2000) Grießhammer, Nucl. Phys. **A744**, 192 (2004)

Lattice Nuclei@ECT* - Doron Gazit

 A=3 Efimov effect: triton at LO has strong cutoff dependence →add 3-body contact at LO.

▲³H-³He binding energy difference:

• Since the typical momentum is $Q \ge \sqrt{M_N E_{3He}^B} \simeq 85 MeV$, then the Coulomb interaction is perturbative:

$$\eta(Q) = \frac{\alpha M_N}{2Q} \ll 1$$

- The pp propogator always has to be renormalized (as Q can be low).
- two ways to find the A=3 b.e. difference:
 - Find the pole of a non-perturbative solution of the homogenous Fadeev equations with Coulomb (i.e., 3He w.f.).
 - Since Coulomb is perturbative in ³He, one can calculate the energy shift in the one photon approximation.

König, Hammer (2011-15), Vannase et al (2014), König et al (2014-2016)

Faddeev eq. for ³He

May 3, 2016

³H-³He binding energy difference:

NLO corrections

- NLO corrections to the amplitude include effective range (or Z_d) insertions.
- For ³H, no need in a new 3NF (just a renormalization of the LO 3NF).
- For ³He, NLO leads to a new isospin breaking force at NLO (Vanasse et al 2014).
 - See König et al (2016) for one possible solution.
- Normalization of amplitude is unchanged for ³H, and changes insignificantly for ³He.

May 3, 2016

May 3, 2016

 $hn+p\rightarrow d+\gamma$

For low neutron energy:
$$\sigma = rac{lpha \left(\gamma_t^2 + p^2
ight)^3}{M_N^2 p} Y^2$$

With:
$$Y = \sqrt{\frac{\pi}{\gamma_t}} \frac{\sqrt{Z_d}}{M_N} \left(\kappa_p - \kappa_n\right) \left[\left(\frac{1}{\gamma_t} - a_s\right) + \frac{a_s}{4} \left(\rho_t + \rho_s\right) - a_s \frac{M_N L_1}{2\pi \left(\kappa_p - \kappa_n\right)} \left(\mu - \frac{1}{a_t}\right) \left(\mu - \frac{1}{a_s}\right) \right]$$

Remember: $Z_d^{LO} = 1$ and $Z_d^{NLO} = (1 + \gamma \rho_t)$

$$\sigma_{np} = \frac{\pi \alpha \gamma_t^5 a_s^2 \left(\kappa_p - \kappa_n\right)^2}{M_N^4 p} \left[\left(1 - \frac{1}{\gamma_t a_s} \right) \left(1 + \frac{1}{2} \gamma_t \rho_t \right) - \frac{\gamma_t}{4} \left(\rho_t + \rho_s\right) + \frac{\gamma_t M_N}{2\pi \left(\kappa_p - \kappa_n\right)} L_1 \left(\mu - \frac{1}{a_t}\right) \left(\mu - \frac{1}{a_s}\right) \right]^2$$

Magnetic moments

 $\mu_d =$

Deutron:

$$\frac{e}{2M_N} \left(\kappa_n + \kappa_p\right) \left[1 + L_2 \frac{2M_N \gamma_t}{\pi \left(\kappa_n + \kappa_p\right)} \left(\mu - \frac{1}{a_t}\right)^2 \right]$$

A=3:

▲ A=3 magnetic moments calculations:

- All NLO contributions of the same order of magnitude 5-10% Natural NLO contributions.
- Cutoff independence.
- When L₁ and L₂ are fixed **from A=2 observables**:

LO:	$\mu_{^{3}\rm{H}}^{^{LO}}=3.09\pm_{Z_d}0.01$	$\mu_{{}^{3}\text{He}}^{LO} = -2.455 \pm_{Z_d} 0.005$
NLO:	$\mu_{{}^{3}\mathrm{H}}^{NLO} = 3.005 \pm_{Z_d} 0.01$	$\mu_{{}^{3}\text{He}}^{NLO} = -2.13 \pm_{Z_d} 0.01$
exp:	$\mu_{{}^{3}_{H}}^{exp} = 2.9789$	$\mu_{{}^{3}\text{He}}^{\text{exp}} = -2.1276$

▲ A=3 magnetic moments calculations:

• When L₁ and L₂ are fixed **from A=3 magnetic moments**:

LO:	$\mu_d^{LO} = 0.8798$	$\sigma_{np}^{LO} = 298.2 \mathrm{mb}$
NLO:	$\mu_d^{NLO} = 0.8617 \pm_{Z_d} 0.0002$	$\sigma_{np}^{NLO} = 335(Z_d) - 320(\rho)$
exp:	$\mu_d^{\text{exp}} = 0.8574$	$\sigma_{np}^{exp} = 334.2 \pm 0.5 \text{mb}$

Repeat using NPLQCD m.m. calculations

Magnetic moments of light nuclei from lattice quantum chromodynamics

S.R. Beane,¹ E. Chang,^{1,2} S. Cohen,^{1,2} W. Detmold,³ H.W. Lin,¹ K. Orginos,^{4,5} A. Parreño,⁶ M.J. Savage,^{1,2} and B.C. Tiburzi^{7,8,9} (NPLQCD Collaboration)

 $\delta E^{(B)} = -2\mu |\mathbf{B}| + \gamma |\mathbf{B}|^3$

May 3, 2016

Using NPLQCD l_1 in our counting

PRL 115, 132001 (2015)

PHYSICAL REVIEW LETTERS

week ending 25 SEPTEMBER 2015

0.6

0.4

 m_{π}^2 [GeV²]

0.8

1.0

Ab initio Calculation of the $np \rightarrow d\gamma$ Radiative Capture Process

Silas R. Beane,¹ Emmanuel Chang,² William Detmold,³ Kostas Orginos,^{4,5} Assumpta Parreño,⁶ Martin J. Savage,² and Brian C. Tiburzi^{7,8,9}

(NPLQCD Collaboration)

$$\Delta E_{{}^{3}S_{1},{}^{1}S_{0}}(\mathbf{B}) = 2(\kappa_{1} + \gamma_{0}Z_{d}^{2}\tilde{l}_{1})\frac{e}{M}|\mathbf{B}| + \mathcal{O}(|\mathbf{B}|^{2}),$$

0.4

0.1

0.0

0.0

0.2

Rho paramet. $l_1 = -3.934 fm$ --> $\sigma_{np} = 322.9 \text{ mb}$ $^{0.3}$ Z-paramet. $l_1 = -5.48 fm$ --> $\sigma_{np} = 342.6 \text{ mb}$

This could be regarded as a measure of the NPLQCD uncertainty in predicting n+p fusion, due to the EFT Expansion. May 3, 2016

Using NPLQCD l_1 in our counting

PRL 115, 132001 (2015)

PHYSICAL REVIEW LETTERS

week ending 25 SEPTEMBER 2015

0.6

0.4

 m_{π}^2 [GeV²]

0.8

1.0

Ab initio Calculation of the $np \rightarrow d\gamma$ Radiative Capture Process

Silas R. Beane,¹ Emmanuel Chang,² William Detmold,³ Kostas Orginos,^{4,5} Assumpta Parreño,⁶ Martin J. Savage,² and Brian C. Tiburzi^{7,8,9}

(NPLQCD Collaboration)

$$\Delta E_{{}^{3}S_{1},{}^{1}S_{0}}(\mathbf{B}) = 2(\kappa_{1} + \gamma_{0} \widetilde{l}_{1}) \frac{e}{M} |\mathbf{B}| + \mathcal{O}(|\mathbf{B}|^{2}),$$

0.4

0.1

0.0

0.0

0.2

Rho paramet.
$$l_1 = -3.934 fm$$
 $-->$ $\sigma_{np} = 322.9 \text{ mb}$ $^{0.3}$ Z-paramet. $l_1 = -5.48 fm$ $-->$ $\sigma_{np} = 342.6 \text{ mb}$

This could be regarded as a measure of the NPLQCD uncertainty in predicting n+p fusion, due to the EFT Expansion. May 3, 2016

\checkmark Weak proton-proton fusion in the Sun

SFII – Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

- Cannot be measured terrestrially depends on theory
 Very low proton-proton relative momentum (*E_{rel}~6 keV*).
 - Needed accuracy: ~1%.

$$\sigma(E) = \frac{S(E)}{E} \exp[-2\pi\eta(E)]$$

$$E) = S(0) + S'(0)E + S''(0)E^2/2 + \cdots$$

\checkmark Weak proton-proton fusion in the Sun – theory standards

SFII – Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

 $3.99(1 \pm 0.030) \times 10^{-25}$ MeV b pionless EFT.

SFII recommended value (2011): $S_{11}(0) = 4.01(1 \pm 0.009) \times 10^{-25}$ MeV b.

<u>Modern cEFT calculation by Marcucci et al., Phys. Rev. Lett. (2013)</u>: Use consistent ³H decay-rate to constrain consistently axial MEC (DG, Quaglioni, Navratil, PRL 2009), and predict pp-fusion rate.

$$S(0) = (4.030 \pm 0.006) \times 10^{-23} \text{ MeV fm}^2$$

Including: p-wave contribution (+0.005%), full EM (-0.0025-(-0.0075)%), difference between 500 and 600 MeV cutoff and potential models.

Advantages of *p*EFT UQ for proton-proton fusion: <u>1. Small number of parameters</u>.

- 2. Two NLO øEFT set-ups.
- 3. A "cheat-sheet" in the electromagnetic sector.
- 4. Cutoff independence up to infinity.

We revisit the pp-fusion problem within pionless EFT, fixing the unknown LEC using triton decay.

Lattice Nuclei@ECT* - Doron Gazit

A fully perturbative pionless EFT A=2, 3 calculation @NLO

- LO Parameters:
 - nn and 2-np Scattering lengths: ³S₁, ¹S₀.
 - pp scattering length.
 - Fine structure constant.
 - Three body force strength to prevent Thomas collapse.
- NLO parameters:
 - 2 effective ranges.
 - Renormalizations of pp and 3NF.
 - (isospin dependent 3NF to prevent logarithmic divergence in the binding energy of ³He).
- Weak Interaction: LO (g_A 1 body), NLO (L_{1A} 2 body)
- EM Interaction: LO (k_s, k_v) 1 body), NLO (L₁, L₂– 2 body)

Advantages of *p*EFT UQ for proton-proton fusion: 1. Small number of parameters.

- 2. Two NLO øEFT set-ups.
- 3. A "cheat-sheet" in the electromagnetic sector.
- 4. Cutoff independence up to infinity.

We revisit the pp-fusion problem within pionless EFT, fixing the unknown LEC using triton decay.

Advantages of *p*EFT UQ for proton-proton fusion: 1. Small number of parameters.

- 2. Two NLO øEFT set-ups.
- 3. A "cheat-sheet" in the electromagnetic sector.
- 4. Cutoff independence up to infinity.

We revisit the pp-fusion problem within pionless EFT, fixing the unknown LEC using triton decay.

Lattice Nuclei@ECT* - Doron Gazit

Advantages of *p*EFT UQ for proton-proton fusion: 1. Small number of parameters.

- 2. Two NLO øEFT set-ups.
- 3. A "cheat-sheet" in the electromagnetic sector.
- 4. Cutoff independence up to infinity.

We revisit the pp-fusion problem within pionless EFT, fixing the unknown LEC using triton decay.

Lattice Nuclei@ECT* - Doron Gazit

Adding the LO 1-body contribution

Adding the NLO 1-body contributions

one can estimate higher order effects as the NLO contribution.

All NLO contributions are of the same order,

one can estimate higher order effects as the NLO contribution.

So... is 3% too big to be called precision physics?

i.e., theoretical uncertainty of the same order of systematic experimental error encapsulated in g_A and ³H half life (2% total).

May 3, 2016

Summary

- Pionless EFT reproduces low-energy electroweak observables to a very good precision (~1%), even at NLO, and allows reliable uncertainty estimates.
- A coherent use of pionless EFT allows to estimate model uncertainty and higher order contribution.
- Pionless EFT allows assessing Lattice QCD calculations.
- Based on the EM sector, a theoretical prediction for pp fusion: $S_{pp}(g_A = 1.2701) = 4.01 \pm_{theory} 0.08 \pm_{g_A(1\sigma)} 0.07 \pm_{^{3}\text{H half life}} 0.04$ $S_{pp}(g_A = 1.275) = 4.12 \pm_{theory} 0.08 \pm_{g_A(1\sigma)} 0.07 \pm_{^{3}\text{H half life}} 0.04$
- Better determination of g_A is necessary!
- (³H half life is also an open exp. issue).