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Low	energy	electroweak	observables	A≤	3	nuclei		
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Low	energy	electroweak	observables	of	light	nuclei		
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Proton-proton		
Solar	fusion	cycle	

Nuclear	beta-decays	

Nuclear	magneTc	moments	

•  Vanishing,	or	small,	energy/momentum	transfer:	q, q0<<mp
•  Typical	momentum	for	A≤4:		
•  EffecTve	field	theory	without	pions.	

Qtyp ≈ 2mNB / A << mπ

Nuclear scales

a3S1
≈ 5.4 fm, a1S0

≈ −23.7 fm ≫ 1/mπ ≈ 1.4 fm
effective ranges (1.8 fm, 2.7 fm) are natural

Beyond models: rigor and consistency in modern nuclear theory – p. 12
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Binding momentum of deuteron 

Binding momentum of 3H, 3He 

Nuclear scales

a3S1
≈ 5.4 fm, a1S0

≈ −23.7 fm ≫ 1/mπ ≈ 1.4 fm
effective ranges (1.8 fm, 2.7 fm) are natural

Beyond models: rigor and consistency in modern nuclear theory – p. 12
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The	interaction	of		a	nucleus	with	an	external	probe	
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Nucleus	interaction	with	a	probe,	EFT	point	of	view:	

Low	energy	QCD	has	(accidental)	scale	separa9on	

Pionless	EFT	

Low	energy	EFT	–		
Λ≈mπ>>Q	è	viable	dof		

Wave	
funcTons	
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Nuclear	Matrix	
Element	of	

characterisTc	
momentum	Q	
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Theore-cal	uncertainty	quan-fica-on:		
•  Power	Coun-ng:	systemaTc	expansion		
•  RG	invariance:	cutoff	variaTon	

Leutwyler,	Gasser,	Weinberg,	Kaplan,	Savage,	Wise,	van-Kolck,		Birse,	Meissner,	Epelbaum,	Machleidt,	
Chen,	Park,	Rho,…	
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The	interaction	of		a	nucleus	with	an	external	probe	

La2ce	
formula9on	

in	a	
background	

field	

Non-physical	mp,	sign	problem,		
staTsTcs,	configuraTons,	finite	volume…	
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Application	in	the	EM	sector	(1)	
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We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei,
the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations,
performed at quark masses corresponding to m⇡ ⇠ 800 MeV, reveal that the structure of these
nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. In
particular, we find that the magnetic moment of 3He di↵ers only slightly from that of a free neutron,
as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and
a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for
the triton, µ3H ⇠ µp. The deuteron magnetic moment is found to be equal to the nucleon isoscalar
moment within the uncertainties of the calculations. Furthermore, deviations from the Schmidt
limits are also found to be similar to those in nature for these nuclei. These findings suggest that at
least some nuclei at these unphysical quark masses are describable by a phenomenological nuclear
shell-model.

The electromagnetic interactions of nuclei have been used
extensively to elucidate their structure and dynamics. In
the early days of nuclear physics, the magnetic moments
of the light nuclei helped to reveal that they behaved
like a collection of “weakly” interacting nucleons that,
to a very large degree, retained their identity, despite
being bound together by the strong nuclear force. This
feature, in part, led to the establishment of the nuclear
shell model as a phenomenological tool with which to
predict basic properties of nuclei throughout the peri-
odic table. The success of the shell model is somewhat
remarkable, given that nuclei are fundamentally bound
states of quarks and gluons, the degrees of freedom of
quantum chromodynamics (QCD). The strong nuclear
force emerges from QCD as a by-product of confinement
and chiral symmetry breaking. The fact that, at the
physical values of the quark masses, nuclei are not simply
collections of quarks and gluons, defined by their global
quantum numbers, but have the structure of interact-
ing protons and neutrons, remains to be understood at
a deep level. In this letter, we continue our exploration
of nuclei at unphysical quark masses, and calculate the
magnetic moments of the lightest few nuclei using lattice
QCD. We find that they are close to those found in na-

ture, and also close to the sum of the constituent nucleon
magnetic moments in the simplest shell model configura-
tion. This second finding in particular is remarkable and
suggests that a phenomenological nuclear shell-model is
applicable for at least some nuclei at these unphysical
quark masses.

Our lattice QCD calculations were performed on one
ensemble of gauge-field configurations generated with a
N

f

= 3 clover-improved fermion action [1] and a Lüscher-
Weisz gauge action [2]. The configurations have L = 32
lattice sites in each spatial direction, T = 48 sites in the
temporal direction, and a lattice spacing of a ⇠ 0.12 fm.
All three light-quark masses were set equal to that of
the physical strange quark, producing a pion of mass
m

⇡

⇠ 806 MeV. A background electromagnetic (U
Q

(1))
gauge field giving rise to a uniform magnetic field along
the z-axis was multiplied onto each QCD gauge field in
the ensemble (separately for each quark flavor), and these
combined gauge fields were used to calculate up- and
down-quark propagators, which were then contracted to
form the requisite nuclear correlation functions using the
techniques of Ref. [3]. Calculations were performed on
⇠ 750 gauge-field configurations, taken at uniform inter-
vals from ⇠ 10, 000 trajectories. On each configuration,
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We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei,
the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations,
performed at quark masses corresponding to m⇡ ⇠ 800 MeV, reveal that the structure of these
nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. In
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the triton, µ3H ⇠ µp. The deuteron magnetic moment is found to be equal to the nucleon isoscalar
moment within the uncertainties of the calculations. Furthermore, deviations from the Schmidt
limits are also found to be similar to those in nature for these nuclei. These findings suggest that at
least some nuclei at these unphysical quark masses are describable by a phenomenological nuclear
shell-model.
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like a collection of “weakly” interacting nucleons that,
to a very large degree, retained their identity, despite
being bound together by the strong nuclear force. This
feature, in part, led to the establishment of the nuclear
shell model as a phenomenological tool with which to
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odic table. The success of the shell model is somewhat
remarkable, given that nuclei are fundamentally bound
states of quarks and gluons, the degrees of freedom of
quantum chromodynamics (QCD). The strong nuclear
force emerges from QCD as a by-product of confinement
and chiral symmetry breaking. The fact that, at the
physical values of the quark masses, nuclei are not simply
collections of quarks and gluons, defined by their global
quantum numbers, but have the structure of interact-
ing protons and neutrons, remains to be understood at
a deep level. In this letter, we continue our exploration
of nuclei at unphysical quark masses, and calculate the
magnetic moments of the lightest few nuclei using lattice
QCD. We find that they are close to those found in na-

ture, and also close to the sum of the constituent nucleon
magnetic moments in the simplest shell model configura-
tion. This second finding in particular is remarkable and
suggests that a phenomenological nuclear shell-model is
applicable for at least some nuclei at these unphysical
quark masses.

Our lattice QCD calculations were performed on one
ensemble of gauge-field configurations generated with a
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f

= 3 clover-improved fermion action [1] and a Lüscher-
Weisz gauge action [2]. The configurations have L = 32
lattice sites in each spatial direction, T = 48 sites in the
temporal direction, and a lattice spacing of a ⇠ 0.12 fm.
All three light-quark masses were set equal to that of
the physical strange quark, producing a pion of mass
m

⇡

⇠ 806 MeV. A background electromagnetic (U
Q

(1))
gauge field giving rise to a uniform magnetic field along
the z-axis was multiplied onto each QCD gauge field in
the ensemble (separately for each quark flavor), and these
combined gauge fields were used to calculate up- and
down-quark propagators, which were then contracted to
form the requisite nuclear correlation functions using the
techniques of Ref. [3]. Calculations were performed on
⇠ 750 gauge-field configurations, taken at uniform inter-
vals from ⇠ 10, 000 trajectories. On each configuration,
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

ment. The energy splitting is extracted from a correlated
�

2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-
dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show the
energy splittings of the nucleons and nuclei as a function
of |ñ|, and, motivated by Eq. (3), we fit these to a func-
tion of the form �E

(B) = �2µ |B|+ � |B|3, where � is a
constant encapsulating higher-order terms in the expan-
sion. We find that the proton and neutron magnetic mo-
ments at this pion mass are µ

p

= 1.792(19)(37) NM (nu-
clear magnetons) and µ

n

= �1.138(03)(10) NM, respec-

FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD
calculation at a pion mass of m⇡ ⇠ 806 MeV, in units of
natural nuclear magnetons (e/2M latt

N ), are shown as the solid
bands. The inner bands corresponds to the statistical uncer-
tainties, while the outer bands correspond to the statistical
and systematic uncertainties combined in quadrature, and in-
clude our estimates of the uncertainties from lattice spacing
and volume. The red dashed lines show the experimentally
measured values at the physical quark masses.

tively, where the first uncertainty is statistical and the
second uncertainty is from systematics associated with
the fits to correlation functions and the extraction of the
magnetic moment using the above form. These results
agree with previous calculations [14] within the uncer-
tainties. The natural units of the system are e/2M latt

N

,
where M

latt
N

is the mass of the nucleon at the quark
masses of the lattice calculation, which we refer to as nat-
ural nuclear magnetons (nNM). In these units, the mag-
netic moments are µ

p

= 3.119(33)(64) nNM and µ

n

=
�1.981(05)(18) nNM. These values at this unphysical
pion mass can be compared with those of nature, µexpt

p

=
2.792847356(23) NM and µ

expt
n

= �1.9130427(05) NM,
which are remarkably close to the lattice results. In fact,
when comparing all available lattice QCD results for the
nucleon magnetic moments in units of nNM, the depen-
dence upon the light-quark masses is surprisingly small,
reminiscent of the almost completely flat pion mass de-
pendence of the nucleon axial coupling, g

A

.

In Figure 2, we also show �E

(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µ

d

= 1.218(38)(87)
nNM for the deuteron, µ3He = �2.29(03)(12) nNM for
3He and µ

3H = 3.56(05)(18) nNM for the triton. These
can be compared with the experimental values of µexpt

d

=
0.8574382308(72) NM, µ

expt
3He = �2.127625306(25) NM

and µ

expt
3H = 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µSM

d

= µ

p

+µ

n

, µSM
3He = µ

n

(where

for mπ = 806MeV/c2
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The	interaction	of		a	nucleus	with	an	external	(weak)	probe	
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staTsTcs,	configuraTons,	finite	volume…	

“Pionless”	
EFT	

Low	energy	EFT	–	
Λ≈mπ>>Q	è	viable	dof		
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Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body
electromagnetic contributions to the radiative capture process np → dγ, and the photo-disintegration
processes γð"Þd → np. In nuclear potential models, such contributions are described by phenomenological
meson-exchange currents, while in the present work, they are determined directly from the quark and gluon
interactions of QCD. Calculations of neutron-proton energy levels inmultiple backgroundmagnetic fields are
performed at twovalues of the quarkmasses, corresponding to pionmasses ofmπ ∼ 450 and 806MeV, and are
combined with pionless nuclear effective field theory to determine the amplitudes for these low-energy
inelastic processes. At mπ ∼ 806 MeV, using only lattice QCD inputs, a cross section σ806 MeV ∼ 17 mb is
found at an incident neutron speed of v ¼ 2; 200 m=s. Extrapolating the short-distance contribution to the
physical pion mass and combining the result with phenomenological scattering information and one-body

couplings, a cross section of σlqcdðnp → dγÞ ¼ 334.9ðþ5.2
−5.4 Þ mb is obtained at the same incident neutron

speed, consistent with the experimental value of σexptðnp → dγÞ ¼ 334.2ð0.5Þ mb.

DOI: 10.1103/PhysRevLett.115.132001 PACS numbers: 12.38.Gc, 11.15.Ha, 13.40.Gp

The radiative capture process, np → dγ, plays a critical
role in big bang nucleosynthesis (BBN) as it is the starting
point for the chain of reactions that form most of the light
nuclei in the cosmos. Studies of radiative capture [1–3], and
the inverse processes of deuteron electro- and photodisinte-
gration, γð"Þd → np [4–7], have constrained these cross
sections and have also provided critical insights into the
interactions between nucleons and photons. They conclu-
sively show the importance of non-nucleonic degrees of
freedom in nuclei, which arise from meson-exchange cur-
rents (MECs) in the context of nuclear potential models
[8,9]. Nevertheless, in the energy range relevant for BBN,
experimental investigations are challenging [10]. For the
analogous weak interactions of multinucleon systems, con-
siderably less is known from experiment but these processes
are equally important. The weak two-nucleon interactions
currently contribute the largest uncertainty in calculations
of the rate for proton-proton fusion in the Sun [11–17], and
in neutrino-disintegration of the deuteron [18], which is a

critical process needed to disentangle solar neutrino
oscillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determinations
from the underlying theory of strong interaction, quantum
chromodynamics (QCD), are fundamental to future theo-
retical progress. Such determinations are also of significant
phenomenological importance for calibrating long-baseline
neutrino experiments and for investigations of double
beta decay in nuclei. In this Letter, we take the initial steps
towards meeting this challenge and present the first lattice
QCD (LQCD) calculations of the np → dγ process. The
results are in good agreement with experiment and show
that QCD calculations of the less well-determined electro-
weak processes involving light nuclei are within reach.
Similarly, the present calculations open the way for QCD
studies of light nuclear matrix elements of scalar [19]
(and other) currents relevant for dark matter direct detection
experiments and other searches for physics beyond the
Standard Model.

PRL 115, 132001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

25 SEPTEMBER 2015

0031-9007=15=115(13)=132001(6) 132001-1 © 2015 American Physical Society

The low-energy cross section for np → dγ is conven-
iently written as a multipole expansion in the electromag-
netic (EM) field [20,21],

σðnp → dγÞ ¼ e2ðγ20 þ jpj2Þ3

M4γ30jpj
j ~XM1j2 þ % % % ; ð1Þ

where ~XM1 is the M1 amplitude, γ0 is the binding
momentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribution
from E1 and higher-order multipoles (higher multipoles
can be included systematically and improve the reliability
of the description [22] but are not relevant at the level of
precision of the present work). In a pionless effective field
theory expansion [23–25], employing dibaryon fields to
resum effective range contributions [26,27], the leading-
order (LO) and next-to-leading order (NLO) contributions
lead to the M1 amplitude [27,28]

~XM1 ¼
Zd

− 1
a1
þ 1

2 r1jpj
2 − ijpj

×
!

κ1γ20
γ20 þ jpj2

"
γ0 −

1

a1
þ 1

2
r1jpj2

#
þ γ20

2
l1

$
; ð2Þ

where κ1 ¼ ðκp − κnÞ=2 is the isovector nucleon magnetic
moment, Zd ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ0r3

p
is the square root of the

residue of the deuteron propagator at the pole with r3
the effective range in the 3S1 channel, and a1; r1 are the
scattering length and effective range in the 1S0 channel. The
quantity l1 ¼ ~l1 −

ffiffiffiffiffiffiffiffiffi
r1r3

p
κ1 encapsulates the short-distance

two-nucleon interactions through ~l1, but also depends on
κ1. It is well established that gauge-invariant EM two-
nucleon interactions (and direct photon-pion couplings in
pionful effective field theories) [12,18,22–24,29–32] must
be included in order to determine radiative capture and
breakup cross sections to a precision of better than ∼10%.
The only quantity in Eqs. (1) and (2) that is not

determined by kinematics, single-nucleon properties, or
scattering parameters is l1. In this work, we use LQCD to
calculate this quantity by determining the energies of
neutron-proton systems in background magnetic fields.
A magnetic field mixes the Iz ¼ jz ¼ 0 np states in the
1S0 and 3S1 − 3D1 channels, providing sensitivity to
the EM interactions. In the general situation, including
at the physical point, where the deuteron and dineutron
have different energy spectra, the formalism developed in
Ref. [28] can be used to extract l1 from the finite-volume
energy levels of this coupled system. The deuteron and
dineutron ground states are nearly degenerate at both
pion masses used in the present calculation [33], and the
two-nucleon sector exhibits an approximate spin-flavor
SU(4) symmetry (as predicted by the large-Nc limit of
QCD [34]). In this case, it can be shown [28,35] that

the energy difference between the two eigenstates depends
upon ~l1 as

ΔE3S1;1S0ðBÞ ¼ 2ðκ1 þ γ0Z2
d
~l1Þ

e
M

jBjþOðjBj2Þ; ð3Þ

where B is the background magnetic field. It is convenient
to focus on the combination L̄1 ¼ γ0Z2

d
~l1 that characterizes

the two-nucleon contributions.
Our LQCD calculations were performed on two ensem-

bles of gauge-field configurations generated with a clover-
improved fermion action [36] and a Lüscher-Weisz gauge
action [37]. The first ensemble had Nf ¼ 3 degenerate
light-quark flavors with masses tuned to the physical
strange quark mass (the physical value of ms is used, with
nonlinear mass dependence and discretization effects shift-
ing the pseudoscalar meson mass from the leading order
chiral perturbation theory estimate, mπ ∼ 680 MeV), pro-
ducing a pion of mass mπ ∼ 806 MeV and used a volume
of L3 × T ¼ 323 × 48. The second ensemble had Nf ¼
2þ 1 flavors with the same strange quark mass and
degenerate up and down quarks with masses corresponding
to a pion mass of mπ ∼ 450 MeV and a volume of
L3 × T ¼ 323 × 96. Both ensembles had a gauge coupling
of β ¼ 6.1, corresponding to a lattice spacing of
a ∼ 0.11 fm. The details of tuning the quark masses and
setting the lattice spacing are similar to those described
by the Hadron Spectrum collaboration in generating
the anisotropic clover gauge field configurations [38].
Background EM [UQð1Þ] gauge fields giving rise to uni-
form magnetic fields along the x3 axis were multiplied onto
each QCD gauge field in each ensemble (separately for
each quark flavor), and these combined gauge fields were
used to calculate up-, down-, and strange-quark propaga-
tors, which were then contracted to form the requisite
nuclear correlation functions using the techniques of
Ref. [39]. Calculations were performed on ∼1; 000
gauge-field configurations at the SU(3) point and ∼650
configurations at the lighter pion mass, each taken at
intervals of 10 hybrid Monte Carlo trajectories. On each
configuration, quark propagators were generated from 48
uniformly distributed Gaussian-smeared sources for each
magnetic field. For further details of the production at
the SU(3)-symmetric point, see Refs. [33,40,41] and in
particular, Ref. [35]. Analogous methods were employed
for the calculations using the lighter pion mass ensemble.
Background EM fields have been used extensively to

calculate electromagnetic properties of hadrons, such as the
magnetic moments of the lowest-lying baryons [42–50] and
light nuclei [41], and the polarizabilities of mesons and
baryons [50,51]. The quark fields have electric charges
Qu ¼ þ2=3 and Qd;s ¼ −1=3 for the up-, down- and
strange-quarks, respectively, and background magnetic
fields are required to be quantized [52] in order that the
magnetic flux is uniform throughout the lattice. The link
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their magnetic field dependence. Uncertainties associated
with fit parameters are determined using bootstrap resam-
pling in order to account for the correlations between
energy shifts extracted at different magnetic fields from
the same configurations. Reference [35] presents the
mπ ∼ 806 MeV correlation functions in detail, and has a
complete discussion of the fitting methods used in the
analysis for both sets of pion masses.
The extracted values of L̄1 are shown in Fig. 3 for both

sets of quark masses. The functional dependence of L̄1 on
the light-quark masses is not known. However, the deuteron
and dineutron remain relatively near threshold over a large
range of quark masses [33,53–56], and the magnetic
moments of the nucleons are essentially independent of
the quark masses when expressed in units of natural nuclear
magnetons [41], so it is plausible that L̄1 also varies only
slowly with the pion mass. Indeed, there is only a small
difference in the value of L̄1 at mπ ∼ 806 MeV and at
mπ ∼ 450 MeV. In order to connect to the physical point,
we extrapolate both linearly and quadratically in the pion
mass by resampling the probability distribution functions
of L̄1 determined by the field-strength dependence fits
at each pion mass. The two forms of extrapolation yield
consistent values at the physical point, with the central
value and uncertainties determined from the 0.17, 0.50, and
0.83 quantiles of the combination of the two projected
probability distribution functions. After this extrapolation,

the value L̄lqcd
1 ¼ 0.285ðþ63

−60 Þ nNM is found at the

physical pion mass, where the uncertainty incorporates
statistical uncertainties, correlator fitting uncertainties,
field-strength dependence fitting uncertainties, lattice spac-
ing, and the uncertainties in the mass extrapolation. Using
the precise phenomenological values of γ0 ¼ 45.681 MeV,
r1 ¼ 2.73ð3Þ fm, r3 ¼ 1.749 fm, and κ1 ¼ 2.35295 NM,

this leads to a value llqcd1 ¼ −4.41ðþ15
−16 Þ fm. Future

calculations with lighter quark masses will reduce both
the statistical and systematic uncertainties associated
with L̄1.
The cross section for np → dγ has been precisely

measured in experiments at an incident neutron speed of
v ¼ 2; 200 m=s [1]. Using the expressions in Eqs. (1) and
(2), the experimentally determined deuteron binding energy
and 1S0 scattering parameters, the experimentally deter-
mined nucleon isovector magnetic moment, and the above
extrapolated LQCD value of llqcd1 , leads to a cross section at
v ¼ 2; 200 m=s of

σlqcd ¼ 334.9
!þ5.2

−5.4

"
mb; ð9Þ

which is consistent with the experimental value of σexpt ¼
334.2ð0.5Þ mb [1] within uncertainties (see also, Ref. [10]).
As in the phenomenological determination, the two-body
contributions are Oð10%Þ. At the quark masses where
the lattice calculations are performed, the cross sections
are considerably smaller than at the physical point, pri-
marily because the deuteron binding energy is larger. At
mπ ∼ 806 MeV, the scattering parameters, binding energy,
and magnetic moments have been determined previously
[33,40,41] and we can predict the scattering cross section
using only lattice QCD inputs, with a median value
σ806 MeV ∼ 17 mb at v ¼ 2; 200 m=s. (Propagation of
the uncertainties in the required inputs leads to a highly
non-Gaussian distribution of σ806 MeV [35].)
In summary, lattice QCD calculations have been used to

determine the short-distance two-nucleon interactions with
the electromagnetic field (meson-exchange currents in the
context of nuclear potential models) that make significant
contributions to the low-energy cross sections for np → dγ
and γð%Þd → np. This was facilitated by the pionless
effective field theory which provides a clean separation
of long-distance and short-distance effects along with a
concise analytic expression for the near-threshold cross
sections. A (naive) extrapolation of the LQCD results to the
physical pion mass is in agreement with the experimental
determinations of the np → dγ cross section, within the
uncertainties of the calculation and of the experiment.
Calculations were performed at a single lattice spacing and
volume, introducing systematic uncertainties in L̄1 that are
expected to be small in comparison to our other uncer-
tainties, Oða2Λ2

QCD; e
−mπL; e−γ0LÞ ≲ 4%. A more complete

study, and a reduction of the uncertainties of this cross
section will require additional calculations at smaller lattice
spacings and larger volumes, along with calculations at
smaller quark masses.
The present calculation demonstrates the power of lattice

QCD methods to address complex processes of importance

FIG. 3 (color online). The results of LQCD calculations of L̄1

(blue points). The blue (green) shaded regions show the linear
(quadratic) in mπ extrapolation of L̄1 to the physical pion mass
(dashed line) in natural nuclear magnetons (nNM). The vertical
(red) line indicates the physical pion mass.
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their magnetic field dependence. Uncertainties associated
with fit parameters are determined using bootstrap resam-
pling in order to account for the correlations between
energy shifts extracted at different magnetic fields from
the same configurations. Reference [35] presents the
mπ ∼ 806 MeV correlation functions in detail, and has a
complete discussion of the fitting methods used in the
analysis for both sets of pion masses.
The extracted values of L̄1 are shown in Fig. 3 for both

sets of quark masses. The functional dependence of L̄1 on
the light-quark masses is not known. However, the deuteron
and dineutron remain relatively near threshold over a large
range of quark masses [33,53–56], and the magnetic
moments of the nucleons are essentially independent of
the quark masses when expressed in units of natural nuclear
magnetons [41], so it is plausible that L̄1 also varies only
slowly with the pion mass. Indeed, there is only a small
difference in the value of L̄1 at mπ ∼ 806 MeV and at
mπ ∼ 450 MeV. In order to connect to the physical point,
we extrapolate both linearly and quadratically in the pion
mass by resampling the probability distribution functions
of L̄1 determined by the field-strength dependence fits
at each pion mass. The two forms of extrapolation yield
consistent values at the physical point, with the central
value and uncertainties determined from the 0.17, 0.50, and
0.83 quantiles of the combination of the two projected
probability distribution functions. After this extrapolation,

the value L̄lqcd
1 ¼ 0.285ðþ63

−60 Þ nNM is found at the

physical pion mass, where the uncertainty incorporates
statistical uncertainties, correlator fitting uncertainties,
field-strength dependence fitting uncertainties, lattice spac-
ing, and the uncertainties in the mass extrapolation. Using
the precise phenomenological values of γ0 ¼ 45.681 MeV,
r1 ¼ 2.73ð3Þ fm, r3 ¼ 1.749 fm, and κ1 ¼ 2.35295 NM,

this leads to a value llqcd1 ¼ −4.41ðþ15
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the statistical and systematic uncertainties associated
with L̄1.
The cross section for np → dγ has been precisely

measured in experiments at an incident neutron speed of
v ¼ 2; 200 m=s [1]. Using the expressions in Eqs. (1) and
(2), the experimentally determined deuteron binding energy
and 1S0 scattering parameters, the experimentally deter-
mined nucleon isovector magnetic moment, and the above
extrapolated LQCD value of llqcd1 , leads to a cross section at
v ¼ 2; 200 m=s of
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which is consistent with the experimental value of σexpt ¼
334.2ð0.5Þ mb [1] within uncertainties (see also, Ref. [10]).
As in the phenomenological determination, the two-body
contributions are Oð10%Þ. At the quark masses where
the lattice calculations are performed, the cross sections
are considerably smaller than at the physical point, pri-
marily because the deuteron binding energy is larger. At
mπ ∼ 806 MeV, the scattering parameters, binding energy,
and magnetic moments have been determined previously
[33,40,41] and we can predict the scattering cross section
using only lattice QCD inputs, with a median value
σ806 MeV ∼ 17 mb at v ¼ 2; 200 m=s. (Propagation of
the uncertainties in the required inputs leads to a highly
non-Gaussian distribution of σ806 MeV [35].)
In summary, lattice QCD calculations have been used to

determine the short-distance two-nucleon interactions with
the electromagnetic field (meson-exchange currents in the
context of nuclear potential models) that make significant
contributions to the low-energy cross sections for np → dγ
and γð%Þd → np. This was facilitated by the pionless
effective field theory which provides a clean separation
of long-distance and short-distance effects along with a
concise analytic expression for the near-threshold cross
sections. A (naive) extrapolation of the LQCD results to the
physical pion mass is in agreement with the experimental
determinations of the np → dγ cross section, within the
uncertainties of the calculation and of the experiment.
Calculations were performed at a single lattice spacing and
volume, introducing systematic uncertainties in L̄1 that are
expected to be small in comparison to our other uncer-
tainties, Oða2Λ2

QCD; e
−mπL; e−γ0LÞ ≲ 4%. A more complete

study, and a reduction of the uncertainties of this cross
section will require additional calculations at smaller lattice
spacings and larger volumes, along with calculations at
smaller quark masses.
The present calculation demonstrates the power of lattice

QCD methods to address complex processes of importance

FIG. 3 (color online). The results of LQCD calculations of L̄1

(blue points). The blue (green) shaded regions show the linear
(quadratic) in mπ extrapolation of L̄1 to the physical pion mass
(dashed line) in natural nuclear magnetons (nNM). The vertical
(red) line indicates the physical pion mass.
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We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei,
the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations,
performed at quark masses corresponding to m⇡ ⇠ 800 MeV, reveal that the structure of these
nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. In
particular, we find that the magnetic moment of 3He di↵ers only slightly from that of a free neutron,
as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and
a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for
the triton, µ3H ⇠ µp. The deuteron magnetic moment is found to be equal to the nucleon isoscalar
moment within the uncertainties of the calculations. Furthermore, deviations from the Schmidt
limits are also found to be similar to those in nature for these nuclei. These findings suggest that at
least some nuclei at these unphysical quark masses are describable by a phenomenological nuclear
shell-model.

The electromagnetic interactions of nuclei have been used
extensively to elucidate their structure and dynamics. In
the early days of nuclear physics, the magnetic moments
of the light nuclei helped to reveal that they behaved
like a collection of “weakly” interacting nucleons that,
to a very large degree, retained their identity, despite
being bound together by the strong nuclear force. This
feature, in part, led to the establishment of the nuclear
shell model as a phenomenological tool with which to
predict basic properties of nuclei throughout the peri-
odic table. The success of the shell model is somewhat
remarkable, given that nuclei are fundamentally bound
states of quarks and gluons, the degrees of freedom of
quantum chromodynamics (QCD). The strong nuclear
force emerges from QCD as a by-product of confinement
and chiral symmetry breaking. The fact that, at the
physical values of the quark masses, nuclei are not simply
collections of quarks and gluons, defined by their global
quantum numbers, but have the structure of interact-
ing protons and neutrons, remains to be understood at
a deep level. In this letter, we continue our exploration
of nuclei at unphysical quark masses, and calculate the
magnetic moments of the lightest few nuclei using lattice
QCD. We find that they are close to those found in na-

ture, and also close to the sum of the constituent nucleon
magnetic moments in the simplest shell model configura-
tion. This second finding in particular is remarkable and
suggests that a phenomenological nuclear shell-model is
applicable for at least some nuclei at these unphysical
quark masses.

Our lattice QCD calculations were performed on one
ensemble of gauge-field configurations generated with a
N

f

= 3 clover-improved fermion action [1] and a Lüscher-
Weisz gauge action [2]. The configurations have L = 32
lattice sites in each spatial direction, T = 48 sites in the
temporal direction, and a lattice spacing of a ⇠ 0.12 fm.
All three light-quark masses were set equal to that of
the physical strange quark, producing a pion of mass
m

⇡

⇠ 806 MeV. A background electromagnetic (U
Q

(1))
gauge field giving rise to a uniform magnetic field along
the z-axis was multiplied onto each QCD gauge field in
the ensemble (separately for each quark flavor), and these
combined gauge fields were used to calculate up- and
down-quark propagators, which were then contracted to
form the requisite nuclear correlation functions using the
techniques of Ref. [3]. Calculations were performed on
⇠ 750 gauge-field configurations, taken at uniform inter-
vals from ⇠ 10, 000 trajectories. On each configuration,

ar
X

iv
:1

40
9.

35
56

v2
  [

he
p-

la
t] 

 2
3 

Fe
b 

20
15



!

Sca\ering	
operator	

	

“QCD”	

Wave	
funcTons	

	

10	

Nuclear	Matrix	
Element	

M
ay
	3
,	2
01
6	

La
?
ce
	N
uc
le
i@

EC
T*
	-	
Do

ro
n	
Ga

zit
	

Nuclear	
current	

The	interaction	of		a	nucleus	with	an	external	(weak)	probe	

La2ce	
formula9on	

“Pionless”	
EFT	



!

Sca\ering	
operator	

	

QCD	

Wave	
funcTons	

	

11	

Nuclear	Matrix	
Element	

M
ay
	3
,	2
01
6	

La
?
ce
	N
uc
le
i@

EC
T*
	-	
Do

ro
n	
Ga

zit
	

Nuclear	
current	

The	interaction	of		a	nucleus	with	an	external	(weak)	probe	

“Pionless”	
EFT	



!
Outline	

	
•  EM:	

•  Calculate	A=2,	3	magneTc	moments,	as	well	as	n+p	capture,	using	
consistent	pionless	EFT	up	to	next-to-leading	order	(NLO).	

•  Use	A=3	magneTc	moments	to	fix	the	EFT,	and	postdict	A=2	observables.	
•  Use	A=2	observables	to	fix	the	EFT,	and	postdict	A=3	observables.	

•  Show	stability	of	the	calculaTon,	naturalness,	power	counTng.	
•  Confront	with	nature	and	la>ce	data.	
•  Give	reliable	uncertainty	esTmate,	especially	for	an	n+pàd+γ	
postdicTon,	and	check	its	validity!	

•  Weak	interacTon:	
•  Calculate	3H	decay	and	p+p	fusion,	using	consistent	pionless	EFT	up	to	
next-to-leading	order	(NLO).	

•  Use	measured	3H	decay	rate	to	predict	p+p	fusion.	

•  Give	reliable	uncertainty	esTmate!	
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Amplitudes	(in	a	dibaryon	formalism):	

2 FORMALISM

2.1 The ZZ⇡EFT Lagrangian

In this section, we briefly summaries the formalism required for calculating the 3-nucleons
systems(3H,3He) in the pionless theory.

The most generalZ⇡EFT Lagrangian involves only two nucleons (electroweak external
currents will be included later). A system with two nucleons with zero angular momentum
L = 0 can exist in a spin singlet (1S0) (with spin 0 and isospin 1) or spin triplet (3S1)
(deuterium with spin 1 and isopsin 0). TheZ⇡EFT Lagrangian up to NLO in Q

⇤ is written
as [41]:

L = N †
✓
i@0 +

r2

2MN

◆
N � C0t

�
NTPtN

�† �
NTPt

�� C0s

�
NTPsN

�† �
NTPsN

�

� C2t

2
MN

�
NTPtN

�†
✓
i@0 +

r2

4MN

◆�
NTPtN

�� C2s

2
MN

�
NTPsN

�†
✓
i@0 +

r2

4MN

◆�
NTPsN

�

(4)
Here MN denotes the nucleon mass, N the nucleon field ad the projection operators

are:

P i
t =

1p
8
�2�i⌧ 2, PA

s =
1p
8
�2⌧ 2⌧A. (5)

This Lagrangian is needed to describe a 3-body(3H,3He) system which contains two
nucleons and single nucleon therefore it is better to work in the dibaryon (field of two
nucleons) frame of work. In order to do so we use the HubbardStratonovich (HS) transfor-
mation, which enable us to transform which from a nucleon-nucleon field into a dibaryon
field( [41] and Appendix A).

NT

✓
i@0 +

r2

2MN

◆
N � C0

�
N †N

�2
= NT

✓
i@0 +

r2

2MN

◆
N +

1

C0
�2 � �

N †N
�
�, (6)

where � is the dibaryon field.
By using that [23]:

Ct,s
0 =

4⇡

MN

✓
1

1/at,s � µ

◆
(7)

Ct,s
2 =

4⇡

MN

✓
1

1/at,s � µ

◆2 ⇢t,s
2

(8)

we get that after the H-S transformation:

L =N †
✓
iD0 +

D2

2MN

◆
N � ti†


�t +

✓
iD0 +

D2

4MN

◆�
ti � sA†


�s +

✓
iD0 +

D2

4MN

◆�
sA+

yt
⇥
ti†

�
NTP i

tN
�
+ h.c

⇤
+ ys

⇥
sA† �NTPA

s N
�
+ h.c

⇤
,

.

(9)

4

Here ti stands for the triplet dibaryon field with spin 1 and isospin 0 - the deuteron and
sA stands for the singlet dibaryon field with spin 0 and isospin 1 (nn, np, pp). The new
coupling constants for each channel are:

y2t,s =
8⇡

M2
N⇢t,s

(10)

�t,s =
2

MN⇢t,s

✓
1

at,s
� µ

◆
, (11)

where at,s is the scattering length ⇠ 1/Q and ⇢t,s is e↵ective range ⇠ 1/⇤, i.e unlike [41]
here ⇢

a = Q
⇤ ⌧ 1, so:

y2t,s ⇠ ⇤

M2
N

(12)

�t,s ⇠ ⇤2

MN
. (13)

2.2 Power counting

In the pionless EFT power counting, the expansion parameter is Q
⇤ [24]. The physical

observables are expressed as a perturbation in Q
⇤ . The external momenta p, the deuteron

binding momentum � are formally considered O(Q), the renormalization scale µ in this
work are consider to be the cuto↵ ⇤. Here we are follow Rupak and Kong power counting
in [36], ⇢

a = Q
⇤ ⌧ 1. In contrast to Beane and Savage in [41], here the scale separation

between the correlation length a and the e↵ective range ⇢ enable us to use the e↵ective
range as small parameter, which will determine our order of expansion. In our calculation
we will keep the NLO in Q/⇤.

In this work we are using dimensional regularization. Some immediate consequences
of the power counting are, after we integrate over the energy component q0 of a loop
momentum, contracting a nucleon propagator:

• The kinetic energy ⇠ Q2/MN

• The loop integration measure
R
d3q scales as O(Q3).

• The nucleon propagator =
h
q0 � q2

2MN
+ i"

i�1

⇠ O(MN/Q2).

• leading-order dibaryon propagator scales as i/� ⇠ MN/(Q⇤)

2.3 Dibaryon propagator

The first step in solving the integral equations for the three nucleons system is defining
the dibaryon propagator. We are solving integral equations for the three nucleons system
up to NLO and therefore we need to define the dibaryon propagator up to NLO.

5

Kaplan	(1996),	Beane,	Savage	(1999)	
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Leading order

(a) single nucleon line iS
↵a
�b = i�ab �

↵
�

✓
q0 � q2

2m
+ i"

◆�1

(b)
LO spin-triplet
dibaryon propagator
eq. (17)

iDij
t (q0,q) = i�ij

4⇡

MNy2t

 
1

at
�
r

�MNq0 +
q2

4

!�1

(c)
LO spin-singlet
dibaryon propagator
eq. (17)

iDAB
s (q0,q) = i�AB 4⇡

MNy2s

"
1

as
�
r

�MNq0 +
q2

4

#�1

(d)
LO pp propagator
eq. (61) iDAB

pp (q0,q) = i�AB 4⇡

MNy2t


1

ap
+ 2� (/q0)

��1

(e)
spin-triplet
dibaryon vertex
eq. (10)

�2iyt
1p
8
�2⌧ 2�i

(f)
spin-singlet
dibaryon vertex
eq. (10)

�2iys
1p
8
�2⌧ 2⌧A

(g)
three nucleons vertex
eq. (23)

2H(⇤)

⇤2

8
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Coulomb interaction

(h)
Coulomb propagator
eq. (50)

i

q2 + �2

(i) photon-nucleon vertex ↵

(j) photon-dibaryon vertex ↵

Next to leading order

(k)

NLO spin-triplet
E↵ective range
correction
eq. (21)

��ij
4⇡

MNy2t

⇢t
2

q
�MNq0 +

q2

4 + 1
at

1
at
�
q
�MNq0 +

q2

4

(l)

NLO spin-singlet
E↵ective range
correction
eq. (22)

��AB 4⇡

MNy2s

⇢s
2

�MNq0 +
q2

4✓
1
as

�
q

�MNq0 +
q2

4

◆2

(m)

NLO Coulomb
E↵ective range
correction
eq. (65)

��AB 4⇡

MNy2s

⇢C
2

q2/4�MNq0h
1
ap

� 2� (/q0)
i2

Weak Interction - LO

(n)
One body
weak interaction
eq. (117)

�i
gA
2
�i⌧�

9
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that runs with the cuto↵ ⇤.

Figure 4: The Faddeev equation for N-dibaryon scattering with a 3-body force. Double line is a
propagator of the two intermediate auxiliary fields d and t, denoted by D; K: is a propagator of the
exchanged nucleon; H(⇤):

Formally, the 3-body force term is obtained by adding [1]:

L3 = �MN
H(⇤)

⇤2

�
y2tN

† �~t · ~��N+ y2sN
† (~s · ~⌧)† · (~s · ~⌧)N+

1

3
ytys

h
N † �~t · ~��† (~s · ~⌧)N

i◆

(24)

to the Lagrangian eq. (9).
eq. (24) represents a contact 3-body force written in terms of dibaryon and nucleon

fields (see Figure 4).

2.6 The deuteron normalization

The deuteron normalization is given by [38]:

Z�1
d = i

@

@p0

1

iDt(p0, p)

���
p0=

�2t
MN

,p=0
(25)

For the full propagator:

Zd =
1

1� �t⇢t
= 1|{z}

LO

+ �t⇢t|{z}
NLO

+(�t⇢t)
2

| {z }
N2LO

+(�t⇢t)
3

| {z }
N3LO

+... = 1.69 (26)

and the ERE coe�cient Ct
2 [23] is defined by:

Ct
2 = 2⇡

�
ZNLO

d � 1
�

MN�t (µ� �t)
2 (27)

which is equivalent to Q expansion around p = 0
By using the e↵ective range expansion (ERE) parametrization we need to insures

that the deuteron (spin-triplet, T ) pole residue Zd =
1

1��⇢t
= 1.69 is given correctly in an

expansion of the e↵ective range about the deuteron pole. By Using the Z-parametrization,
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Zd = 1|{z}
LO

+Zd � 1| {z }
NLO

+ 0|{z}
N2LO

+ 0|{z}
N3LO

+... = 1.69 (28)

and therefore:

Ct
2 =

2⇡
�
ZNLO

d � 1
�

MN�t (µ� �t)
2 = 2⇡

0.69

MN�t (µ� �t)
2 . (29)

In the following sections we will use both normalizations eqs. (26) and (28) in order to
find the better agreement with the experimental data.
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that runs with the cuto↵ ⇤.
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that runs with the cuto↵ ⇤.
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These	are	two	alternaTves	to	arrange	the	EFT	expansion.	The	difference		
between	their	predicTons	is	(one)	measure	of		
the	theoreTcal	uncertainty	due	to	higher	order	correcTons.	

Phillips,	Rupak,	Savage,	Phys.	Le\.	B473,	209	(2000)	
Grießhammer,	Nucl.	Phys.	A744,	192	(2004)	
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3.2 Adding a 3-Body Force

In order to find H(⇤) we solve the homogeneous parts of Faddeev equation for 3H without
a 3-body force (Eq. eq. (40)) numerically and use the known binding energy of triton
�E3H = �8.48 MeV to remove the ⇤ dependence of �E3H . For each cuto↵ we found the
right value of H(⇤) for which:

✓
�T

�S

◆
=

1

2

1

qk
Q0

✓
q2 + k2 �MNE

qk

◆✓
y2t · Dt(q) �3ytys · Ds(q)

�3ytys · Dt(q) y2s · Ds(q)

◆
⌦

✓
�T

�S

◆
,

(40)

Equation eq. (40) can be treated as a coupled eigenvectors equation with eigenvalue
c = 1:

cu = K ⇥ u (41)

For each ⇤ we found H(⇤), which solves equation eq. (40) numerically with c(⇤) = 1.
The numerical calculations of H(⇤) and the analytic results are shown in Figure. 6.
Braaten et al have found that c(⇤)2 = 0.879 is the corrections for the three body force.

Fig. 6: (Color online) Values of the 3-body force H(⇤) as a function of the cuto↵ ⇤ in MeV for 3H. The
solid curve shows numerical results for H(⇤), the dashed line is the analytical euslrs from [9]
and the dash-line analytical results multiplied by the ration found in [33].

.

13

3H:	
•  A=3	Efimov	effect:	triton	at	LO	has	strong	cutoff	dependence!add	
3-body	contact	at	LO.	
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Bedaque,	Hammer,	van	Kolck	(1999),	Vansse	(2014)	

Q(a) =
1

2
·
Z 1

�1

1

x+ a
dx (29)

and

�t,s =
MNy2t,s
4⇡

Dt,s (30)

and E is the 3-body(triton) binding energy.
Notice that the quartet channel contributes to the higher orders calculations, therefore

we will not take it into account in those calculations.

3.1.2 Doublet Channel

Now go on to the doublet channel, where the spins of the nucleon and the deuteron couple
to a total spin of 1/2. The spin-singlet dibaryon can now appear in the intermediate state,
which leads to two coupled amplitudes that di↵er in the type of the outgoing dibaryon
as shown in Figure 5. Here the three nucleon spins no longer need to be aligned in the
same direction, which means that a non-derivative three-nucleon interaction is no longer
prohibited by the Pauli principle. For the n�d scattering we are setting : ann = anp = at
and At

np = At
nn.

Figure. 5 shows a diagrammatic representation of the coupled-channel integral equa-
tion for the scattering amplitudes Ad and At in the doublet channel.

Fig. 5: (Color online) n-d scattering with a 3-body force. The double line is a propagator of the
two intermediate auxiliary fields Dd (solid) and Dt (dashed). The red bubble represents the
deuterium channel T=0, S=1, while the green bubble represents the triplet channel T=1, S=0.

The Faddeev equation for 3H can be written as [11] (see Appendix A) :

T (k, p, E) =y2t


K1(k, p) +

2H

⇤2

�
+

1

2

Z
�t(q)T (k, q)K1(q, p)

q2

2⇡2
dq �3

yt
ys

Z
�s(q)S(k, q)K1(q, p)

q2

2⇡2
dq+

2H

⇤2

✓Z
�t(q)T (k, q)

q2

2⇡2
dq �yt

ys

Z
�s(q)S(k, q)

q2

2⇡2
dq

◆�
(31)

11

RegularizaTon:		
--	loop	integrals	cutoff	at	finite	Λ.	
--	each	cycle	is	characterized	by		
the	appearance	of	a	new	bound	state.	
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3H-3He	binding	energy	difference:	
•  Since	the	typical	momentum	is																																,	then	the	Coulomb	
interacTon	is	perturbaTve:	

•  The	pp	propogator	always	has	to	be	renormalized	(as	Q	can	be	low).	
•  	two	ways	to	find	the	A=3	b.e.	difference:	

•  Find	the	pole	of	a	non-perturbaTve	soluTon	of	the	homogenous	Fadeev	
equaTons	with	Coulomb	(i.e.,	3He	w.f.).	

•  Since	Coulomb	is	perturbaTve	in	3He,	one	can	calculate	the	energy	shiq	
in	the	one	photon	approximaTon.		
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König,	Hammer	(2011-15),	Vannase	et	al	(2014),	König	et	al	(2014-2016)	

rules for a Coulomb photon propagator:

iDphoton(k) =
i

k2 + �
, (50)

which we draw as a wavy line. � is a small photon mass in order to regulate the singularity
of the propagator at zero momentum transfer.

4.2 Coulomb diagrams power counting

The coulomb diagrams which contribute to p�d scattering are shown in Figure 8. Näıvely
all the diagrams should have an infinite sun of photons exchange. For 3He the typical
momentum is defined by:

Q �
q

MNEB
3He ' 85MeV (51)

The Coulomb parameter ⌘:

⌘(Q) =
↵MN

2Q
<< 1 (52)

In the case that ⌘(Q) << 1 we can treat the sum of the photon exchange as a perturbation
and take into account only one photon exchange.

Figure 8: The possible one-photon exachne diagrams

All the diagrams are proportional to the e fine-structure constant ↵ ⇠ 1/137, which
will be used as an additional expansion parameter.

The power counting for the diagram shown in Figure 8 are( [36, 50]):

• For diagram a:
⇣

⇤
M2

N

⌘
⇥
⇣

MN

Q2

⌘3

⇥Q3 ⇥ Q2

MN
⇥ ↵

p2 = ⇤
Q

↵
p2 = O((K))⇥ ↵MN

p
Q
p

• For diagram b:
⇣

⇤
M2

N

⌘
⇥
⇣

MN

Q2

⌘3

⇥Q3 ⇥ Q2

MN
⇥ ↵

Q2 = ⇤
Q

↵
Q2 = O((K))⇥ ↵MN

Q

• For diagram c:
⇣

⇤
M2

N

⌘
⇥
⇣

MN

Q2

⌘3

⇥Q3 ⇥ Q2

MN
⇥ ↵

Q2 = ⇤
Q

↵
Q2 = O((K))⇥ ↵MN

Q
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Faddeev	eq.	for	3He		
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Figure 9: (Color online) p�d-scattering with a 3-body force. The double line is a propagator of the two
intermediate auxiliary fields Dd (solid) and Dnp

t (dashed) and Dpp (doted) . The red bubble represents
the deuterium channel T=0, S=1, the green bubble represents the triplet channel T=1, S=0 with np
dibaryon while the blue bubble represents the triplet channel T=1, S=0 with pp dibaryon.

where the di↵erent contributions the coulomb interaction are given by (see Appendix
D):

20
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3H-3He	binding	energy	difference:	
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König,	Hammer	(2011-15),	Vannase	et	al	(2014),	König	et	al	(2014-2016)	Figure 10: (Color online) Perturbative prediction for the E3He binding energy as a function of the
cuto↵. The solid lines is binding energy form the 3-body force, the dashed-doted line is the predication
from the perturbation theory eq. (67) and the doted line is the predication from the perturbation theory
eqs. (67) and (68). The dashed line the experimental value E3He = 7.72 MeV

6 NLO correction for the Faddeev equations

Due to the fact that the Lec L1A is from higher order, In order to calculate the full Triton
(3H) �-decay into Helium-3, one has to find the NLO solution for the Faddeev equations
for both 3H and 3He, for the bound state, which is the amplitude that is used to calculate
the � decay matrix element, . Here we are following J. Vanasse et al [39] in their NLO
calculations only for bound state.

6.1 Triton NLO

The NLO corrections for triton are construct form the e↵ective range expansion and from
an additional 3-body force. For all the flowing calculation we are working in the bound
state in which the (T-matrix) is given by

T (k, p) =
�T (k)�T (p)

E � EB
(69)

S(k, p) =
�T (k)�S(p)

E � EB
(70)

23



!
NLO	corrections	

•  NLO	correcTons	to	the	amplitude	include	effecTve	range	(or	Zd)	
inserTons.	

•  For	3H,	no	need	in	a	new	3NF	(just	a	renormalizaTon	of	the	LO	3NF).	
•  For	3He,	NLO	leads	to	a	new	isospin	breaking	force	at	NLO	(Vanasse	
et	al	2014).	
•  See	König	et	al	(2016)	for	one	possible	soluTon.	

•  NormalizaTon	of	amplitude	is	unchanged	for	3H,	and	changes	
insignificantly	for	3He.	
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!

Weak	

•  LO:	
EM	

•  LO:	
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IniTal		
amplitude	

Final	
amplitude	

ScaAering		
operator	

7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):

L2
magnetic = e

h
L1

�
NTPA

s N
�† �

NTP i
tN

�
Bi � L2

�
NTP i

t

�† �
NTP j

t N
�
Bk + h.c

i
(95)

where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:

Lµ
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN � L0

1(t
†s+ s†t) · B + L0

2(t
†t) · B. (96)

Where:

L0
1 =

e

2MN


�1

2

⇢t + ⇢sp
⇢t⇢s

(p � n) + L1
MN

⇡
p
⇢t⇢s

✓
µ� 1

at

◆✓
µ� 1

as

◆�
(97)

L0
2 =

e

2MN

"
L2

2MN

⇡⇢t

✓
µ� 1

at

◆2

� (p + n)

#
(98)

In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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Chiral effective field theory

Chiral EFT: low energy approach to QCD for nuclear structure energies

Approximate chiral symmetry: pion exchanges and contact interactions

Systematic expansion: nuclear forces and electroweak currents

2
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N LO
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3N force 4N force2N force
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e ν
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N
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N

π

N ν e ν

N

NN

N

Weinberg, van Kolck, Kaplan, Savage, Epelbaum, Kaiser, Meißner...

Park et al.
PRC67 055206(2003)

Short-range couplings fit
to experiment once

Javier Menéndez (JSPS / U. Tokyo) Correlations and �� decay Jyväskylä, 1 June 2015 6 / 22

(a) (b)

Figure 19: Color online) Numerical for the �np (a) and µd (b). The gray solid line is the experiential
data from [7, 8]. The dashed line is 1-body LO calculating,the long-dashed-dotted line is the numerical
results of 1-body NLO, the short dotted-dashed line is full NLO with L1, L2 = 0 and the dotted line
is the full NLO calculation with L1 and L2 set from A = 3. The red lines are the numerical results
with ⇢t = 1.765 fm, while the blue lines are numerical results after Z-parametrization with ⇢0t = 0.69/�t
(noted as Zt) and the purple line is the results which is shared for both ⇢t.

8 Triton (3H) �-decay into Helium-3 (3He)

In this section we are turning to the calculation of the matrix element of the weak reaction:

3H !3 He + e� + ⌫e. (113)

To do so we will need to define the LO and NLO bound state scattering amplitudes for
both 3H and 3He, as done in the previous sections. In additions it is essential to define the
weak interaction weak Interaction in Z⇡EFT and in particular its Hubbard-Stratonovich
transformation.

8.1 Weak Interaction in ZZ⇡EFT

The Lagrangian of the weak interaction is given by:

LWeak =
�GFp

2
lµ+j

�
µ + h.c (114)

where the lµ is the leptonic current and Jµ is the hadronic current.
The hadronic current contains two parts: polar-vector and axial-vector. The polar-

vector part:

Vµ = N †⌧
�

2
N, (115)

is conserved due to the Conserved Vector Current (CVC) which is accurate at this order
of EFT.

42

The axial-vector part is �A�
µ [11]:

A�
µ =

gA
2
N †�⌧�N + L1A

�
NTPA

t N
�† �

NTP i
dN

�
(116)

where ⌧� is ⌧1� i · ⌧2 and gA and L1A are the LEC’s for weak interaction for one and two
body, respectively.

By applying the H-S transformation on eq. (116) (see Appendix A) we get that for the
sum of the dibaryon-dibaryon interaction and the dibaryon-loop interaction(see table. 1,
o-q)

A�
µ =

gA
2
N †�⌧�N + gA


1

2

⇢t + ⇢sp
⇢t⇢s

� L1A
1

2⇡
p
⇢t⇢sgA

✓
µ� 1

at

◆✓
µ� 1

as

◆� �
t†s+ s†t

�
.

(117)
In addition the three nucleons system contain also a dibaryon-vertex interaction (see
table 1). In our calculation we are using the cuto↵ ⇤ as our the renormalization scale µ,
therefore the dibaryon-loop weak interaction will be at the order of O(1 + L1A⇤3) while
the dibaryon weak interaction will be at the order of O �

1
⇤ + L1A⇤2

�
. For the case that

µ ⌘ ⇤:

A�
⇤ =

gA
2
N †�⌧�N + gA


1

2

⇢t + ⇢sp
⇢t⇢s

� L1A
1

2⇡
p
⇢t⇢sgA

✓
⇤� 1

at

◆✓
⇤� 1

as

◆� �
t†s+ s†t

�
.

(118)
a̧nd therefore

L1A = L1A(⇤) =
4⇡l1A
MN⇤2

, (119)

where l1A is an unknown, dimensionless constant (see [10]). In that case we will get that
the countribation to the weak decay will be independent in ⇤.

Aµeq. (118) is written up to NLO where the first term which donate the one-body
interaction is in LO and the other terms which donate the one-body interactions are in
NLO. Therefore to maintain consistency, the one body interaction will coupled to the
NLO �0S and to the NLO propagators, while the one body interaction will coupled to
the LO �0S and to the LO propagators.

8.2 Triton (3H) �-decay in ZZ⇡EFT

The calculation of the homogeneous scattering amplitudes for both the Triton and 3He,
enable us to calculate the cross section of Triton (3H) �-decay:

3H !3 He + e� + ⌫e (120)

This decay is shown in Figure 20. The left hand side (LHS) of the diagram is 3H represents
by �T,S(q, E3H) while the left hand side (RHS) is the 3He represents �T,S,P (q, E3He). The
half life time of 3H � decay can be expressed as:

T1/2 =
K/GV

fvhF i2 + fAg2AhGT i2 . (121)
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7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):

L2
magnetic = e

h
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�
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s N
�† �
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tN

�
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:

Lµ
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN � L0

1(t
†s+ s†t) · B + L0

2(t
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):

L2
magnetic = e

h
L1

�
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:

Lµ
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN � L0

1(t
†s+ s†t) · B + L0

2(t
†t) · B. (96)

Where:
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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(a) (b)

Figure 19: Color online) Numerical for the �np (a) and µd (b). The gray solid line is the experiential
data from [7, 8]. The dashed line is 1-body LO calculating,the long-dashed-dotted line is the numerical
results of 1-body NLO, the short dotted-dashed line is full NLO with L1, L2 = 0 and the dotted line
is the full NLO calculation with L1 and L2 set from A = 3. The red lines are the numerical results
with ⇢t = 1.765 fm, while the blue lines are numerical results after Z-parametrization with ⇢0t = 0.69/�t
(noted as Zt) and the purple line is the results which is shared for both ⇢t.

8 Triton (3H) �-decay into Helium-3 (3He)

In this section we are turning to the calculation of the matrix element of the weak reaction:

3H !3 He + e� + ⌫e. (113)

To do so we will need to define the LO and NLO bound state scattering amplitudes for
both 3H and 3He, as done in the previous sections. In additions it is essential to define the
weak interaction weak Interaction in Z⇡EFT and in particular its Hubbard-Stratonovich
transformation.

8.1 Weak Interaction in ZZ⇡EFT

The Lagrangian of the weak interaction is given by:

LWeak =
�GFp

2
lµ+j

�
µ + h.c (114)

where the lµ is the leptonic current and Jµ is the hadronic current.
The hadronic current contains two parts: polar-vector and axial-vector. The polar-

vector part:

Vµ = N †⌧
�

2
N, (115)

is conserved due to the Conserved Vector Current (CVC) which is accurate at this order
of EFT.

42

The axial-vector part is �A�
µ [11]:
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where ⌧� is ⌧1� i · ⌧2 and gA and L1A are the LEC’s for weak interaction for one and two
body, respectively.

By applying the H-S transformation on eq. (116) (see Appendix A) we get that for the
sum of the dibaryon-dibaryon interaction and the dibaryon-loop interaction(see table. 1,
o-q)
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In addition the three nucleons system contain also a dibaryon-vertex interaction (see
table 1). In our calculation we are using the cuto↵ ⇤ as our the renormalization scale µ,
therefore the dibaryon-loop weak interaction will be at the order of O(1 + L1A⇤3) while
the dibaryon weak interaction will be at the order of O �

1
⇤ + L1A⇤2

�
. For the case that

µ ⌘ ⇤:
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a̧nd therefore

L1A = L1A(⇤) =
4⇡l1A
MN⇤2

, (119)

where l1A is an unknown, dimensionless constant (see [10]). In that case we will get that
the countribation to the weak decay will be independent in ⇤.

Aµeq. (118) is written up to NLO where the first term which donate the one-body
interaction is in LO and the other terms which donate the one-body interactions are in
NLO. Therefore to maintain consistency, the one body interaction will coupled to the
NLO �0S and to the NLO propagators, while the one body interaction will coupled to
the LO �0S and to the LO propagators.

8.2 Triton (3H) �-decay in ZZ⇡EFT

The calculation of the homogeneous scattering amplitudes for both the Triton and 3He,
enable us to calculate the cross section of Triton (3H) �-decay:

3H !3 He + e� + ⌫e (120)

This decay is shown in Figure 20. The left hand side (LHS) of the diagram is 3H represents
by �T,S(q, E3H) while the left hand side (RHS) is the 3He represents �T,S,P (q, E3He). The
half life time of 3H � decay can be expressed as:

T1/2 =
K/GV

fvhF i2 + fAg2AhGT i2 . (121)
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7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):

L2
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h
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:
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magnetic =
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note

36

L '1A

7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:
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magnetic =
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):

L2
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h
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:

Lµ
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN � L0

1(t
†s+ s†t) · B + L0

2(t
†t) · B. (96)

Where:
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note

36

Simultaneous	interacTon	with	two	nucleons	
coupled	to	singlet	(s)	/	triplet	(t)	

(a) (b)

Figure 19: Color online) Numerical for the �np (a) and µd (b). The gray solid line is the experiential
data from [7, 8]. The dashed line is 1-body LO calculating,the long-dashed-dotted line is the numerical
results of 1-body NLO, the short dotted-dashed line is full NLO with L1, L2 = 0 and the dotted line
is the full NLO calculation with L1 and L2 set from A = 3. The red lines are the numerical results
with ⇢t = 1.765 fm, while the blue lines are numerical results after Z-parametrization with ⇢0t = 0.69/�t
(noted as Zt) and the purple line is the results which is shared for both ⇢t.

8 Triton (3H) �-decay into Helium-3 (3He)

In this section we are turning to the calculation of the matrix element of the weak reaction:

3H !3 He + e� + ⌫e. (113)

To do so we will need to define the LO and NLO bound state scattering amplitudes for
both 3H and 3He, as done in the previous sections. In additions it is essential to define the
weak interaction weak Interaction in Z⇡EFT and in particular its Hubbard-Stratonovich
transformation.

8.1 Weak Interaction in ZZ⇡EFT

The Lagrangian of the weak interaction is given by:

LWeak =
�GFp

2
lµ+j

�
µ + h.c (114)

where the lµ is the leptonic current and Jµ is the hadronic current.
The hadronic current contains two parts: polar-vector and axial-vector. The polar-

vector part:

Vµ = N †⌧
�

2
N, (115)

is conserved due to the Conserved Vector Current (CVC) which is accurate at this order
of EFT.
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The axial-vector part is �A�
µ [11]:
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where ⌧� is ⌧1� i · ⌧2 and gA and L1A are the LEC’s for weak interaction for one and two
body, respectively.

By applying the H-S transformation on eq. (116) (see Appendix A) we get that for the
sum of the dibaryon-dibaryon interaction and the dibaryon-loop interaction(see table. 1,
o-q)
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In addition the three nucleons system contain also a dibaryon-vertex interaction (see
table 1). In our calculation we are using the cuto↵ ⇤ as our the renormalization scale µ,
therefore the dibaryon-loop weak interaction will be at the order of O(1 + L1A⇤3) while
the dibaryon weak interaction will be at the order of O �

1
⇤ + L1A⇤2

�
. For the case that
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(118)
a̧nd therefore

L1A = L1A(⇤) =
4⇡l1A
MN⇤2

, (119)

where l1A is an unknown, dimensionless constant (see [10]). In that case we will get that
the countribation to the weak decay will be independent in ⇤.

Aµeq. (118) is written up to NLO where the first term which donate the one-body
interaction is in LO and the other terms which donate the one-body interactions are in
NLO. Therefore to maintain consistency, the one body interaction will coupled to the
NLO �0S and to the NLO propagators, while the one body interaction will coupled to
the LO �0S and to the LO propagators.

8.2 Triton (3H) �-decay in ZZ⇡EFT

The calculation of the homogeneous scattering amplitudes for both the Triton and 3He,
enable us to calculate the cross section of Triton (3H) �-decay:

3H !3 He + e� + ⌫e (120)

This decay is shown in Figure 20. The left hand side (LHS) of the diagram is 3H represents
by �T,S(q, E3H) while the left hand side (RHS) is the 3He represents �T,S,P (q, E3He). The
half life time of 3H � decay can be expressed as:

T1/2 =
K/GV

fvhF i2 + fAg2AhGT i2 . (121)
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In addition the three nucleons system contain also a dibaryon-vertex interaction (see
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where l1A is an unknown, dimensionless constant (see [10]). In that case we will get that
the countribation to the weak decay will be independent in ⇤.

Aµeq. (118) is written up to NLO where the first term which donate the one-body
interaction is in LO and the other terms which donate the one-body interactions are in
NLO. Therefore to maintain consistency, the one body interaction will coupled to the
NLO �0S and to the NLO propagators, while the one body interaction will coupled to
the LO �0S and to the LO propagators.

8.2 Triton (3H) �-decay in ZZ⇡EFT

The calculation of the homogeneous scattering amplitudes for both the Triton and 3He,
enable us to calculate the cross section of Triton (3H) �-decay:

3H !3 He + e� + ⌫e (120)

This decay is shown in Figure 20. The left hand side (LHS) of the diagram is 3H represents
by �T,S(q, E3H) while the left hand side (RHS) is the 3He represents �T,S,P (q, E3He). The
half life time of 3H � decay can be expressed as:
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7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):

L2
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h
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�
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i
(95)

where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:

Lµ
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN � L0

1(t
†s+ s†t) · B + L0
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:
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e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
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2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
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.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:
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magnetic =
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.
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where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:
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In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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spin operator � : k = (�1, 0, 1), and
⌦
1, 12 , k,m1

�� 1
2 ,m2i is the Clebsch-Gordan coe�cient.

Z3 is the normalization of the trinucleon homogeneous wave functions(see [38, 51, 67] ).
The diagrams which contain a one-body magnetic interaction that are coupled to n and
p. The two-body diagrams are coupled for both L0

1 and L0
2. By summing over all the

diagrams and comparing its ratio to the known magnetic moments from [68], L1 and L2

can be found simultaneously. We have used the experimental input parameters shown
in Tab. 4 in the numerical calculation. Our numerical result for magnetic moments are
given in Tab. 2 and shown on Fig. 16.

3H 3He
1-body LO 3.088±0.002 -2.450±0.001

1-body LO, Zt 3.10±0.01 -2.461±0.001
1-body NLO 3.248 ±0.002 -2.1896±0.001

1-body NLO, Zt 3.34±0.01 -2.190±0.001
Full NLO L1, L2=0 3.020±0.002 -2.2862±0.001

Full NLO, L1, L2, Zt=0 3.014±0.001 -2.249 ±0.001
Full NLO 2.996±0.002 -2.118±0.001

Full NLO, Zd 3.014±0.001 -2.137±0.001
� Zd 0.6% 1%

Exp data [68] 2.9789 -2.12762
� exp  1%  1%

Table 2: Numerical calculation for hµ3Hi and hµ3Hei

Where the full NLO calculation was done using the Lec’s L1 and L2 set from A = 2.
The gap between the numerical result for of the magnetic moment of both 3H and 3He
to the full NLO with L1, L2 = 0 comes from the two body terms which coupled to both
L1 and L2, which can be calibrate simultaneously for both 3H and 3He. The results are
shown in Fig. 17. Our numerical result for two body Lec L1 and L2 are:
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and L2

⇣
µ� 1

at

⌘2

has no dependence in the renormaliza-

tion scale µ. The finale step is using the above L1 for calculating the n + p ! d + �
radiative capture cross section and using the above L2 for calculating the magnetic mo-
ment of the deuteron. The diagrams for the np radiative capture (up to NLO) are showing
in Fig. 18.

The total cross section is given by [41]:

� =
↵ (�2

t + p2)3

M2
Np

Y 2 (103)
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Figure 16: (Color online) Numerical for the 3-nucleon magnetic moments: 3H (a) and 3He (b). The
grey solid line is the experiential data from [7, 8]. The dashed line is 1-body LO calculating,the dotted
line is the numerical results of 1-body NLO, the short dotted-dashed line is full NLO with L1, L2 = 0.
The red lines are the numerical results with ⇢t = 1.765 fm, while the blue lines are numerical results
after Z-parametrization with ⇢0t = 0.69/�t, (noted as Zt).

where Y is summation of all the diagrams from Fig. 18 and p=0.0034 MeV, is the
momentum of each incoming nucleon in the center-of-mass frame [44,66].
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with ZLO
d = 1 and ZNLO

d = (1 + �⇢t) [43, 65], the total cross section (eq. (103)) is given
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The diagrams for the deuteron magnetic moment (up to NLO) are like the diagrams
showing in Fig. 18 where the n and p are in bound state. The magnet moment of the
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Figure 16: (Color online) Numerical for the 3-nucleon magnetic moments: 3H (a) and 3He (b). The
grey solid line is the experiential data from [7, 8]. The dashed line is 1-body LO calculating,the dotted
line is the numerical results of 1-body NLO, the short dotted-dashed line is full NLO with L1, L2 = 0.
The red lines are the numerical results with ⇢t = 1.765 fm, while the blue lines are numerical results
after Z-parametrization with ⇢0t = 0.69/�t, (noted as Zt).

where Y is summation of all the diagrams from Fig. 18 and p=0.0034 MeV, is the
momentum of each incoming nucleon in the center-of-mass frame [44,66].
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The red lines are the numerical results with ⇢t = 1.765 fm, while the blue lines are numerical results
after Z-parametrization with ⇢0t = 0.69/�t, (noted as Zt).

where Y is summation of all the diagrams from Fig. 18 and p=0.0034 MeV, is the
momentum of each incoming nucleon in the center-of-mass frame [44,66].
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The diagrams for the deuteron magnetic moment (up to NLO) are like the diagrams
showing in Fig. 18 where the n and p are in bound state. The magnet moment of the
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(a) (b)

Figure 17: (Color online) Numerical for L1 (a) L2 (b). The red lines are the numerical results with
⇢t = 1.765 fm, while the blue lines are numerical results after Z-parametrization with ⇢0t = 0.69/�t,
(noted as Zt).

deuteron is given cross section is given by [44]:
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up to NLO:

µd =
e

2MN
(n + p)

"
1 + L2

2MN�t
⇡ (n + p)

✓
µ� 1

at

◆2
#

(108)

Our numerical result for �np and µd are given in Tab. 3.

�np [mb] µd [µN ]
1-body LO 298.2 0.8798
1-body NLO 432.6 1.2395

1-body NLO, Zt 503.9 1.4869
Full NLO L1, L2=0 288.8 0.8798

Full NLO L1, L2=0, Zd 310.5 0.8798
Full NLO 338.8±0.1 0.8592±0.001

Full NLO, Zd 347.8±0.1 0.8547±0.001
�Zd

Exp data 334.2±0.5 [7] 0.8574 [8]

Table 3: Numerical calculation for �np and µd.

All the above calculation were done up NLO using experimental input parameters
shown in Tab. 4. We have repeated all the above calculation with the new definition of

40

Deutron:	

A=3:	

Figure 15: (Color online) Di↵erent topologies of the diagrams contributing to A=3 magnetic moment.
The double line is a propagator of the two intermediate auxiliary fields Dt (solid), Ds (dashed for nn
and np), where the red line is the neutron and the blue line is the proton. Most of the diagrams couple
both the triplet and the singlet channels. The diagrams with one-body interactions are coupled to n

and p, while the two-body interaction are coupled to both L0
1 and L0

2.

by �NLO), while the two body interaction will coupled to the LO one (note by �LO).
The calculation of the homogeneous scattering amplitudes for both the Triton and 3He,
enable us to calculate the the magnetic moment of the three-nucleon. Fig. 15 shows
the topologies of the diagrams of the 3H and 3He magnetic moments. The 3-nucleons
magnetic moments can be written as:

hµ3i =
h12 , Iz, 12 ,mfkLmagnetick1

2 , Iz,
1
2 ,miip

2J + 1
, (99)

where Iz is 3-nucleons isospin projection (12 for 3H, -12 for 3He). The third quantum
number is the 3-nucleons total spin, while the forth quantum number is 3-nucleons spin
projection. The calculation of reduce matrix element was done using Wigner-Eckart
theorem. For the diagrams in the first line in Fig 15:

hµ3i = Z3

Z
d3q

2⇡3
�A(q, E3)DA(E3, q)y

2
t⇥

M2
N

4⇡
p

3q2 � 4MNE3

DB(E3, q)�B(q, E3)

#
⇥ hmf | �k |mii⌦

1, 12 , k,mi

�� 1
2 ,mfi

(100)

�A,B are the di↵erent channels of the 3-nucleons homogeneous scattering amplitude;
A,B = (T, S) for 3H and A,B = (T, S, P ) for 3He. k is the di↵erent projection of the
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(a) (b)

Figure 16: (Color online) Numerical for the 3-nucleon magnetic moments: 3H (a) and 3He (b). The
grey solid line is the experiential data from [7, 8]. The dashed line is 1-body LO calculating,the dotted
line is the numerical results of 1-body NLO, the short dotted-dashed line is full NLO with L1, L2 = 0.
The red lines are the numerical results with ⇢t = 1.765 fm, while the blue lines are numerical results
after Z-parametrization with ⇢0t = 0.69/�t, (noted as Zt).

where Y is summation of all the diagrams from Fig. 18 and p=0.0034 MeV, is the
momentum of each incoming nucleon in the center-of-mass frame [44,66].

Y =

r
⇡

�t

p
Zd

MN
(p � n)

✓
1

�t
� as

◆
+

as
4
(⇢t + ⇢s)� as

MNL1

2⇡ (p � n)

✓
µ� 1

at

◆✓
µ� 1

as

◆�
.

(104)

Up to NLO:

Y =

p
⇡as

MN
p
�t

(p � n)

✓
1� 1

�tas

◆✓
1 +

1

2
�t⇢t

◆
�

�t
4
(⇢t + ⇢s) + �tL1

MN

2⇡ (p � n)

✓
µ� 1

at

◆✓
µ� 1

as

◆�
,

(105)

with ZLO
d = 1 and ZNLO

d = (1 + �⇢t) [43, 65], the total cross section (eq. (103)) is given
by:
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The diagrams for the deuteron magnetic moment (up to NLO) are like the diagrams
showing in Fig. 18 where the n and p are in bound state. The magnet moment of the
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•  All	NLO	contribuTons	of	the	same	order	of	magnitude	5-10%	–		
Natural	NLO	contribuTons.	

•  Cutoff	independence.	
•  When	L1	and	L2	are	fixed	from	A=2	observables:	

3H	 3He	

µ 3H
LO = 3.09 ±Zd

0.01 µ 3He
LO = −2.455±Zd

0.005

µ 3H
NLO = 3.005±Zd

0.01 µ 3He
NLO = −2.13±Zd

0.01

µ 3H
exp = 2.9789... µ 3He

exp = −2.1276...

LO:	

NLO:	

exp:	
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Figure 16: (Color online) Numerical for the 3-nucleon magnetic moments: 3H (a) and 3He (b). The
grey solid line is the experiential data from [7, 8]. The dashed line is 1-body LO calculating,the dotted
line is the numerical results of 1-body NLO, the short dotted-dashed line is full NLO with L1, L2 = 0.
The red lines are the numerical results with ⇢t = 1.765 fm, while the blue lines are numerical results
after Z-parametrization with ⇢0t = 0.69/�t, (noted as Zt).

where Y is summation of all the diagrams from Fig. 18 and p=0.0034 MeV, is the
momentum of each incoming nucleon in the center-of-mass frame [44,66].
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with ZLO
d = 1 and ZNLO

d = (1 + �⇢t) [43, 65], the total cross section (eq. (103)) is given
by:
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The diagrams for the deuteron magnetic moment (up to NLO) are like the diagrams
showing in Fig. 18 where the n and p are in bound state. The magnet moment of the
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•  When	L1	and	L2	are	fixed	from	A=3	magne9c	moments:	

3H	 3He	

µd
LO = 0.8798 σ np

LO = 298.2mb

µd
NLO = 0.8617±Zd

0.0002 σ np
NLO = 335 Zd( )− 320 ρ( )

µd
exp = 0.8574... σ np

exp = 334.2 ± 0.5mb...

LO:	

NLO:	

exp:	
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Universitat de Barcelona, Mart́ı Franquès 1, E08028-Spain

7
Department of Physics, The City College of New York, New York, NY 10031, USA

8
Graduate School and University Center, The City University of New York, New York, NY 10016, USA

9
RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

(Dated: February 25, 2015)

We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei,
the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations,
performed at quark masses corresponding to m⇡ ⇠ 800 MeV, reveal that the structure of these
nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. In
particular, we find that the magnetic moment of 3He di↵ers only slightly from that of a free neutron,
as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and
a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for
the triton, µ3H ⇠ µp. The deuteron magnetic moment is found to be equal to the nucleon isoscalar
moment within the uncertainties of the calculations. Furthermore, deviations from the Schmidt
limits are also found to be similar to those in nature for these nuclei. These findings suggest that at
least some nuclei at these unphysical quark masses are describable by a phenomenological nuclear
shell-model.

The electromagnetic interactions of nuclei have been used
extensively to elucidate their structure and dynamics. In
the early days of nuclear physics, the magnetic moments
of the light nuclei helped to reveal that they behaved
like a collection of “weakly” interacting nucleons that,
to a very large degree, retained their identity, despite
being bound together by the strong nuclear force. This
feature, in part, led to the establishment of the nuclear
shell model as a phenomenological tool with which to
predict basic properties of nuclei throughout the peri-
odic table. The success of the shell model is somewhat
remarkable, given that nuclei are fundamentally bound
states of quarks and gluons, the degrees of freedom of
quantum chromodynamics (QCD). The strong nuclear
force emerges from QCD as a by-product of confinement
and chiral symmetry breaking. The fact that, at the
physical values of the quark masses, nuclei are not simply
collections of quarks and gluons, defined by their global
quantum numbers, but have the structure of interact-
ing protons and neutrons, remains to be understood at
a deep level. In this letter, we continue our exploration
of nuclei at unphysical quark masses, and calculate the
magnetic moments of the lightest few nuclei using lattice
QCD. We find that they are close to those found in na-

ture, and also close to the sum of the constituent nucleon
magnetic moments in the simplest shell model configura-
tion. This second finding in particular is remarkable and
suggests that a phenomenological nuclear shell-model is
applicable for at least some nuclei at these unphysical
quark masses.

Our lattice QCD calculations were performed on one
ensemble of gauge-field configurations generated with a
N

f

= 3 clover-improved fermion action [1] and a Lüscher-
Weisz gauge action [2]. The configurations have L = 32
lattice sites in each spatial direction, T = 48 sites in the
temporal direction, and a lattice spacing of a ⇠ 0.12 fm.
All three light-quark masses were set equal to that of
the physical strange quark, producing a pion of mass
m

⇡

⇠ 806 MeV. A background electromagnetic (U
Q

(1))
gauge field giving rise to a uniform magnetic field along
the z-axis was multiplied onto each QCD gauge field in
the ensemble (separately for each quark flavor), and these
combined gauge fields were used to calculate up- and
down-quark propagators, which were then contracted to
form the requisite nuclear correlation functions using the
techniques of Ref. [3]. Calculations were performed on
⇠ 750 gauge-field configurations, taken at uniform inter-
vals from ⇠ 10, 000 trajectories. On each configuration,
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We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei,
the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations,
performed at quark masses corresponding to m⇡ ⇠ 800 MeV, reveal that the structure of these
nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. In
particular, we find that the magnetic moment of 3He di↵ers only slightly from that of a free neutron,
as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and
a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for
the triton, µ3H ⇠ µp. The deuteron magnetic moment is found to be equal to the nucleon isoscalar
moment within the uncertainties of the calculations. Furthermore, deviations from the Schmidt
limits are also found to be similar to those in nature for these nuclei. These findings suggest that at
least some nuclei at these unphysical quark masses are describable by a phenomenological nuclear
shell-model.

The electromagnetic interactions of nuclei have been used
extensively to elucidate their structure and dynamics. In
the early days of nuclear physics, the magnetic moments
of the light nuclei helped to reveal that they behaved
like a collection of “weakly” interacting nucleons that,
to a very large degree, retained their identity, despite
being bound together by the strong nuclear force. This
feature, in part, led to the establishment of the nuclear
shell model as a phenomenological tool with which to
predict basic properties of nuclei throughout the peri-
odic table. The success of the shell model is somewhat
remarkable, given that nuclei are fundamentally bound
states of quarks and gluons, the degrees of freedom of
quantum chromodynamics (QCD). The strong nuclear
force emerges from QCD as a by-product of confinement
and chiral symmetry breaking. The fact that, at the
physical values of the quark masses, nuclei are not simply
collections of quarks and gluons, defined by their global
quantum numbers, but have the structure of interact-
ing protons and neutrons, remains to be understood at
a deep level. In this letter, we continue our exploration
of nuclei at unphysical quark masses, and calculate the
magnetic moments of the lightest few nuclei using lattice
QCD. We find that they are close to those found in na-

ture, and also close to the sum of the constituent nucleon
magnetic moments in the simplest shell model configura-
tion. This second finding in particular is remarkable and
suggests that a phenomenological nuclear shell-model is
applicable for at least some nuclei at these unphysical
quark masses.

Our lattice QCD calculations were performed on one
ensemble of gauge-field configurations generated with a
N

f

= 3 clover-improved fermion action [1] and a Lüscher-
Weisz gauge action [2]. The configurations have L = 32
lattice sites in each spatial direction, T = 48 sites in the
temporal direction, and a lattice spacing of a ⇠ 0.12 fm.
All three light-quark masses were set equal to that of
the physical strange quark, producing a pion of mass
m

⇡

⇠ 806 MeV. A background electromagnetic (U
Q

(1))
gauge field giving rise to a uniform magnetic field along
the z-axis was multiplied onto each QCD gauge field in
the ensemble (separately for each quark flavor), and these
combined gauge fields were used to calculate up- and
down-quark propagators, which were then contracted to
form the requisite nuclear correlation functions using the
techniques of Ref. [3]. Calculations were performed on
⇠ 750 gauge-field configurations, taken at uniform inter-
vals from ⇠ 10, 000 trajectories. On each configuration,
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

ment. The energy splitting is extracted from a correlated
�

2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-
dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show the
energy splittings of the nucleons and nuclei as a function
of |ñ|, and, motivated by Eq. (3), we fit these to a func-
tion of the form �E

(B) = �2µ |B|+ � |B|3, where � is a
constant encapsulating higher-order terms in the expan-
sion. We find that the proton and neutron magnetic mo-
ments at this pion mass are µ

p

= 1.792(19)(37) NM (nu-
clear magnetons) and µ

n

= �1.138(03)(10) NM, respec-

FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD
calculation at a pion mass of m⇡ ⇠ 806 MeV, in units of
natural nuclear magnetons (e/2M latt

N ), are shown as the solid
bands. The inner bands corresponds to the statistical uncer-
tainties, while the outer bands correspond to the statistical
and systematic uncertainties combined in quadrature, and in-
clude our estimates of the uncertainties from lattice spacing
and volume. The red dashed lines show the experimentally
measured values at the physical quark masses.

tively, where the first uncertainty is statistical and the
second uncertainty is from systematics associated with
the fits to correlation functions and the extraction of the
magnetic moment using the above form. These results
agree with previous calculations [14] within the uncer-
tainties. The natural units of the system are e/2M latt

N

,
where M

latt
N

is the mass of the nucleon at the quark
masses of the lattice calculation, which we refer to as nat-
ural nuclear magnetons (nNM). In these units, the mag-
netic moments are µ

p

= 3.119(33)(64) nNM and µ

n

=
�1.981(05)(18) nNM. These values at this unphysical
pion mass can be compared with those of nature, µexpt

p

=
2.792847356(23) NM and µ

expt
n

= �1.9130427(05) NM,
which are remarkably close to the lattice results. In fact,
when comparing all available lattice QCD results for the
nucleon magnetic moments in units of nNM, the depen-
dence upon the light-quark masses is surprisingly small,
reminiscent of the almost completely flat pion mass de-
pendence of the nucleon axial coupling, g

A

.

In Figure 2, we also show �E

(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µ

d

= 1.218(38)(87)
nNM for the deuteron, µ3He = �2.29(03)(12) nNM for
3He and µ

3H = 3.56(05)(18) nNM for the triton. These
can be compared with the experimental values of µexpt

d

=
0.8574382308(72) NM, µ

expt
3He = �2.127625306(25) NM

and µ

expt
3H = 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µSM

d

= µ

p

+µ

n

, µSM
3He = µ

n

(where

for mπ = 806MeV/c2

PostdicTon	from	A=3	NPLQCD	calcs:	

NPLQCD	result:	

input!	

µd
NLO = 0.90..*

µd
NPLQCD =1.218 38( ) 87( )

*-preliminary	
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Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body
electromagnetic contributions to the radiative capture process np → dγ, and the photo-disintegration
processes γð"Þd → np. In nuclear potential models, such contributions are described by phenomenological
meson-exchange currents, while in the present work, they are determined directly from the quark and gluon
interactions of QCD. Calculations of neutron-proton energy levels inmultiple backgroundmagnetic fields are
performed at twovalues of the quarkmasses, corresponding to pionmasses ofmπ ∼ 450 and 806MeV, and are
combined with pionless nuclear effective field theory to determine the amplitudes for these low-energy
inelastic processes. At mπ ∼ 806 MeV, using only lattice QCD inputs, a cross section σ806 MeV ∼ 17 mb is
found at an incident neutron speed of v ¼ 2; 200 m=s. Extrapolating the short-distance contribution to the
physical pion mass and combining the result with phenomenological scattering information and one-body

couplings, a cross section of σlqcdðnp → dγÞ ¼ 334.9ðþ5.2
−5.4 Þ mb is obtained at the same incident neutron

speed, consistent with the experimental value of σexptðnp → dγÞ ¼ 334.2ð0.5Þ mb.

DOI: 10.1103/PhysRevLett.115.132001 PACS numbers: 12.38.Gc, 11.15.Ha, 13.40.Gp

The radiative capture process, np → dγ, plays a critical
role in big bang nucleosynthesis (BBN) as it is the starting
point for the chain of reactions that form most of the light
nuclei in the cosmos. Studies of radiative capture [1–3], and
the inverse processes of deuteron electro- and photodisinte-
gration, γð"Þd → np [4–7], have constrained these cross
sections and have also provided critical insights into the
interactions between nucleons and photons. They conclu-
sively show the importance of non-nucleonic degrees of
freedom in nuclei, which arise from meson-exchange cur-
rents (MECs) in the context of nuclear potential models
[8,9]. Nevertheless, in the energy range relevant for BBN,
experimental investigations are challenging [10]. For the
analogous weak interactions of multinucleon systems, con-
siderably less is known from experiment but these processes
are equally important. The weak two-nucleon interactions
currently contribute the largest uncertainty in calculations
of the rate for proton-proton fusion in the Sun [11–17], and
in neutrino-disintegration of the deuteron [18], which is a

critical process needed to disentangle solar neutrino
oscillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determinations
from the underlying theory of strong interaction, quantum
chromodynamics (QCD), are fundamental to future theo-
retical progress. Such determinations are also of significant
phenomenological importance for calibrating long-baseline
neutrino experiments and for investigations of double
beta decay in nuclei. In this Letter, we take the initial steps
towards meeting this challenge and present the first lattice
QCD (LQCD) calculations of the np → dγ process. The
results are in good agreement with experiment and show
that QCD calculations of the less well-determined electro-
weak processes involving light nuclei are within reach.
Similarly, the present calculations open the way for QCD
studies of light nuclear matrix elements of scalar [19]
(and other) currents relevant for dark matter direct detection
experiments and other searches for physics beyond the
Standard Model.
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The low-energy cross section for np → dγ is conven-
iently written as a multipole expansion in the electromag-
netic (EM) field [20,21],

σðnp → dγÞ ¼ e2ðγ20 þ jpj2Þ3

M4γ30jpj
j ~XM1j2 þ % % % ; ð1Þ

where ~XM1 is the M1 amplitude, γ0 is the binding
momentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribution
from E1 and higher-order multipoles (higher multipoles
can be included systematically and improve the reliability
of the description [22] but are not relevant at the level of
precision of the present work). In a pionless effective field
theory expansion [23–25], employing dibaryon fields to
resum effective range contributions [26,27], the leading-
order (LO) and next-to-leading order (NLO) contributions
lead to the M1 amplitude [27,28]

~XM1 ¼
Zd

− 1
a1
þ 1

2 r1jpj
2 − ijpj

×
!

κ1γ20
γ20 þ jpj2

"
γ0 −

1

a1
þ 1

2
r1jpj2

#
þ γ20

2
l1

$
; ð2Þ

where κ1 ¼ ðκp − κnÞ=2 is the isovector nucleon magnetic
moment, Zd ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ0r3

p
is the square root of the

residue of the deuteron propagator at the pole with r3
the effective range in the 3S1 channel, and a1; r1 are the
scattering length and effective range in the 1S0 channel. The
quantity l1 ¼ ~l1 −

ffiffiffiffiffiffiffiffiffi
r1r3

p
κ1 encapsulates the short-distance

two-nucleon interactions through ~l1, but also depends on
κ1. It is well established that gauge-invariant EM two-
nucleon interactions (and direct photon-pion couplings in
pionful effective field theories) [12,18,22–24,29–32] must
be included in order to determine radiative capture and
breakup cross sections to a precision of better than ∼10%.
The only quantity in Eqs. (1) and (2) that is not

determined by kinematics, single-nucleon properties, or
scattering parameters is l1. In this work, we use LQCD to
calculate this quantity by determining the energies of
neutron-proton systems in background magnetic fields.
A magnetic field mixes the Iz ¼ jz ¼ 0 np states in the
1S0 and 3S1 − 3D1 channels, providing sensitivity to
the EM interactions. In the general situation, including
at the physical point, where the deuteron and dineutron
have different energy spectra, the formalism developed in
Ref. [28] can be used to extract l1 from the finite-volume
energy levels of this coupled system. The deuteron and
dineutron ground states are nearly degenerate at both
pion masses used in the present calculation [33], and the
two-nucleon sector exhibits an approximate spin-flavor
SU(4) symmetry (as predicted by the large-Nc limit of
QCD [34]). In this case, it can be shown [28,35] that

the energy difference between the two eigenstates depends
upon ~l1 as

ΔE3S1;1S0ðBÞ ¼ 2ðκ1 þ γ0Z2
d
~l1Þ

e
M

jBjþOðjBj2Þ; ð3Þ

where B is the background magnetic field. It is convenient
to focus on the combination L̄1 ¼ γ0Z2

d
~l1 that characterizes

the two-nucleon contributions.
Our LQCD calculations were performed on two ensem-

bles of gauge-field configurations generated with a clover-
improved fermion action [36] and a Lüscher-Weisz gauge
action [37]. The first ensemble had Nf ¼ 3 degenerate
light-quark flavors with masses tuned to the physical
strange quark mass (the physical value of ms is used, with
nonlinear mass dependence and discretization effects shift-
ing the pseudoscalar meson mass from the leading order
chiral perturbation theory estimate, mπ ∼ 680 MeV), pro-
ducing a pion of mass mπ ∼ 806 MeV and used a volume
of L3 × T ¼ 323 × 48. The second ensemble had Nf ¼
2þ 1 flavors with the same strange quark mass and
degenerate up and down quarks with masses corresponding
to a pion mass of mπ ∼ 450 MeV and a volume of
L3 × T ¼ 323 × 96. Both ensembles had a gauge coupling
of β ¼ 6.1, corresponding to a lattice spacing of
a ∼ 0.11 fm. The details of tuning the quark masses and
setting the lattice spacing are similar to those described
by the Hadron Spectrum collaboration in generating
the anisotropic clover gauge field configurations [38].
Background EM [UQð1Þ] gauge fields giving rise to uni-
form magnetic fields along the x3 axis were multiplied onto
each QCD gauge field in each ensemble (separately for
each quark flavor), and these combined gauge fields were
used to calculate up-, down-, and strange-quark propaga-
tors, which were then contracted to form the requisite
nuclear correlation functions using the techniques of
Ref. [39]. Calculations were performed on ∼1; 000
gauge-field configurations at the SU(3) point and ∼650
configurations at the lighter pion mass, each taken at
intervals of 10 hybrid Monte Carlo trajectories. On each
configuration, quark propagators were generated from 48
uniformly distributed Gaussian-smeared sources for each
magnetic field. For further details of the production at
the SU(3)-symmetric point, see Refs. [33,40,41] and in
particular, Ref. [35]. Analogous methods were employed
for the calculations using the lighter pion mass ensemble.
Background EM fields have been used extensively to

calculate electromagnetic properties of hadrons, such as the
magnetic moments of the lowest-lying baryons [42–50] and
light nuclei [41], and the polarizabilities of mesons and
baryons [50,51]. The quark fields have electric charges
Qu ¼ þ2=3 and Qd;s ¼ −1=3 for the up-, down- and
strange-quarks, respectively, and background magnetic
fields are required to be quantized [52] in order that the
magnetic flux is uniform throughout the lattice. The link
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their magnetic field dependence. Uncertainties associated
with fit parameters are determined using bootstrap resam-
pling in order to account for the correlations between
energy shifts extracted at different magnetic fields from
the same configurations. Reference [35] presents the
mπ ∼ 806 MeV correlation functions in detail, and has a
complete discussion of the fitting methods used in the
analysis for both sets of pion masses.
The extracted values of L̄1 are shown in Fig. 3 for both

sets of quark masses. The functional dependence of L̄1 on
the light-quark masses is not known. However, the deuteron
and dineutron remain relatively near threshold over a large
range of quark masses [33,53–56], and the magnetic
moments of the nucleons are essentially independent of
the quark masses when expressed in units of natural nuclear
magnetons [41], so it is plausible that L̄1 also varies only
slowly with the pion mass. Indeed, there is only a small
difference in the value of L̄1 at mπ ∼ 806 MeV and at
mπ ∼ 450 MeV. In order to connect to the physical point,
we extrapolate both linearly and quadratically in the pion
mass by resampling the probability distribution functions
of L̄1 determined by the field-strength dependence fits
at each pion mass. The two forms of extrapolation yield
consistent values at the physical point, with the central
value and uncertainties determined from the 0.17, 0.50, and
0.83 quantiles of the combination of the two projected
probability distribution functions. After this extrapolation,

the value L̄lqcd
1 ¼ 0.285ðþ63

−60 Þ nNM is found at the

physical pion mass, where the uncertainty incorporates
statistical uncertainties, correlator fitting uncertainties,
field-strength dependence fitting uncertainties, lattice spac-
ing, and the uncertainties in the mass extrapolation. Using
the precise phenomenological values of γ0 ¼ 45.681 MeV,
r1 ¼ 2.73ð3Þ fm, r3 ¼ 1.749 fm, and κ1 ¼ 2.35295 NM,

this leads to a value llqcd1 ¼ −4.41ðþ15
−16 Þ fm. Future

calculations with lighter quark masses will reduce both
the statistical and systematic uncertainties associated
with L̄1.
The cross section for np → dγ has been precisely

measured in experiments at an incident neutron speed of
v ¼ 2; 200 m=s [1]. Using the expressions in Eqs. (1) and
(2), the experimentally determined deuteron binding energy
and 1S0 scattering parameters, the experimentally deter-
mined nucleon isovector magnetic moment, and the above
extrapolated LQCD value of llqcd1 , leads to a cross section at
v ¼ 2; 200 m=s of

σlqcd ¼ 334.9
!þ5.2

−5.4

"
mb; ð9Þ

which is consistent with the experimental value of σexpt ¼
334.2ð0.5Þ mb [1] within uncertainties (see also, Ref. [10]).
As in the phenomenological determination, the two-body
contributions are Oð10%Þ. At the quark masses where
the lattice calculations are performed, the cross sections
are considerably smaller than at the physical point, pri-
marily because the deuteron binding energy is larger. At
mπ ∼ 806 MeV, the scattering parameters, binding energy,
and magnetic moments have been determined previously
[33,40,41] and we can predict the scattering cross section
using only lattice QCD inputs, with a median value
σ806 MeV ∼ 17 mb at v ¼ 2; 200 m=s. (Propagation of
the uncertainties in the required inputs leads to a highly
non-Gaussian distribution of σ806 MeV [35].)
In summary, lattice QCD calculations have been used to

determine the short-distance two-nucleon interactions with
the electromagnetic field (meson-exchange currents in the
context of nuclear potential models) that make significant
contributions to the low-energy cross sections for np → dγ
and γð%Þd → np. This was facilitated by the pionless
effective field theory which provides a clean separation
of long-distance and short-distance effects along with a
concise analytic expression for the near-threshold cross
sections. A (naive) extrapolation of the LQCD results to the
physical pion mass is in agreement with the experimental
determinations of the np → dγ cross section, within the
uncertainties of the calculation and of the experiment.
Calculations were performed at a single lattice spacing and
volume, introducing systematic uncertainties in L̄1 that are
expected to be small in comparison to our other uncer-
tainties, Oða2Λ2

QCD; e
−mπL; e−γ0LÞ ≲ 4%. A more complete

study, and a reduction of the uncertainties of this cross
section will require additional calculations at smaller lattice
spacings and larger volumes, along with calculations at
smaller quark masses.
The present calculation demonstrates the power of lattice

QCD methods to address complex processes of importance

FIG. 3 (color online). The results of LQCD calculations of L̄1

(blue points). The blue (green) shaded regions show the linear
(quadratic) in mπ extrapolation of L̄1 to the physical pion mass
(dashed line) in natural nuclear magnetons (nNM). The vertical
(red) line indicates the physical pion mass.
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l1 = −3.934 fm −− > σ np = 322.9mb
l1 = −5.48 fm −− > σ np = 342.6mb

Rho	paramet.	

Z-paramet.	

This	could	be	regarded	as	a	measure	of	the	NPLQCD	
uncertainty	in	predicTng	n+p	fusion,	due	to	the	EFT	
Expansion.	
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Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body
electromagnetic contributions to the radiative capture process np → dγ, and the photo-disintegration
processes γð"Þd → np. In nuclear potential models, such contributions are described by phenomenological
meson-exchange currents, while in the present work, they are determined directly from the quark and gluon
interactions of QCD. Calculations of neutron-proton energy levels inmultiple backgroundmagnetic fields are
performed at twovalues of the quarkmasses, corresponding to pionmasses ofmπ ∼ 450 and 806MeV, and are
combined with pionless nuclear effective field theory to determine the amplitudes for these low-energy
inelastic processes. At mπ ∼ 806 MeV, using only lattice QCD inputs, a cross section σ806 MeV ∼ 17 mb is
found at an incident neutron speed of v ¼ 2; 200 m=s. Extrapolating the short-distance contribution to the
physical pion mass and combining the result with phenomenological scattering information and one-body

couplings, a cross section of σlqcdðnp → dγÞ ¼ 334.9ðþ5.2
−5.4 Þ mb is obtained at the same incident neutron

speed, consistent with the experimental value of σexptðnp → dγÞ ¼ 334.2ð0.5Þ mb.
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The radiative capture process, np → dγ, plays a critical
role in big bang nucleosynthesis (BBN) as it is the starting
point for the chain of reactions that form most of the light
nuclei in the cosmos. Studies of radiative capture [1–3], and
the inverse processes of deuteron electro- and photodisinte-
gration, γð"Þd → np [4–7], have constrained these cross
sections and have also provided critical insights into the
interactions between nucleons and photons. They conclu-
sively show the importance of non-nucleonic degrees of
freedom in nuclei, which arise from meson-exchange cur-
rents (MECs) in the context of nuclear potential models
[8,9]. Nevertheless, in the energy range relevant for BBN,
experimental investigations are challenging [10]. For the
analogous weak interactions of multinucleon systems, con-
siderably less is known from experiment but these processes
are equally important. The weak two-nucleon interactions
currently contribute the largest uncertainty in calculations
of the rate for proton-proton fusion in the Sun [11–17], and
in neutrino-disintegration of the deuteron [18], which is a

critical process needed to disentangle solar neutrino
oscillations. Given the phenomenological importance of
electroweak interactions in light nuclei, direct determinations
from the underlying theory of strong interaction, quantum
chromodynamics (QCD), are fundamental to future theo-
retical progress. Such determinations are also of significant
phenomenological importance for calibrating long-baseline
neutrino experiments and for investigations of double
beta decay in nuclei. In this Letter, we take the initial steps
towards meeting this challenge and present the first lattice
QCD (LQCD) calculations of the np → dγ process. The
results are in good agreement with experiment and show
that QCD calculations of the less well-determined electro-
weak processes involving light nuclei are within reach.
Similarly, the present calculations open the way for QCD
studies of light nuclear matrix elements of scalar [19]
(and other) currents relevant for dark matter direct detection
experiments and other searches for physics beyond the
Standard Model.
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The low-energy cross section for np → dγ is conven-
iently written as a multipole expansion in the electromag-
netic (EM) field [20,21],

σðnp → dγÞ ¼ e2ðγ20 þ jpj2Þ3

M4γ30jpj
j ~XM1j2 þ % % % ; ð1Þ

where ~XM1 is the M1 amplitude, γ0 is the binding
momentum of the deuteron, M is the mass of the nucleon,
and p is the momentum of each incoming nucleon in the
center-of-mass frame. The ellipsis denotes the contribution
from E1 and higher-order multipoles (higher multipoles
can be included systematically and improve the reliability
of the description [22] but are not relevant at the level of
precision of the present work). In a pionless effective field
theory expansion [23–25], employing dibaryon fields to
resum effective range contributions [26,27], the leading-
order (LO) and next-to-leading order (NLO) contributions
lead to the M1 amplitude [27,28]

~XM1 ¼
Zd

− 1
a1
þ 1

2 r1jpj
2 − ijpj

×
!

κ1γ20
γ20 þ jpj2

"
γ0 −

1

a1
þ 1

2
r1jpj2

#
þ γ20

2
l1

$
; ð2Þ

where κ1 ¼ ðκp − κnÞ=2 is the isovector nucleon magnetic
moment, Zd ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ0r3

p
is the square root of the

residue of the deuteron propagator at the pole with r3
the effective range in the 3S1 channel, and a1; r1 are the
scattering length and effective range in the 1S0 channel. The
quantity l1 ¼ ~l1 −

ffiffiffiffiffiffiffiffiffi
r1r3

p
κ1 encapsulates the short-distance

two-nucleon interactions through ~l1, but also depends on
κ1. It is well established that gauge-invariant EM two-
nucleon interactions (and direct photon-pion couplings in
pionful effective field theories) [12,18,22–24,29–32] must
be included in order to determine radiative capture and
breakup cross sections to a precision of better than ∼10%.
The only quantity in Eqs. (1) and (2) that is not

determined by kinematics, single-nucleon properties, or
scattering parameters is l1. In this work, we use LQCD to
calculate this quantity by determining the energies of
neutron-proton systems in background magnetic fields.
A magnetic field mixes the Iz ¼ jz ¼ 0 np states in the
1S0 and 3S1 − 3D1 channels, providing sensitivity to
the EM interactions. In the general situation, including
at the physical point, where the deuteron and dineutron
have different energy spectra, the formalism developed in
Ref. [28] can be used to extract l1 from the finite-volume
energy levels of this coupled system. The deuteron and
dineutron ground states are nearly degenerate at both
pion masses used in the present calculation [33], and the
two-nucleon sector exhibits an approximate spin-flavor
SU(4) symmetry (as predicted by the large-Nc limit of
QCD [34]). In this case, it can be shown [28,35] that

the energy difference between the two eigenstates depends
upon ~l1 as

ΔE3S1;1S0ðBÞ ¼ 2ðκ1 þ γ0Z2
d
~l1Þ

e
M

jBjþOðjBj2Þ; ð3Þ

where B is the background magnetic field. It is convenient
to focus on the combination L̄1 ¼ γ0Z2

d
~l1 that characterizes

the two-nucleon contributions.
Our LQCD calculations were performed on two ensem-

bles of gauge-field configurations generated with a clover-
improved fermion action [36] and a Lüscher-Weisz gauge
action [37]. The first ensemble had Nf ¼ 3 degenerate
light-quark flavors with masses tuned to the physical
strange quark mass (the physical value of ms is used, with
nonlinear mass dependence and discretization effects shift-
ing the pseudoscalar meson mass from the leading order
chiral perturbation theory estimate, mπ ∼ 680 MeV), pro-
ducing a pion of mass mπ ∼ 806 MeV and used a volume
of L3 × T ¼ 323 × 48. The second ensemble had Nf ¼
2þ 1 flavors with the same strange quark mass and
degenerate up and down quarks with masses corresponding
to a pion mass of mπ ∼ 450 MeV and a volume of
L3 × T ¼ 323 × 96. Both ensembles had a gauge coupling
of β ¼ 6.1, corresponding to a lattice spacing of
a ∼ 0.11 fm. The details of tuning the quark masses and
setting the lattice spacing are similar to those described
by the Hadron Spectrum collaboration in generating
the anisotropic clover gauge field configurations [38].
Background EM [UQð1Þ] gauge fields giving rise to uni-
form magnetic fields along the x3 axis were multiplied onto
each QCD gauge field in each ensemble (separately for
each quark flavor), and these combined gauge fields were
used to calculate up-, down-, and strange-quark propaga-
tors, which were then contracted to form the requisite
nuclear correlation functions using the techniques of
Ref. [39]. Calculations were performed on ∼1; 000
gauge-field configurations at the SU(3) point and ∼650
configurations at the lighter pion mass, each taken at
intervals of 10 hybrid Monte Carlo trajectories. On each
configuration, quark propagators were generated from 48
uniformly distributed Gaussian-smeared sources for each
magnetic field. For further details of the production at
the SU(3)-symmetric point, see Refs. [33,40,41] and in
particular, Ref. [35]. Analogous methods were employed
for the calculations using the lighter pion mass ensemble.
Background EM fields have been used extensively to

calculate electromagnetic properties of hadrons, such as the
magnetic moments of the lowest-lying baryons [42–50] and
light nuclei [41], and the polarizabilities of mesons and
baryons [50,51]. The quark fields have electric charges
Qu ¼ þ2=3 and Qd;s ¼ −1=3 for the up-, down- and
strange-quarks, respectively, and background magnetic
fields are required to be quantized [52] in order that the
magnetic flux is uniform throughout the lattice. The link
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their magnetic field dependence. Uncertainties associated
with fit parameters are determined using bootstrap resam-
pling in order to account for the correlations between
energy shifts extracted at different magnetic fields from
the same configurations. Reference [35] presents the
mπ ∼ 806 MeV correlation functions in detail, and has a
complete discussion of the fitting methods used in the
analysis for both sets of pion masses.
The extracted values of L̄1 are shown in Fig. 3 for both

sets of quark masses. The functional dependence of L̄1 on
the light-quark masses is not known. However, the deuteron
and dineutron remain relatively near threshold over a large
range of quark masses [33,53–56], and the magnetic
moments of the nucleons are essentially independent of
the quark masses when expressed in units of natural nuclear
magnetons [41], so it is plausible that L̄1 also varies only
slowly with the pion mass. Indeed, there is only a small
difference in the value of L̄1 at mπ ∼ 806 MeV and at
mπ ∼ 450 MeV. In order to connect to the physical point,
we extrapolate both linearly and quadratically in the pion
mass by resampling the probability distribution functions
of L̄1 determined by the field-strength dependence fits
at each pion mass. The two forms of extrapolation yield
consistent values at the physical point, with the central
value and uncertainties determined from the 0.17, 0.50, and
0.83 quantiles of the combination of the two projected
probability distribution functions. After this extrapolation,

the value L̄lqcd
1 ¼ 0.285ðþ63

−60 Þ nNM is found at the

physical pion mass, where the uncertainty incorporates
statistical uncertainties, correlator fitting uncertainties,
field-strength dependence fitting uncertainties, lattice spac-
ing, and the uncertainties in the mass extrapolation. Using
the precise phenomenological values of γ0 ¼ 45.681 MeV,
r1 ¼ 2.73ð3Þ fm, r3 ¼ 1.749 fm, and κ1 ¼ 2.35295 NM,

this leads to a value llqcd1 ¼ −4.41ðþ15
−16 Þ fm. Future

calculations with lighter quark masses will reduce both
the statistical and systematic uncertainties associated
with L̄1.
The cross section for np → dγ has been precisely

measured in experiments at an incident neutron speed of
v ¼ 2; 200 m=s [1]. Using the expressions in Eqs. (1) and
(2), the experimentally determined deuteron binding energy
and 1S0 scattering parameters, the experimentally deter-
mined nucleon isovector magnetic moment, and the above
extrapolated LQCD value of llqcd1 , leads to a cross section at
v ¼ 2; 200 m=s of

σlqcd ¼ 334.9
!þ5.2

−5.4

"
mb; ð9Þ

which is consistent with the experimental value of σexpt ¼
334.2ð0.5Þ mb [1] within uncertainties (see also, Ref. [10]).
As in the phenomenological determination, the two-body
contributions are Oð10%Þ. At the quark masses where
the lattice calculations are performed, the cross sections
are considerably smaller than at the physical point, pri-
marily because the deuteron binding energy is larger. At
mπ ∼ 806 MeV, the scattering parameters, binding energy,
and magnetic moments have been determined previously
[33,40,41] and we can predict the scattering cross section
using only lattice QCD inputs, with a median value
σ806 MeV ∼ 17 mb at v ¼ 2; 200 m=s. (Propagation of
the uncertainties in the required inputs leads to a highly
non-Gaussian distribution of σ806 MeV [35].)
In summary, lattice QCD calculations have been used to

determine the short-distance two-nucleon interactions with
the electromagnetic field (meson-exchange currents in the
context of nuclear potential models) that make significant
contributions to the low-energy cross sections for np → dγ
and γð%Þd → np. This was facilitated by the pionless
effective field theory which provides a clean separation
of long-distance and short-distance effects along with a
concise analytic expression for the near-threshold cross
sections. A (naive) extrapolation of the LQCD results to the
physical pion mass is in agreement with the experimental
determinations of the np → dγ cross section, within the
uncertainties of the calculation and of the experiment.
Calculations were performed at a single lattice spacing and
volume, introducing systematic uncertainties in L̄1 that are
expected to be small in comparison to our other uncer-
tainties, Oða2Λ2

QCD; e
−mπL; e−γ0LÞ ≲ 4%. A more complete

study, and a reduction of the uncertainties of this cross
section will require additional calculations at smaller lattice
spacings and larger volumes, along with calculations at
smaller quark masses.
The present calculation demonstrates the power of lattice

QCD methods to address complex processes of importance

FIG. 3 (color online). The results of LQCD calculations of L̄1

(blue points). The blue (green) shaded regions show the linear
(quadratic) in mπ extrapolation of L̄1 to the physical pion mass
(dashed line) in natural nuclear magnetons (nNM). The vertical
(red) line indicates the physical pion mass.
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l1 = −3.934 fm −− > σ np = 322.9mb
l1 = −5.48 fm −− > σ np = 342.6mb

Rho	paramet.	

Z-paramet.	

This	could	be	regarded	as	a	measure	of	the	NPLQCD	
uncertainty	in	predicTng	n+p	fusion,	due	to	the	EFT	
Expansion.	
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•  Cannot	be	measured	terrestrially	–	
depends	on	theory	

•  Very	low	proton-proton	relaTve	
momentum	(Erel~6	keV).	

•  Needed	accuracy:	~1%.	

SFII	–	Adelberger	et	al.,	Rev.	Mod.	Phys.	83,	195	(2011)	

the Sun and, as previously discussed, is now in conflict with
the SSM, when recent abundance determinations from 3D
photospheric absorption line analyses are used.

A. Rates and S factors

The SSM requires a quantitative description of relevant
nuclear reactions. Both careful laboratory measurements
constraining rates at near-solar energies and a supporting
theory of sub-barrier fusion reactions are needed.

At the temperatures and densities in the solar interior (e.g.,
Tc ! 15:5" 106 K and !c ! 153 g=cm3 at the Sun’s center),
interacting nuclei reach a Maxwellian equilibrium distribu-
tion in a time that is infinitesimal compared to nuclear
reaction time scales. Therefore, the reaction rate between
two nuclei can be written (Burbidge et al., 1957; Clayton,
1968)

r12 ¼
n1n2

1þ "12
h#vi12: (3)

Here the Kronecker delta prevents double counting in the case
of identical particles, n1 and n2 are the number densities of
nuclei of types 1 and 2 (with atomic numbers Z1 and Z2, and
mass numbers A1 and A2), and h#vi12 denotes the product
of the reaction cross section # and the relative velocity v of
the interacting nuclei, averaged over the collisions in the
stellar gas,

h#vi12 ¼
Z 1

0
#ðvÞv!ðvÞdv: (4)

Under solar conditions nuclear velocities are very well
approximated by a Maxwell-Boltzmann distribution. It fol-
lows that the relative velocity distribution is also a Maxwell-
Boltzmann, governed by the reduced mass $ of the colliding
nuclei,

!ðvÞdv ¼
!

$

2%kT

"
3=2

exp
!
'$v2

2kT

"
4%v2dv: (5)

Therefore,

h#vi12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

%$ðkTÞ3

s Z 1

0
E#ðEÞ exp

!
' E

kT

"
dE; (6)

where E is the relative kinetic energy and k is the Boltzmann
constant. In order to evaluate h#vi12, the energy dependence
of the reaction cross section must be determined.

Almost all of the nuclear reactions relevant to solar energy
generation are nonresonant and charged particle induced.
For such reactions it is helpful to remove much of the rapid
energy dependence associated with the Coulomb barrier,
by evaluating the probability of s-wave scattering off a point
charge. The nuclear physics (including effects of finite nu-
clear size, higher partial waves, antisymmetrization, and any
atomic screening effects not otherwise explicitly treated) is
then isolated in the S factor, defined by

#ðEÞ ¼ SðEÞ
E

exp½'2%&ðEÞ); (7)

with the Sommerfeld parameter &ðEÞ ¼ Z1Z2'=v, where

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=$

p
is the relative velocity and ' the fine-structure

constant (ℏ ¼ c ¼ 1). Because the S factor is slowly varying,
one can extrapolate SðEÞ more reliably from the range of
energies spanned by data to the lower energies characterizing
the Gamow peak.

A substitution of Eq. (7) into Eq. (6) followed by a Taylor
expansion of the argument of the exponentials then yields
(Bahcall, 1989)

h#vi12¼
ffiffiffiffiffiffiffiffiffiffi
2

$kT

s
"E0

kT
f0Seff exp½'3E0=ðkTÞ)

¼1:301"10'14 cm3=s
!
Z1Z2

A

"
1=3

f0
Seff

MeVb
T'2=3
9

"exp½'3E0=ðkTÞ); (8)

where

E0

kT
¼ ð%Z1Z2'=

ffiffiffi
2

p
Þ2=3½$=ðkTÞ)1=3;

"E0

kT
¼ 4

ffiffiffiffiffiffiffiffiffi
E0

3kT

s
; A ¼ A1A2

A1 þ A2
;

and

Seff ¼ Sð0Þ
!
1þ 5kT

36E0

"
þ S0ð0ÞE0

!
1þ 35kT

36E0

"

þ 1

2
S00ð0ÞE2

0

!
1þ 89kT

36E0

"
:

E0, the Gamow peak energy where the integrand of Eq. (6)
takes on its maximum value, is the most probable energy of
reacting nuclei. "E0 corresponds to the full width of the
integrand at 1=e of its maximum value, when approximated
as a Gaussian. Equation (8) includes a factor f0, discussed
below, to correct for the effects of electronic screening on
nuclear reactions occurring in the solar plasma.

Rates in an astrophysical plasma can be calculated given
SðEÞ which by virtue of its slow energy dependence, in the
case of nonresonant reactions, can be approximated by its
zero-energy value Sð0Þ and possible corrections determined
by its first and second derivatives, S0ð0Þ and S00ð0Þ. It is these
quantities that we need to determine by fitting laboratory
data, or in cases where such data cannot be obtained, through
theory. For most of the reactions contributing to the pp
chain and CNO bicycle, data have been obtained only for
energies in regions above the Gamow peak, e.g., typically
E * 100 keV, so that extrapolations to lower energies de-
pend on the quality of the fit to higher-energy data. Ideally
one desires a fitting function that is well motivated theoreti-
cally and tightly constrained by the existing, higher-energy
data. The purpose of this review is to provide current best
values and uncertainties for Sð0Þ and, if feasible, its
derivatives.

S-factor uncertainties, when folded into SSM calculations,
then limit the extent to which that model can predict observ-
ables, such as the depth of the convective zone, the sound
speed profile, and the neutrino fluxes. It has become custom-
ary in the SSM to parametrize the consequences of input
uncertainties on observables through logarithmic partial
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Abstract. We review the results of the most recent calculation for the astrophysical S-factor
of the weak proton-proton capture reaction, over a range for the center-of-mass relative energy
of 0–100 keV. The so-called chiral effective field theory approach is used, where the chiral two-
nucleon potential is derived up to next-to-next-to-next-to leading order and is augmented by the
full electromagnetic interaction. The low-energy constants (LEC’s) entering the weak current
operators are fixed so as to reproduce the A = 3 binding energies and magnetic moments, and
the Gamow-Teller matrix element in tritium β-decay. Contributions from S and P partial waves
in the incoming two-proton channel are retained. The S-factor at zero energy is found to be ∼

1% larger than the value reported in the literature, mostly due to the P -waves contributions.

1. Introduction
The proton weak capture on protons, i.e., the reaction 1H(p, e+νe)2H (hereafter labelled pp), is
the most fundamental process in stellar nucleosynthesis: it is the first reaction in the pp chain,
which converts hydrogen into helium in main sequence stars like the Sun. Its reaction rate is
expressed in terms of the astrophysical S-factor, S(E), where E is the two-proton center-of-mass
(c.m.) energy, by the relation

S(E) = E exp(2π η)σ(E) , (1)

where η = α/vrel, α being the fine structure constant and vrel the pp relative velocity, and σ(E)
is the pp weak capture cross section. The energy-dependence of S(E) is often parametrized as [1]

S(E) = S(0) + S′(0)E + S′′(0)E2/2 + · · · , (2)

where S(0), S′(0) and S′′(0) are the zero-energy value of the S-factor, its first and second
derivatives, both evaluated at E = 0. At the center of light stars like the Sun, with temperature
of the order of 1.5 × 107 K, the Gamow peak is at E ≃ 6 keV, while in larger-mass stars,
whose central temperature becomes of the order of 5 × 107 K, the Gamow peak turns out to
be E ∼ 15 keV. At these energies, the reaction cross section cannot be measured in terrestrial
laboratories, and it is necessary to rely on theoretical predictions. The many studies on S(0),
and the few for S′(0) and S′′(0), have been extensively reviewed in Ref. [1]. The currently
recommended value for S(0), (4.01 ± 0.01) × 10−23 MeV fm2 [1], is the average of values
obtained within three different approaches, the “potential model” approach (PMA), “hybrid
chiral effective field theory” (χEFT*) and “pionless effective field theory” (\πEFT). The first
one uses phenomenological realistic models for the nuclear potential, fitted to reproduce the



!
Weak	proton-proton	fusion	in	the	Sun	–	theory	standards	

M
ay
	3
,	2
01
6	

La
?
ce
	N
uc
le
i@

EC
T*
	-	
Do

ro
n	
Ga

zit
	

33	

SFII	–	Adelberger	et	al.,	Rev.	Mod.	Phys.	83,	195	(2011)	
in quadrature, we find that the current best estimates for
S11ð0Þ are

4:01ð1# 0:009Þ $ 10%25 MeV b potential models;

4:01ð1# 0:009Þ $ 10%25 MeV b EFT&;

3:99ð1# 0:030Þ $ 10%25 MeV b pionless EFT:

(24)

The larger uncertainty in the pionless EFT result is due to the
relatively weak constraints on L1;A that can be imposed within
two-nucleon systems, but, as mentioned, this situation will
soon be improved. The agreement of the central values
obtained in the potential model and EFT* indicates the
robustness of the results as long as the two-body current is
constrained by tritium ! decay. Meanwhile, the agreement of
the error estimates in the two approaches is primarily due to
the fact that, as explained above, the dominant part of the
uncertainty has been estimated using the same argument.
Based on the result obtained in the potential model and
EFT*, we adopt as the recommended value

S11ð0Þ ¼ 4:01ð1# 0:009Þ $ 10%25 MeV b: (25)

We adopt the Bahcall and May (1969) value for S011ð0Þ

S011ð0Þ ¼ S11ð0Þð11:2# 0:1Þ MeV%1: (26)

Bahcall and May (1969) also estimated dimensionally that
S0011ð0Þ would enter at the level of (1%, for temperatures
characteristic of the solar center. As this is now comparable to
the overall error in S11, we recommend that a modern calcu-
lation of S0011ð0Þ be undertaken.

IV. THE dðp;!Þ3He RADIATIVE-CAPTURE REACTION

The radiative capture of protons on deuterium is the second
reaction occurring in the pp chain. Because this reaction is so
much faster than the pp weak rate discussed in the previous
section, it effectively instantaneously converts deuterium to
3He, with no observable signature. Thus uncertainties in its
rate have no consequences for solar energy generation. By
comparing the pp and dðp;"Þ3He rates, one finds that the
lifetime of a deuterium nucleus in the solar core is (1 s, and
that the equilibrium abundance of deuterium relative to H is
maintained at (3$ 10%18.

However, the dðp;"Þ3He reaction plays a more prominent
role in the evolution of protostars. As a cloud of interstellar
gas collapses on itself, the gas temperature rises to the point
of dðp;"Þ3He ignition, (106 K. The main effect of the onset
of deuterium burning is to slow down the contraction and, in
turn, the heating. As a consequence, the lifetime of the
protostar increases and its observational properties (surface
luminosity and temperature) are frozen until the original
deuterium is fully consumed (Stahler, 1988). Because of the
slow evolutionary time scale, a large fraction of observed
protostars are in the d-burning phase, while only a few are
found in the earlier, cooler, rapidly evolving phase. A reliable
knowledge of the rate of dðp;"Þ3He down to a few keV (the

Gamow peak in a protostar) is of fundamental importance for
modeling protostellar evolution.

The pd reaction also plays an important role in big bang
nucleosynthesis, which begins when the early Universe has
cooled to a temperature of (100 keV. The uncertainty in the
pd reaction in the relevant energy window (25–120 keV)
propagates into uncertainties in the deuterium, 3He, and 7Li
abundances, scaling as

d

H
/ R%0:32

pd ;
3He

H
/ R0:38

pd ;
7Li

H
/ R0:59

pd ; (27)

where Rpd is the value of S12 relative to the fiducial value in

Cyburt (2004). Thus a 10% error in the pd capture rate
propagates into roughly 3.2%, 3.8%, and 5.9% uncertainties
in the light element primordial abundances, d, 3He, and 7Li,
respectively.

A. Data sets

The extensive experimental data sets for pd radiative
capture include total cross sections and spin polarization
observables at center-of-mass energies E ranging from sev-
eral tens of MeV to a few keV, covering all the relevant
astrophysical energies. In the regime E & 2 MeV (below
the deuteron breakup threshold), the relevant experimental
data include Griffiths et al. (1962, 1963), Bailey et al.
(1970), Schmid et al. (1995, 1996), Ma et al. (1997), and
Casella et al. (2002). The Griffiths et al. (1963) and Bailey
et al. (1970) low-energy data may be(15% too high because
of the use of incorrect stopping powers (Ma et al., 1997;
Schmid et al., 1995, 1996). Also, the Schmid et al. (1995),
(1996) data sets may have not propagated their energy-
dependent systematic uncertainties. In Fig. 3, the data for
S12 used for the best fit in Sec. IV.C are plotted together with
theoretical predictions of Marcucci et al. (2005). The ob-
served linear dependence of S12 on E at low energies as well
as the angular distributions of the cross section and polariza-
tion observables indicates that the dðp;"Þ3He reaction pro-
ceeds predominantly through s- and p-wave capture,
induced, respectively, by magnetic (M1) and electric (E1)
dipole transitions. The M1 transitions (proceeding through
2S1=2 and

4S3=2 pd channels) are especially interesting, as the

one-body M1 operator cannot connect the main s-state com-
ponents of the pd and 3He wave functions at low energies.
Because of this ‘‘pseudo-orthogonality,’’ only the small com-
ponents of the wave functions contribute in the impulse
approximation (IA). In contrast, as exchange current opera-
tors are not similarly hindered, their matrix elements are
exceptionally large relative to those obtained with the one-
body M1 operator. The suppression of matrix elements cal-
culated in the IA and their consequent enhancement by
exchange current contributions are a feature common to other
M1-induced processes in A ¼ 3 and 4 systems, such as the nd
and n3He radiative captures at thermal neutron energies.

B. Theoretical studies

The most extensive and recent theoretical studies of the
dðp;"Þ3He reaction at low energies have been carried out by
Marcucci et al. (2005). The calculated S12, shown in Fig. 3, is
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in quadrature, we find that the current best estimates for
S11ð0Þ are

4:01ð1# 0:009Þ $ 10%25 MeV b potential models;

4:01ð1# 0:009Þ $ 10%25 MeV b EFT&;

3:99ð1# 0:030Þ $ 10%25 MeV b pionless EFT:

(24)

The larger uncertainty in the pionless EFT result is due to the
relatively weak constraints on L1;A that can be imposed within
two-nucleon systems, but, as mentioned, this situation will
soon be improved. The agreement of the central values
obtained in the potential model and EFT* indicates the
robustness of the results as long as the two-body current is
constrained by tritium ! decay. Meanwhile, the agreement of
the error estimates in the two approaches is primarily due to
the fact that, as explained above, the dominant part of the
uncertainty has been estimated using the same argument.
Based on the result obtained in the potential model and
EFT*, we adopt as the recommended value

S11ð0Þ ¼ 4:01ð1# 0:009Þ $ 10%25 MeV b: (25)

We adopt the Bahcall and May (1969) value for S011ð0Þ

S011ð0Þ ¼ S11ð0Þð11:2# 0:1Þ MeV%1: (26)

Bahcall and May (1969) also estimated dimensionally that
S0011ð0Þ would enter at the level of (1%, for temperatures
characteristic of the solar center. As this is now comparable to
the overall error in S11, we recommend that a modern calcu-
lation of S0011ð0Þ be undertaken.

IV. THE dðp;!Þ3He RADIATIVE-CAPTURE REACTION

The radiative capture of protons on deuterium is the second
reaction occurring in the pp chain. Because this reaction is so
much faster than the pp weak rate discussed in the previous
section, it effectively instantaneously converts deuterium to
3He, with no observable signature. Thus uncertainties in its
rate have no consequences for solar energy generation. By
comparing the pp and dðp;"Þ3He rates, one finds that the
lifetime of a deuterium nucleus in the solar core is (1 s, and
that the equilibrium abundance of deuterium relative to H is
maintained at (3$ 10%18.

However, the dðp;"Þ3He reaction plays a more prominent
role in the evolution of protostars. As a cloud of interstellar
gas collapses on itself, the gas temperature rises to the point
of dðp;"Þ3He ignition, (106 K. The main effect of the onset
of deuterium burning is to slow down the contraction and, in
turn, the heating. As a consequence, the lifetime of the
protostar increases and its observational properties (surface
luminosity and temperature) are frozen until the original
deuterium is fully consumed (Stahler, 1988). Because of the
slow evolutionary time scale, a large fraction of observed
protostars are in the d-burning phase, while only a few are
found in the earlier, cooler, rapidly evolving phase. A reliable
knowledge of the rate of dðp;"Þ3He down to a few keV (the

Gamow peak in a protostar) is of fundamental importance for
modeling protostellar evolution.

The pd reaction also plays an important role in big bang
nucleosynthesis, which begins when the early Universe has
cooled to a temperature of (100 keV. The uncertainty in the
pd reaction in the relevant energy window (25–120 keV)
propagates into uncertainties in the deuterium, 3He, and 7Li
abundances, scaling as

d

H
/ R%0:32

pd ;
3He

H
/ R0:38

pd ;
7Li

H
/ R0:59

pd ; (27)

where Rpd is the value of S12 relative to the fiducial value in

Cyburt (2004). Thus a 10% error in the pd capture rate
propagates into roughly 3.2%, 3.8%, and 5.9% uncertainties
in the light element primordial abundances, d, 3He, and 7Li,
respectively.

A. Data sets

The extensive experimental data sets for pd radiative
capture include total cross sections and spin polarization
observables at center-of-mass energies E ranging from sev-
eral tens of MeV to a few keV, covering all the relevant
astrophysical energies. In the regime E & 2 MeV (below
the deuteron breakup threshold), the relevant experimental
data include Griffiths et al. (1962, 1963), Bailey et al.
(1970), Schmid et al. (1995, 1996), Ma et al. (1997), and
Casella et al. (2002). The Griffiths et al. (1963) and Bailey
et al. (1970) low-energy data may be(15% too high because
of the use of incorrect stopping powers (Ma et al., 1997;
Schmid et al., 1995, 1996). Also, the Schmid et al. (1995),
(1996) data sets may have not propagated their energy-
dependent systematic uncertainties. In Fig. 3, the data for
S12 used for the best fit in Sec. IV.C are plotted together with
theoretical predictions of Marcucci et al. (2005). The ob-
served linear dependence of S12 on E at low energies as well
as the angular distributions of the cross section and polariza-
tion observables indicates that the dðp;"Þ3He reaction pro-
ceeds predominantly through s- and p-wave capture,
induced, respectively, by magnetic (M1) and electric (E1)
dipole transitions. The M1 transitions (proceeding through
2S1=2 and

4S3=2 pd channels) are especially interesting, as the

one-body M1 operator cannot connect the main s-state com-
ponents of the pd and 3He wave functions at low energies.
Because of this ‘‘pseudo-orthogonality,’’ only the small com-
ponents of the wave functions contribute in the impulse
approximation (IA). In contrast, as exchange current opera-
tors are not similarly hindered, their matrix elements are
exceptionally large relative to those obtained with the one-
body M1 operator. The suppression of matrix elements cal-
culated in the IA and their consequent enhancement by
exchange current contributions are a feature common to other
M1-induced processes in A ¼ 3 and 4 systems, such as the nd
and n3He radiative captures at thermal neutron energies.

B. Theoretical studies

The most extensive and recent theoretical studies of the
dðp;"Þ3He reaction at low energies have been carried out by
Marcucci et al. (2005). The calculated S12, shown in Fig. 3, is
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SFII	recommended	value	(2011):	

Modern	cEFT	calcula-on	by	Marcucci	et	al.,	Phys.	Rev.	LeA.	(2013):	
Use	consistent	3H	decay-rate	to	constrain	consistently	axial	MEC		
(DG,	Quaglioni,	NavraTl,	PRL	2009),	and	predict	pp-fusion	rate.	

Table 3. Cumulative S- and P -wave contributions to S(0) in units of 10−23 MeV fm2. The
results labelled “χEFT(500)” and “χEFT(600)” have been obtained within the χEFT approach
with two different cutoff values, 500 and 600 MeV. The results obtained within the PMA are
also shown. The theoretical uncertainties are given in parentheses and are due to the fitting
procedure adopted for the LEC’s (or g∗A within the PMA) in the weak current.

1S0 · · · + 3P0 · · · + 3P1 · · · + 3P2

χEFT(500) 4.008(5) 4.011(5) 4.020(5) 4.030(5)
χEFT(600) 4.007(5) 4.010(5) 4.019(5) 4.029(5)

PMA 4.000(3) 4.003(3) 4.015(3) 4.033(3)

In conclusion, the χEFT results of table 3 can be summarized in the conservative range
S(0) = (4.030±0.006)×10−23 MeV fm2, with a P -wave contribution of ≃ 0.2×10−23 MeV fm2.

Finally, we show in figure 2 the energy dependence of S(E) in the energy range 2 – 100 keV,
as obtained within the χEFT approach. The S- and (S + P )-wave contributions are displayed
separately, and the theoretical uncertainty is included—the curves are in fact very narrow bands.
As expected, the P -wave contributions become significant at higher values of E. From these
results, a least-squares polynomial fit to S(E) has been performed up to order O(E2), i.e., by
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Figure 2. (Color online) Energy dependence of S(E) in the range 2 – 100 keV. The S- and
(S + P )-wave contributions are displayed separately. In the inset, S(E) is shown in the range
3–15 keV.

6

Including:	p-wave	contribuTon	(+0.005%),	full	EM	(-0.0025-(-0.0075)%),	
	 	difference	between	500	and	600	MeV	cutoff	and	potenTal	models.	
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Pionless	EFT	description	of	weak	interaction	at	low-energies	
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l l

IniTal		
amplitude	

Final	
amplitude	

Weak	
InteracTon	

ψi J µ ψ f

J µ
± =

τ
±

2
Vµ

± − Aµ
±( ) e 

eν

ft = K

GF
2Vud

2 3H Vµ
+ 3He

2

+
fA
fV

3H Aµ
+ 3He

2⎡

⎣
⎢

⎤

⎦
⎥

pp Aµ
− 2H

Chen,	Butler	(2001-3),	Ando	et	al	(2005-8),	Rupak	(2014)	
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Precision,	Uncertainty,	and	predictions	
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We	revisit	the	pp-fusion	problem	within	pionless	
EFT,	fixing	the	unknown	LEC	using	triton	decay.	

Advantages	of	 p/		EFT	UQ	for	proton-proton	fusion:	
1.  Small	number	of	parameters.	
2.  Two	NLO	p/		EFT	set-ups.	
3.  A	“cheat-sheet”	in	the	electromagneTc	sector.	
4.  Cutoff	independence	up	to	infinity.	



!

A	fully	perturbative	pionless	EFT	A=2,	3	calculation	
@NLO	

•  LO	Parameters:	
•  nn	and	2-np	Sca\ering	lengths:	3S1,	1S0.	
•  pp	sca\ering	length.	
•  Fine	structure	constant.	
•  Three	body	force	strength	to	prevent	Thomas	collapse.	

•  NLO	parameters:	
•  2 effecTve	ranges.	
•  RenormalizaTons	of	pp	and	3NF.	
•  (isospin	dependent	3NF	to	prevent	logarithmic	divergence	in	the	binding	
energy	of	3He).	

•  Weak	Interac-on:	LO	(gA	–	1	body),	NLO	(L1A	–	2	body)	
•  EM	Interac-on:	LO	(kS	,	kV)	–	1	body),	NLO	(L1	,	L2–	2	body)	
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Precision,	Uncertainty,	and	predictions	

M
ay
	3
,	2
01
6	

La
?
ce
	N
uc
le
i@

EC
T*
	-	
Do

ro
n	
Ga

zit
	

37	

We	revisit	the	pp-fusion	problem	within	pionless	
EFT,	fixing	the	unknown	LEC	using	triton	decay.	

Advantages	of	 p/		EFT	UQ	for	proton-proton	fusion:	
1.  Small	number	of	parameters.	
2.  Two	NLO	p/		EFT	set-ups.	
3.  A	“cheat-sheet”	in	the	electromagneTc	sector.	
4.  Cutoff	independence	up	to	infinity.	
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We	revisit	the	pp-fusion	problem	within	pionless	
EFT,	fixing	the	unknown	LEC	using	triton	decay.	

Advantages	of	 p/		EFT	UQ	for	proton-proton	fusion:	
1.  Small	number	of	parameters.	
2.  Two	NLO	p/		EFT	set-ups.	
3.  A	“cheat-sheet”	in	the	electromagneTc	sector.	
4.  Cutoff	independence	up	to	infinity.	
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We	revisit	the	pp-fusion	problem	within	pionless	
EFT,	fixing	the	unknown	LEC	using	triton	decay.	

Advantages	of	 p/		EFT	UQ	for	proton-proton	fusion:	
1.  Small	number	of	parameters.	
2.  Two	NLO	p/		EFT	set-ups.	
3.  A	“cheat-sheet”	in	the	electromagneTc	sector.	
4.  Cutoff	independence	up	to	infinity.	
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Triton	decay	–	GT	cutoff	independence	
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40	
“Empirical”	extracTon	of	GT	(using	calculated	F	strength)	

ft = K

GF
2Vud

2 3H Vµ
+ 3He

2

+
fA
fV

3H Aµ
+ 3He

2⎡

⎣
⎢

⎤

⎦
⎥



!
Triton	decay	–	GT	cutoff	independence	
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Adding	the	LO	1-body	contribuTon	
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Triton	decay	–	GT	cutoff	independence	
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Adding	the	NLO	1-body	contribuTons	

ft = K

GF
2Vud

2 3H Vµ
+ 3He

2

+
fA
fV

3H Aµ
+ 3He

2⎡

⎣
⎢

⎤

⎦
⎥



!
Triton	decay	–	GT	cutoff	independence	
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43	
Adding	all	contribuTon,	but	L1A	
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1st	esTmate	of	theoreTcal	uncertainty:	
All	NLO	contribuTons	are	of	the	same	order,		
one	can	esTmate	higher	order	effects	as	the	NLO	contribuTon.	
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Triton	decay	–	GT	cutoff	independence	
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44	
Adding	all	contribuTon,	but	L1A	

ft = K
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1st	esTmate	of	theoreTcal	uncertainty:	
All	NLO	contribuTons	are	of	the	same	order,		
one	can	esTmate	higher	order	effects	as	the	NLO	contribuTon.	

Translates	to	±2%	difference	in	pp	fusion	



!
So…	is	3%	too	big	to	be	called	precision	physics?	
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Spp(gA =1.2695) = 3.83 ρ( )− 3.99 Z( )( ) ± 0.07 ± 0.04

Spp(gA =1.275) = 3.96 ρ( )− 4.12 Z( )( ) ± 0.07 ± 0.04

gA	systemaTc		
uncertainty	 theoreTcal	

uncertainty	

gA		
stat.	
unc.	

3H	
halflife	
syst.	
unc.	

i.e.,	theoreTcal	uncertainty	of	the	same	order	of	systemaTc	experimental	
error	encapsulated	in	gA	and	3H	half	life	(2%	total).	



!
Summary	

•  Pionless	EFT	reproduces	low-energy	electroweak	observables	to	a	
very	good	precision	(~1%),	even	at	NLO,	and	allows	reliable	
uncertainty	esTmates.	

•  A	coherent	use	of	pionless	EFT	allows	to	esTmate	model	uncertainty	
and	higher	order	contribuTon.	

•  Pionless	EFT	allows	assessing	La?ce	QCD	calculaTons.	
•  Based	on	the	EM	sector,	a	theoreTcal	predicTon	for	pp	fusion:	

	
•  Be\er	determinaTon	of	gA	is	necessary!		
•  (3H	half	life	is	also	an	open	exp.	issue).	

M
ay
	3
,	2
01
6	

La
?
ce
	N
uc
le
i@

EC
T*
	-	
Do

ro
n	
Ga

zit
	

46	

Spp(gA =1.2701) = 4.01 ± theory 0.08±gA 1σ( ) 0.07 ± 3 H half life
0.04

Spp(gA =1.275) = 4.12 ± theory 0.08±gA 1σ( ) 0.07 ± 3 H half life
0.04


