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Homogeneous neutron matter
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Outline

The Hamiltonian and Quantum Monte Carlo methods

Nuclei and neutron matter with phenomenological Hamiltonians

Chiral three-body forces, ”technical” issues and open questions

Results: A=3,4 binding energies, neutron-4He scattering and
neutron matter

Conclusions

Stefano Gandolfi (LANL), stefano@lanl.gov Light nuclei and neutron matter with chiral EFT Hamiltonians 4 / 25



Nuclear Hamiltonian

Model: non-relativistic nucleons interacting with an effective
nucleon-nucleon force (NN) and three-nucleon interaction (TNI).

H = − ~2

2m

A∑

i=1

∇2
i +

∑

i<j

vij +
∑

i<j<k

Vijk

vij NN fitted on scattering data. Sum of operators:

vij =
∑

Op=1,8
ij vp(rij) , Op

ij = (1, ~σi · ~σj ,Sij ,~Lij · ~Sij)× (1, ~τi · ~τj)

NN: Argonne AV8’ and AV18. NNN: Urbana UIX and IL7.

Local chiral forces up to N2LO (Gezerlis, Tews, et al. PRL (2013),
PRC (2014)).
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Nuclear Hamiltonian

Chiral interactions permit to understand the evolution of theoretical
uncertainties with the increasing of A.

Slide by Joel Lynn, Scidac NUCLEI meeting 2014.
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Three-body forces

Urbana–Illinois Vijk models processes like

π

π

∆

π

π

π

π∆

π

π

π

∆

π

∆

+ short-range correlations (spin/isospin independent).

Chiral forces at N2LO:

π π π

c1, c3, c4 cD cE
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Nuclear Hamiltonians

Advantages:

Argonne interactions fit phase shifts up to high energies. At ρ = ρ0,
kF ' 330 MeV. Two neutrons have ECM ' 120 MeV, ELAB '240
MeV. → accurate up to (at least) 2-3ρ0. Provide a very good
description of several observables in light nuclei.

Interactions derived from chiral EFT can be systematically improved.
Changing the cutoff probes the physics and energy scales entering
into observables. They are generally softer, and make most of the
calculations easier to converge.

Disadvantages:

Phenomenological interactions are phenomenological, not clear how
to improve their quality. Systematic uncertainties hard to quantify.

Chiral interactions describe low-energy (momentum) physics. How
do they work at large momenta, (i.e. e and ν scattering)?

Important to consider both and compare predictions
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Quantum Monte Carlo

Propagation in imaginary time:

H ψ(~r1 . . .~rN) = E ψ(~r1 . . .~rN) ψ(t) = e−(H−ET )tψ(0)

Ground-state extracted in the limit of t →∞.

Propagation performed by

ψ(R, t) = 〈R|ψ(t)〉 =

∫
dR ′G (R,R ′, t)ψ(R ′, 0)

Importance sampling: G (R,R ′, t)→ G (R,R ′, t) ΨI (R
′)/ΨI (R)

Constrained-path approximation to control the sign problem.
Unconstrained-path calculation possible in several cases (exact).

GFMC includes all spin-states of nucleons in the w.f., nuclei up to A=12
AFDMC samples spin states, bigger systems, less accurate than GFMC

Ground–state obtained in a non-perturbative way. Systematic
uncertainties within 1-2 %.
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Light nuclei spectrum computed with GFMC
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Carlson, Gandolfi, Pederiva, Pieper, Schiavilla, Schmidt, Wiringa, RMP (2015)

Also radii, densities, matrix elements, ...
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Charge form factor of 12C

|F (q)| = 〈ψ|ρq|ψ〉 ρq =
∑

i

ρq(i) +
∑

i<j

ρq(ij)
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Lovato, Gandolfi, Butler, Carlson, Lusk, Pieper, Schiavilla, PRL (2013)
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Neutron matter and the deficiencies of three-body forces

0.04 0.06 0.08 0.1 0.12 0.14 0.16

ρ [fm
-3

]

6

8

10

12

14

16

18

20

E
n

er
g

y
 p

er
 N

eu
tr

o
n

 [
M

eV
]

AV8’+UIX
AV8’+IL7
AV8’

Maris, Vary, Gandolfi, Carlson, Pieper, PRC (2013)

Note: AV8’+UIX and AV8’ are stiff enough to support observed neutron
stars. AV8’+IL7 too soft. → How to reconcile with nuclei???
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4He energy with chiral two-body interactions.

Binding energy of 4He with only two-body interactions:
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Neutron matter

Equation of state of neutron matter using NN chiral forces:
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Chiral three-body forces, issue (I)

π π π

c1, c3, c4 cD cE

For a finite cutoff, there are ”additional” VD and VE diagrams coming
from Fourier transforming 2π exchange.

Usually they are effectively reabsorbed trough the fit of cD and cE , but
often neglected in existing neutron matter calculations.
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Neutron matter with chiral forces

Contribution of the ”additional” VD and VE terms, with cD=cE=0.
AFDMC calculations.
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Note: Contribution of FM (2π exchange) about 0.9 MeV with AV8’+UIX.
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Neutron matter with chiral forces

Exploring the form of the regulator and the cutoff:
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Tews, Gandolfi, Gezerlis, Schwenk, PRC (2016)
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Neutron matter with chiral forces

Equation of state of neutron matter at N2LO.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

ρ (fm
-3

)

4

6

8

10

12

14

16

18

20
en

er
g

y
 p

er
 n

eu
tr

o
n

 (
M

eV
)

NN + V3 (R
3N

=1.2 fm)

NN + V3 (R
3N

=1.0 fm)

NN + V3 (R
3N

=0.8 fm)

NN
AV8’
AV8’+UIX

NN (R0=1.2 fm)

NN (R
0=1.0 fm

)

Note: cD=cE=0 (they will be non-zero in a few slides).
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Chiral three-body forces, issue (II)

π π π

c1, c3, c4 cD cE

In the Fourier transformation of VD two possible operator structures arise:

VD1 =
gAcDm

2
π

96πΛχF 4
π

∑
i<j<k

∑
cyc

τi · τk
[
Xik(rkj)δ(rij) + Xik(rij)δ(rkj) −

8π

m2
π

σi · σkδ(rij)δ(rkj)

]

VD2 =
gAcDm

2
π

96πΛχF 4
π

∑
i<j<k

∑
cyc

τi · τk
[
Xik(rik) − 4π

m2
π

σi · σkδ(rik)

] [
δ(rij) + δ(rkj)

]
Xij(r) = T (r)Sij + Y (r)σi · σj

Navratil (2007), Tews et al PRC (2016), Lynn et al PRL (2016).

Equivalent only in the limit of an infinite cutoff. Implications in real life?
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Chiral three-body forces, issue (III)

π π π

c1, c3, c4 cD cE

Equivalent forms of operators entering in VE (or combinations of them):

1, σi ·σj , τi ·τj , σi ·σjτi ·τj , σi ·σjτi ·τk , [(σi×σj)·σk ][(τi×τj)·τk ]

Epelbaum et al (2002). We investigated three choices:

VEτ =
cE

ΛχF 4
π

∑

i<j<k

∑

cyc

τi · τkδ(rkj)δ(rij)

VE1 =
cE

ΛχF 4
π

∑

i<j<k

∑

cyc

δ(rkj)δ(rij)

VEP =
cE

ΛχF 4
π

∑

i<j<k

∑

cyc

PS,T=1/2 δ(rkj)δ(rij)

Qualitative differences expected, i.e. consider 4He vs neutron matter!
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Chiral three-body forces

Coefficients cD and cE fit to reproduce the binding energy of 4He and
neutron-4He scattering. → more information on T=3/2 part of
three-body interaction.
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4He binding energy and p-wave n-4He scattering

Regulator: δ(r) = 1
πΓ(3/4)R3

0
exp(−r/R0)4

Cutoff R0 taken consistently with the two-body interaction.
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Lynn, Tews, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk PRL (2016).
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A=3, 4 nuclei at N2LO
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Epelbaum, Krebs, Meissner (2014).
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Neutron matter at N2LO

EOS of pure neutron matter at N2LO, R0=1.0 fm.
Error quantification estimated as previously.
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Summary

Ab-initio QMC methods useful to study nuclear systems in a
coherent framework using phenomenological and local chiral forces.

Spectrum of nuclei and other properties well reproduced with
Argonne Hamiltonians, but problems in describing neutron matter.

Many ambiguities regarding the choice of three-body operators.
Effect in heavier nuclei and nuclear matter?
Provocation: Same issue for NN???

(some) local chiral interaction describe A=3,4,5 and neutron matter.

Acknowledgments:
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Scattering data and neutron matter

Two neutrons have

k ≈
√
Elab m/2 , → kF

that correspond to

kF → ρ ≈ (Elab m/2)3/2/2π2 .

Elab=150 MeV corresponds to about 0.12 fm−3.

Elab=350 MeV to 0.44 fm−3.

Argonne potentials useful to study dense matter above ρ0=0.16 fm−3
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Variational wave function

E0 ≤ E =
〈ψ|H|ψ〉
〈ψ|ψ〉 =

∫
dr1 . . . drN ψ

∗(r1 . . . rN)Hψ∗(r1 . . . rN)∫
dr1 . . . drN ψ∗(r1 . . . rN)ψ∗(r1 . . . rN)

→ Monte Carlo integration. Variational wave function:

|ΨT 〉 =


∏

i<j

fc(rij)




 ∏

i<j<k

fc(rijk)




1 +

∑

i<j,p

∏

k

uijk fp(rij)O
p
ij


 |Φ〉

where Op are spin/isospin operators, fc , uijk and fp are obtained by
minimizing the energy. About 30 parameters to optimize.

|Φ〉 is a mean-field component, usually HF. Sum of many Slater
determinants needed for open-shell configurations.

BCS correlations can be included using a Pfaffian.
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Quantum Monte Carlo

Propagation in imaginary time:

H ψ(~r1 . . .~rN) = E ψ(~r1 . . .~rN) ψ(t) = e−(H−ET )tψ(0)

Ground-state extracted in the limit of t →∞.

Propagation performed by

ψ(R, t) = 〈R|ψ(t)〉 =

∫
dR ′G (R,R ′, t)ψ(R ′, 0)

Importance sampling: G (R,R ′, t)→ G (R,R ′, t) ΨI (R
′)/ΨI (R)

Constrained-path approximation to control the sign problem.
Unconstrained-path calculation possible in several cases (exact).

GFMC includes all spin-states of nucleons in the w.f., nuclei up to A=12
AFDMC samples spin states, bigger systems, less accurate than GFMC

Ground–state obtained in a non-perturbative way. Systematic
uncertainties within 1-2 %.
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The Sign problem in one slide

Evolution in imaginary-time:

ψI (R
′)Ψ(R ′, t + dt) =

∫
dR G (R,R ′, dt)

ψI (R
′)

ψI (R)
ψI (R)Ψ(R, t)

note: Ψ(R, t) must be positive to be ”Monte Carlo” meaningful.

Fixed-node approximation: solve the problem in a restricted space where
Ψ > 0 (Bosonic problem) ⇒ upperbound.

If Ψ is complex:

|ψI (R
′)||Ψ(R ′, t + dt)| =

∫
dR G (R,R ′, dt)

∣∣∣∣
ψI (R

′)

ψI (R)

∣∣∣∣ |ψI (R)||Ψ(R, t)|

Constrained-path approximation: project the wave-function to the real

axis. Extra weight given by cos ∆θ (phase of Ψ(R′)
Ψ(R) ), Re{Ψ} > 0 ⇒ not

necessarily an upperbound.
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Unconstrained-path

GFMC unconstrained-path propagation:
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Changing the trial wave function gives same results.
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Unconstrained-path

AFDMC unconstrained-path propagation:
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The difference between CP and UP results is mainly due to the presence
of LS terms in the Hamiltonian. Same for heavier systems.

Work in progress to improve Ψ to improve the constrained-path.
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Quantum Monte Carlo

H ψ(~r1 . . .~rN) = E ψ(~r1 . . .~rN) ψ(t) = e−(H−ET )tψ(0)

Ground-state extracted in the limit of t →∞.

Propagation performed by

ψ(R, t) = 〈R|ψ(t)〉 =

∫
dR ′G (R,R ′, t)ψ(R ′, 0)

Importance sampling: G (R,R ′, t)→ G (R,R ′, t) ΨI (R
′)/ΨI (R)

Constrained-path approximation to control the sign problem.
Unconstrained calculation possible in several cases (exact).

Ground–state obtained in a non-perturbative way. Systematic
uncertainties within 1-2 %.
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Overview

Recall: propagation in imaginary-time

e−(T+V )∆τψ ≈ e−T∆τe−V∆τψ

Kinetic energy is sampled as a diffusion of particles:

e−∇
2∆τψ(R) = e−(R−R′)2/2∆τψ(R) = ψ(R ′)

The (scalar) potential gives the weight of the configuration:

e−V (R)∆τψ(R) = wψ(R)

Algorithm for each time-step:

do the diffusion: R ′ = R + ξ

compute the weight w

compute observables using the configuration R ′ weighted using w
over a trial wave function ψT .

For spin-dependent potentials things are much worse!

Stefano Gandolfi (LANL), stefano@lanl.gov Light nuclei and neutron matter with chiral EFT Hamiltonians 9 / 21



Branching

The configuration weight w is efficiently sampled using the branching
technique:

Configurations are replicated or destroyed with probability

int[w + ξ]

Note: the re-balancing is the bottleneck limiting the parallel efficiency.
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GFMC and AFDMC

Because the Hamiltonian is state dependent, all spin/isospin states of
nucleons must be included in the wave-function.

Example: spin for 3 neutrons (radial parts also needed in real life):

GFMC wave-function:

ψ =



a↑↑↑
a↑↑↓
a↑↓↑
a↑↓↓
a↓↑↑
a↓↑↓
a↓↓↑
a↓↓↓


A correlation like

1 + f (r)σ1 · σ2

can be used, and the variational wave

function can be very good. Any operator

accurately computed.

AFDMC wave-function:

ψ = A
[
ξs1

(
a1

b1

)
ξs2

(
a2

b2

)
ξs3

(
a3

b3

)]
We must change the propagator by using
the Hubbard-Stratonovich transformation:

e
1
2

∆tO2
=

1
√

2π

∫
dxe−

x2

2
+x
√

∆tO

Auxiliary fields x must also be sampled.

The wave-function is pretty bad, but we

can simulate larger systems (up to

A ≈ 100). Operators (except the energy)

are very hard to be computed, but in some

case there is some trick!
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Propagator

We first rewrite the potential as:

V =
∑

i<j

[vσ(rij)~σi · ~σj + vt(rij)(3~σi · r̂ij~σj · r̂ij − ~σi · ~σj)] =

=
∑

i,j

σiαAiα;jβσjβ =
1

2

3N∑

n=1

O2
nλn

where the new operators are

On =
∑

jβ

σjβψn,jβ

Now we can use the HS transformation to do the propagation:

e−∆τ 1
2

∑
n λO

2
nψ =

∏

n

1√
2π

∫
dxe−

x2

2 +
√
−λ∆τxOnψ

Computational cost ≈ (3N)3.
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Three-body forces

Three-body forces, Urbana, Illinois, and local chiral N2LO can be exactly
included in the case of neutrons.

For example:

O2π =
∑

cyc

[
{Xij ,Xjk} {τi · τj , τj · τk}+

1

4
[Xij ,Xjk ] [τi · τj , τj · τk ]

]

= 2
∑

cyc

{Xij ,Xjk} = σiσk f (ri , rj , rk)

The above form can be included in the AFDMC propagator.

Stefano Gandolfi (LANL), stefano@lanl.gov Light nuclei and neutron matter with chiral EFT Hamiltonians 13 / 21



Neutron matter equation of state

Neutron matter is an ”exotic” system. Why do we care?

EOS of neutron matter gives the symmetry energy and its slope.

The three-neutron force (T = 3/2) very weak in light nuclei, while
T = 1/2 is the dominant part. No direct T = 3/2 experiments
available.

Determines radii of neutron stars.

Esym, L

Theory

ExperimentsNeutron stars
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What is the Symmetry energy?

0
ρ

0
 = 0.16 fm

-3

E
0
 = -16 MeV

symmetric nuclear matter
pure neutron matter

Nuclear saturation

Symmetry energy

Assumption from experiments:

ESNM(ρ0) = −16MeV , ρ0 = 0.16fm−3 , Esym = EPNM(ρ0) + 16

At ρ0 we access Esym by studying PNM.
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Neutron matter

Model uncertainty vs Esym uncertainty:
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Gandolfi, Carlson, Reddy, PRC (2012)
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Neutron matter and symmetry energy

From the EOS, we can fit the symmetry energy around ρ0 using

Esym(ρ) = Esym +
L

3

ρ− 0.16

0.16
+ · · ·

30 31 32 33 34 35 36
E

sym
 (MeV)

30

35

40

45

50

55

60

65

70

L
 (

M
e

V
)

AV8’+UIX

E
sym

=33.7 MeV

E
sym

=32.0 MeV

AV8’

Gandolfi et al., EPJ (2014)
Tsang et al., PRC (2012)

Very weak dependence to the model of 3N force for a given Esym.
Knowing Esym or L useful to constrain 3N! (within this model...)
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Neutron star structure

EOS used to solve the TOV equations.
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Gandolfi, Carlson, Reddy, PRC (2012).

Accurate measurement of Esym put a constraint to the radius of neutron
stars, OR observation of M and R would constrain Esym!
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Neutron stars
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Steiner, Lattimer, Brown, ApJ (2010)

Neutron star observations can be used to ’measure’ the EOS and
constrain Esym and L. (Systematic uncertainties still under debate...)
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Neutron star matter

Neutron star matter model:

ENSM = a

(
ρ

ρ0

)α
+ b

(
ρ

ρ0

)β
, ρ < ρt

form suggested by QMC simulations,
contrast with the commonly used EFG + V

and a high density model for ρ > ρt

i) two polytropes

ii) polytrope+quark matter model

Neutron star radius sensitive to the EOS at nuclear densities!

Direct way to extract Esym and L from neutron stars observations:

Esym = a + b + 16 , L = 3(aα + bβ)
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Neutron star matter really matters!
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Steiner, Gandolfi, PRL (2012).
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