# Universal aspects of weakly bound two-neutron halo nuclei

Tobias Frederico Instituto Tecnológico de Aeronáutica São José dos Campos, Brazil tobias@ita.br

Collaborators: Antonio Delfino (UFF/Brazil) Filipe Bellotti (ITA/Brazil) Lauro Tomio (IFT/Brazil) Lucas Souza (ITA/PhD) Marcelo Yamashita (IFT/Brazil) Mahdi Shalchi (IFT/Brazil) Mohammadreza Hadizadeh (Ohio Univ) Eduardo Garrido (IEM/CSIC Madrid)



INT program ''Nuclear Physics from lattice QCD'' April 29, 2016

### Light-neutron rich nuclei



C.A. Bertulani, Nuclear Physics in a Nutshell, Princeton University Press, 2007.

TF, Delfino, Tomio, Yamashita, "Universal aspects of light halo nuclei" Prog. Part. Nucl. Phys. 67 (2012) 939

Tanihata, Savajols Kanungo. "Recent experimental progress in nuclear halo structure studies Prog. Part. Nucl. Phys. 68 (2012) 215"

Zinner, Jensen. "Comparing and contrasting nuclei and cold atomic gases". J. Phys. G: Nucl. Part. Phys. 40 (2013) 053101



K Riisager Phys. Scr. T152 (2013) 014001 suggests a smaller size!

Core mom. dist. from RIKEN - Kobayashi et al PRC86, 054604 (2012)

(S-wave interaction) Two-body s-wave phase-shift (large scatt. lenghts)



- ${}^{1}S_{0}$  nn **virtual** state:  $E_{nn}^{virtual} = -143$  keV (a = -17fm)
- S-wave n-core state: virtual (<sup>10</sup>Li ~ -50 keV) or bound (<sup>19</sup>C ~ -580 keV)

Light Halo-nuclei are examples in recent Nuclear Physics studies Weakly-Bound Quantum Systems: very Large and Dilute

# $(E-H_0)\psi=0$

Almost everywhere the wave-function is an eigenstate of H<sub>0</sub>

-- short-range force – classically forbbiden region --

Physics: symmetry, scaling properties and dimension (& mass ratios)

 $\rightarrow$  Universality (model independence)

Light halo-nuclei, such as <sup>11</sup>Li, <sup>14</sup>Be, <sup>20</sup>C, <sup>22</sup>C, can be described as a three-body n-n-core mass-imbalanced system, where at least one of the two-body subsystem (n-n) is unbound.

Generalization: "The few scales of nuclei and nuclear matter" Delfino, TF, Timóteo, Tomio. PLB 634 (2006) 185

Limiting case: what is the physics of a contact interaction?

### **Three-boson system** Subtle three-body phenomenum in $L_{total}=0$ :

Thomas(1935) – Efimov (1970) effect!



Adhikari, Delfino, TF, Goldman, Tomio, PRA37 (1988) 3666

**One three-body scale** is necessary to represent short-range physics !!!! & discrete scaling

Jensen, Riisager, Fedorov, Garrido, RMP76, 215 (2004) Braaten, Hammer Phys. Rep.428, 259 (2006)

### The Efimov effect

### Efimov Physics (1970): Nuclear Physics

### Vitaly Efimov

Vol 440/16 March 2006/doi/10.1038/nature04636 nature Repulsive a > 01/a -LETTERS 22.7 ×(22.7)2 Evidence for Efimov quantum states in an ultracold gas of caesium atoms Weakly T. Kraemer<sup>1</sup>, M. Mark<sup>1</sup>, P. Waldburger<sup>1</sup>, J. G. Danzl<sup>1</sup>, C. Chin<sup>1,2</sup>, B. Engeser<sup>1</sup>, A. D. Lange<sup>1</sup>, K. Pilch<sup>1</sup>, A. Jaakkola<sup>1</sup>, bound H.-C. Nägerl<sup>1</sup> & R. Grimm<sup>1,3</sup> dimer Weakly nature LETTERS bound physics PUBLISHED ONLINE:22 FEBRUARY 2009 I DOI: 10.1038/10PHYS1203 trimer

#### Observation of an Efimov-like trimer resonance in ultracold atom-dimer scattering

S. Knoop1\*, F. Ferlaino1, M. Mark1, M. Berninger1, H. Schöbel1, H.-C. Nägerl1 and R. Grimm12



### **Zero-range 3-boson equation: Thomas-Efimov effect (3d)** Skorniakov and Ter-Martirosian equations (1956)

$$\chi \rightarrow = 2 \qquad \chi \rightarrow = 2 \qquad (\hbar = m = 1)$$

$$\chi(\vec{y}) = \frac{-\pi^{-2}}{\pm \sqrt{\epsilon_2} - \sqrt{\epsilon_3 + \frac{3}{4}\vec{y}^2}} \int d^3x \left( \frac{1}{\epsilon_3 + \vec{y}^2 + \vec{x}^2 + \vec{y} \cdot \vec{x}} - \frac{1}{1 + \vec{y}^2 + \vec{x}^2 + \vec{y} \cdot \vec{x}} \right) \chi(\vec{x})$$

$$\epsilon_{3} = E_{3} / \mu_{(3)}^{2}$$
  $\epsilon_{2} = E_{2} / \mu_{(3)}^{2}$   $\mu_{(3)}^{2} = 1$ 

Thomas collapse: 
$$\mu_{(3)}^2 \rightarrow \infty$$
  
Efimov effect:  $E_2 \rightarrow 0$ 
 $\epsilon_2 = E_2 / \mu_{(3)}^2$ 

Thomas-Efimov effect!

S.K. Adhikari, A. Delfino, T. Frederico, I.D. Goldman, and L. Tomio, Phys. Rev. A **37**, 3666 (1988).

### <u>Hamiltonian for the Subtracted 3B equations (3D)</u>

Frederico et al., PPNP 67, 939 (2012)

Subtracted-Faddeev equations 3B:

$$T_k(E) = t_{(ij)} \left( E - \frac{q_k^2}{2m_{ij,k}} \right) \left[ 1 + (G_0^{(+)}(E) - G_0(-\mu_3^2)) \left( T_i(E) + T_j(E) \right) \right]$$

Adhikari, Frederico, Goldman, PRL74 (1995) 487

Renormalized Hamiltonian:

$$H_{\mathcal{R}} = H_0 + V_{\mathcal{R}} \qquad \frac{\partial V_{\mathcal{R}}}{\partial \mu^2} = 0 \quad \text{and} \quad \frac{\partial H_{\mathcal{R}}}{\partial \mu^2} = 0.$$
$$V_{\mathcal{R}} = H_{\mathcal{R}I}^{(3B)} = \sum_{(ij)} V_{\mathcal{R}(ij)}^{(2B)} + V_{\mathcal{R}}^{(3B)}.$$

EFT 3B interaction: Bedaque, Hammer, van Kolck PRL 82 (1999) 463

RGE & Subtracted Eqs. - TF, Delfino, Tomio, PLB481 (2000) 143

# **Scaling function & limit cycle**

$$\boldsymbol{\epsilon}_3^{(N)} \equiv \boldsymbol{\epsilon}_3^{(N)} (\pm \sqrt{\boldsymbol{\epsilon}_2}) \qquad \boldsymbol{\xi} \equiv \pm \sqrt{\boldsymbol{\epsilon}_2} = \pm (E_2 \boldsymbol{\epsilon}_3^{(N)} / E_3^{(N)})^{1/2}$$

$$\frac{E_3^{(N+1)}}{E_3^{(N)}} = \lim_{N \to \infty} \frac{\epsilon_3^{(N+1)}(\xi)}{\epsilon_3^{(N)}} = \mathcal{F}\left(\pm \sqrt{\frac{E_2}{E_3^{(N)}}}\right)$$

$$\mathcal{F}(0) = \bar{e}^{2\pi/s_0} = 1/515$$

Frederico et al, **"Scaling limit of weakly bound triatomic states",** PRA60 (1999)R9. <u>Amorim et al, **"Universal aspects of Efimov states and light halo nuclei", PRC56(1997) R2378**</u>

Limit cycle: Mohr et al Ann.Phys. 321 (2006) 225



Correlations between observables: Jensen, Fedorov, Yamashita, Hammer, Platter, Gattobigio, Kievsky, Kolganova, Van Kolck, Bedaque, Phillips,...

### **Scaling function & Limit Cycle**



### **Analytic Structure & Efimov State Trajectory**



S.K. Adhikari and L. Tomio, Phys. Rev. C **26**, 83 (1982); S.K. Adhikari, A.C. Fonseca, and L. Tomio, *ibid.* **26**, 77 (1982).

F. Bringas, M.T. Yamashita and T. Frederico, Phys. Rev. A **69**, 040702(R) (2004).

### Continuum resonances of Borromean systems: observation in atomic traps!

Resonant 3-body recombination (Innsbruck, Rice, Heidelberg, Bar Ilan, Florence...)

L=0 neutron-neutron-core systems with n-core and n-n subsystems dominated by s-wave low energy states bound or virtual) <sup>11</sup>Li, <sup>14</sup>Be, <sup>20</sup>C, <sup>22</sup>C



**Configuration space two-neutron halo wave function (2n spin singlet)** L=0

$$H\Psi = \left[-\sum_{i=1}^{3} \frac{\hbar^2}{2m_i} \nabla_i^2 + \lambda_{jk} \delta(\mathbf{R}_{jk})\right] \Psi = -S_{2n} \Psi \quad (\mathbf{C.M.})$$

$$\Psi(\mathbf{r}_n,\mathbf{r}_{n'}) = \int d\mathbf{q} \, \frac{e^{-\kappa_{nn} \, |\mathbf{R}_{nn}|}}{|\mathbf{R}_{nn}|} \, e^{i\mathbf{q}\cdot\mathbf{R}_A} \chi_A(\mathbf{q}) + \int d\mathbf{q} \, \frac{e^{-\kappa_{nA} \, |\mathbf{R}_{nA}|}}{|\mathbf{R}_{nA}|} \, e^{i\mathbf{q}\cdot\mathbf{R}_n} \chi_n(\mathbf{q}) + \cdots$$

$$\Psi(|\mathbf{r}_{n}|, |\mathbf{r}_{n'}|, \cos \theta) \qquad \kappa_{nn} = \sqrt{2\mu_{nn} \left(S_{2n} + \frac{q^{2}}{2\mu_{A}}\right)} \text{ and } \kappa_{nA} = \sqrt{2\mu_{nA} \left(S_{2n} + \frac{q^{2}}{2\mu_{n}}\right)}$$
  
S, P, D... waves  
A nn: spin singlet state  
C.M.  
 $\theta$   
 $\mathbf{r}_{n}$   $\mathbf{r}_{n'}$   
 $\mathbf{n}$   $\mathbf{R}_{nA}$   
 $\mathbf{R}_{nA}$   
 $\mathbf{R}_{nA}$   
 $\mathbf{R}_{nA}$   
 $\mathbf{R}_{nA}$ 

Scales for the L=0 n-n-c system with s-wave zero-range interaction

 $E_{nn}$  Energy of the virtual nn system

 $E_{nc}$  Energy of the bound/virtual nc system

 $S_{2n}$  Binding energy of the nnc system

A = mass of the core

### Threshold for an excited Efimov state and trajectory: <sup>20</sup>C



### <sup>20</sup>C can have a continuum resonance or virtual Efimov state?

Arora, Mazumdar, Bhasin PRC69 (2004)061301(R) Mazumdar, Rau, Bhasin PRL97(2006)062503 Efimov state→resonance of n+<sup>19</sup>C by changing Knc

### <sup>20</sup>C has a VIRTUAL STATE: <sup>19</sup>C is bound!

Yamashita, TF,Tomio, PRL99 (2007)269201 & PLB660(2008)339

If  $L_{total}$  is nonzero ?

- Virtual p-wave states of light non Borromean nn halo nucleus  $E_{virtual} \sim 1.7 E_{nc}$  SAMBA type
- Delfino, F, Hussein, Tomio et al PRC61, 051301 (2000)
  - Pigmy dipole 1<sup>-</sup> resonance:
  - M. Cubero et al, PRL 109, 262701 (2012) <sup>11</sup>Li+<sup>208</sup>Pb close the Coulomb barrier  $\rightarrow E_{res}$ =690 keV width=0.32 keV
  - Fernandez-Garcıa et al PRL 110, 142701 (2013) <sup>11</sup>Li+<sup>208</sup>Pb breakup around the Coulomb barrier

Determined by scattering lengths only!



Tango: Robicheaux PRA60(1999)1706

### **Root mean square radii: Core+neutron+neutron**



S<sub>2n</sub>[<sup>11</sup>Li]=369.15(65) KeV -- Smith etal PRL101(08)202501

Charge radius <sup>11</sup>Li [2.217(35) fm] and <sup>9</sup>Li [2.467(37) fm]-- Sanchez et al PRL96(96)03302 neutron halo radius <sup>11</sup>Li [6.54(38) fm] -- Egelhof et al EJPA15 (02) 27

Range corrections EFT: Canham and Hammer NPA 836 (2010) 275

#### PHYSICAL REVIEW C 81, 021302(R) (2010)

#### First observation of excited states in <sup>12</sup>Li

### (n+n+n+core)

C. C. Hall,<sup>1</sup> E. M. Lunderberg,<sup>1</sup> P. A. DeYoung,<sup>1,\*</sup> T. Baumann,<sup>2</sup> D. Bazin,<sup>2</sup> G. Blanchon,<sup>3</sup> A. Bonaccorso,<sup>4</sup> B. A. Brown,<sup>2,5</sup> J. Brown,<sup>6</sup> G. Christian,<sup>2,5</sup> D. H. Denby,<sup>1</sup> J. Finck,<sup>7</sup> N. Frank,<sup>2,5,†</sup> A. Gade,<sup>2,5</sup> J. Hinnefeld,<sup>8</sup> C. R. Hoffman,<sup>9,10</sup> B. Luther,<sup>11</sup> S. Mosby,<sup>2,5</sup> W. A. Peters,<sup>2,5,‡</sup> A. Spyrou,<sup>2,5</sup> and M. Thoennessen<sup>2,5</sup>

The neutron-unbound ground state and two excited states of <sup>12</sup>Li were formed by the two-proton removal reaction from a 53.4-MeV/u <sup>14</sup>B beam. The decay energy spectrum of <sup>12</sup>Li was measured with the Modular Neutron Array (MoNA) and the Sweeper dipole superconducting magnet at the National Superconducting Cyclotron Laboratory. Two excited states at resonance energies of  $250 \pm 20$  keV and  $555 \pm 20$  keV were observed for the first time and the data are consistent with the previously reported *s*-wave ground state with a scattering length of  $a_s = -13.7$  fm.



*Four-boson scale with s-wave zero-range potential*: Hadizadeh, Yamashita, Tomio, Delfino, TF, Phys. Rev. Lett. 107, 135304 (2011)

BUT Pauli principle kills sensitivity to the 4-body scale!

### Neutron-neutron correlation function in <sup>11</sup>Li and <sup>14</sup>Be



Yamashita, TF, Tomio PRC 72, 011601(R) (2005)

$$C_{nn}(\vec{p}_A) = \frac{\int d^3 q_A |\Phi(\vec{q}_A, \vec{p}_A)|^2}{\int d^3 q_A \rho(\vec{q}_n') \rho(\vec{q}_n)}$$

$$\vec{q}_{n'} = \vec{p}_A - \frac{\vec{q}_A}{2}$$
  $\vec{q}_n = -\vec{p}_A - \frac{\vec{q}_A}{2}$ 

One-body density 
$$\rho(\vec{q}_{nA}) = \int d^3 q_{n'A} \left| \Phi\left(-\vec{q}_{nA} - \vec{q}_{n'A}, \frac{\vec{q}_{nA} - \vec{q}_{n'A}}{2}\right) \right|^2$$

 $\Phi = \Phi(\vec{q}_A, \vec{p}_A)$  Breakup amplitude including the FSI between the neutrons

$$\Phi = \Psi(\vec{q}_A, \vec{p}_A) + \frac{1/(2\pi^2)}{\sqrt{E_{nn}} - ip_A} \int d^3p \frac{\Psi(\vec{q}_A, \vec{p})}{p_A^2 - p^2 + i\varepsilon} \quad \Psi \text{ is the three-body wave function}$$

### nn-correlation function in <sup>11</sup>Li



#### M. T. Yamashita et al. Phys. Rev. C 72, 011601(R) (2005)

### nn-correlation function in <sup>14</sup>Be



### ${}^{22}C = n - n - {}^{20}C$

#### K. Tanaka et al., Phys. Rev. Lett. 104 (2010) 062701

Reaction cross sections ( $\sigma_R$ ) for <sup>19</sup>C, <sup>20</sup>C and the drip-line nucleus <sup>22</sup>C on a liquid hydrogen target have been measured at around 40A MeV by a transmission method. A large enhancement of  $\sigma_R$  for <sup>22</sup>C compared to those for neighboring C isotopes was observed. Using a finite-range Glauber calculation under an optical-limit approximation the rms matter radius of <sup>22</sup>C was deduced to be 5.4 ± 0.9 fm. It does not follow the systematic behavior of radii in carbon isotopes with  $N \leq 14$ , suggesting a neutron halo. It was found by an analysis based on a few-body Glauber calculation that the two-valence neutrons in <sup>22</sup>C preferentially occupy the  $1s_{1/2}$  orbital.



### $^{22}C = n - n - ^{20}C$



H.T. Fortune, R. Sherr, Phys. Rev. C 85 (2012) 027303.

Acharya, Ji, Phillips PLB723(2013)19 [S < 100 keV] (EFT) 2n

### $2^{22}C = n - n - 2^{0}C$ with finite range potentials Eduardo Garrido (Madrid)

n-<sup>20</sup>C finite-range potential Y. Kucuk and J. A. Tostevin, Phys. Rev. C 89 (2014) 034607

 $V_{\text{central}}(r) = -\frac{V_c}{1+e^{\frac{r-R}{c}}},$ R is 1.25 fm and the diffuseness a is 0.65 fm.  $V_c$  (MeV) 21.03-body force with Range 1 fm  $-1.5 \cdot 10^{-5}$  $S_{2b}$  (MeV)  $a \,(\mathrm{fm})$ 1192----- up to l=8  $r_e \, ({\rm fm})$ 2.88..... Only l=0 500 ▲-----▲ Only l=0 (gaussian 3-body force) ----- Only l=0 (exponential 3-body force) 400  $E_{v}[^{21}C] = -100 \text{ KeV}$ S<sub>2n</sub> (keV) 300 200  $E_{v}[^{21}C] = 0 \ KeV$ 100 6 8 10 12 14 16 18 20 r\_ (fm)

<sup>21</sup>C virtual state energy  $E_{v}[^{21}C]$ : 0, -100 KeV.  $E_{nn}$ =-143KeV

### <sup>22</sup>C Matter Radius

**C** Mosby et al. NPA 909, 69 (2013) |a<sub>s</sub> | < 2.8 fm (<sup>21</sup>C virtual state)



[circles] WS potential + core - H. T. Fortune, R. Sherr, PRC 85 (2012) 027303. (<sup>21</sup>C bound)
 [boxes] EFT - B. Acharya, C. Ji, D. R. Phillips, PLB 723 (2013) 196;
 B. Acharya, D. R. Phillips, EPJWoC 113(2016) 06013.

 $^{21}\mathbf{C}$ 

 $S_{2n} \lesssim 0.12$  MeV for  $^{22}$ C

Is  $S_{2n}$  consistent with RIKEN data on core momentum recoil distribution?

Kobayashi et al PRC86 (2012) 054604

### *Core Momentum distribution nnc* = *AAB*: <sup>11</sup>*Li*, <sup>14</sup>*Be*, <sup>20</sup>*C*, <sup>22</sup>*C*

L. A. Souza et al PLB757 (2016) 368 & FBS57 (2016)361

$$n(q_B) = \int d^3 p_B |\langle \vec{q}_B \vec{p}_B | \Psi \rangle|^2$$

Yamashita et al PRA 87, 062702 (2013)

$$\langle \vec{q}_B \vec{p}_B | \Psi \rangle = \frac{\chi_{AA}(q_i) + \chi_{AB}(q_j) + \chi_{AB}(q_k)}{E_3 + H_0} = \frac{\chi_{AA}(q_B) + \chi_{AB}(|\vec{p}_B - \frac{\vec{q}_B}{2}|) + \chi_{AB}(|\vec{p}_B + \frac{\vec{q}_B}{2}|)}{E_3 + H_0}$$

Scaling function (limit cycle) for the width of the distribution

$$\frac{\sigma}{\sqrt{S_{2n}}} = S_c \left( \pm \sqrt{\frac{E_{nn}}{S_{2n}}}, \pm \sqrt{\frac{E_{nc}}{S_{2n}}}; A \right) \quad \text{FWHM} = 2\sqrt{2\ln 2} \,\sigma$$



Fig. 1. Scaling plot for the core recoil momentum distribution  $\sigma$  in the Efimov limit as a function of the core mass number A. Experimental widths are from Refs. [1] and [9], for <sup>11</sup>Li and <sup>14</sup>Be, respectively.

[<sup>11</sup>Li] I. Tanihata, J. Phys. G 22 (1996) 157;
[<sup>14</sup>Be] M. Zahar, et al., Phys. Rev. C 48 (1993) R1484.

### Core Momentum distribution nnC = AAB systems: ${}^{11}Li$ , ${}^{20}C$ , ${}^{22}C$



### **RIKEN:** Kobayashi et al PRC86 (2012) 054604 **Inclusive cross-sections with 2n removal on C target Core momentum distribution** ${}^{20}C = n + n + {}^{18}C$ and ${}^{22}C = n + n + {}^{20}C$



Broad contribution to the momentum distribution of the core in <sup>22</sup>C !



 $E_v[^{21}C] = 1 \text{ MeV}$  Mosby et al. NPA 909, 69 (2013) – MSU -  $|a_s| < 2.8 \text{ fm}$  (<sup>21</sup>C virtual state)

$$100 \,\mathrm{KeV} \lesssim S_{2n} [^{22}C] \lesssim 400 \,\mathrm{KeV}$$

$$r_n \lesssim 7 \,\mathrm{fm} \rightarrow \tilde{r}_m^{^{22}C} \lesssim 4 \,\mathrm{fm} \quad 5.4 \pm 0.9 \,\mathrm{fm}$$

Tanaka et al PRL 104(10)

### Threshold for an excited Efimov state: Halo-nuclei

Critical condition for an excited (N+1)-th above the N-th state:



Amorim, TF, Tomio PRC56(1997)2378;

Canham and Hammer EPJA 37 (2008) 367; NPA 836 (2010) 275

<sup>21</sup>*C* with a virtual state with energy 1 MeV and  $100 \text{ KeV} \leq S_{2n}[^{22}C] \leq 400 \text{ KeV}$  $\rightarrow$  Improbable an excited Efimov state/continuum resonance

### Summary

Weakly bound & large systems: **few scales regime** in halo nuclei, molecules, trapped atoms CORRELATIONS BETWEEN OBSERVABLES  $\rightarrow$  CONSTRAINTS!



Zero-range model n-n-c system: suitable to study the structure of S-wave halos in <sup>11</sup>Li, <sup>14</sup>Be, <sup>20</sup>C, <sup>22</sup>C

Two neutron correlations in <sup>11</sup>Li and <sup>14</sup>Be well reproduced

Core Momentum distribution in <sup>11</sup>Li, <sup>14</sup>Be and <sup>20</sup>C well reproduced



Core Momentum distribution in <sup>22</sup>C:  $S_{2n} \sim 100 - 400 \text{ KeV}$ 

$$\rightarrow \tilde{r}_m^{^{22}C} \lesssim 4 \,\mathrm{f}m$$

### **Outlook**

Neutron halo > 2n (no need of a 4-body scale)...  $^{12}Li = {}^{10}Li + n + n + n$ ,  ${}^{21}C = {}^{18}C + n + n + n$ 

 $\longrightarrow$  Universality in scattering, one neutron and two neutron transfers  $\rightarrow$  exotic, breakup of halo nuclei & CDCC ...

Pigmy resonances in Borromean halos L<sub>total</sub>=1,2, 3 ...



Formation of neutron halo nuclei in neutron rich environment? How this affect neutron capture? ...



Fix the tail of ab-initio calculations...

$$\mathcal{A}\left[\Psi({}^{9}Li)\times\Psi_{3B}({}^{9}Li-n-n)\right]$$